Experimental and Numerical Investigation of a Novel Vortex Reducer in a Co-Rotating Cavity of Aeroengines
Abstract
:1. Introduction
2. Experimental Configuration and Computational Procedure
2.1. Experimental Configuration
2.1.1. Test System
2.1.2. Vortex Reducer Configurations
2.1.3. Experimental Uncertainty
2.2. Computational Procedure
2.2.1. Computational Models and Boundary Conditions
2.2.2. Grid and Numerical Methods
2.2.3. Validation of Numerical Methods
3. Design Strategy and Methods for the NVR
3.1. Control Parameters
3.1.1. De-Swirl Shroud Orifice
3.1.2. Fin
3.1.3. Design Procedure
3.2. ANN Procedure
3.3. PSO Procedure
4. Results
4.1. Flow Characteristics in the Cavities
4.2. Performance Evaluation of the NVR
4.3. Optimization of the NVR
4.3.1. Surrogate Model
4.3.2. Optimization Procedure
5. Conclusions
- Due to the effect of the de-swirl jet, the enhancement of vortices at large radii and the development of the Ekman layers are suppressed by the de-swirl shroud orifices. The low inlet swirl ratio slows down the development of the Ekman layers by reducing the increase rate of the swirl ratio at large radii. Furthermore, the fins limit the increase in tangential velocity at the low radius, resulting in strong centripetal airflow.
- The NVR generates a lower pressure drop than traditional vortex reducers. The de-swirl jet and rigid-body vortices suppress the generation of the centripetal pressure drop at large and small radii, respectively. At the same time, the decreased relative tangential velocity reduces the local pressure drop at the outer radius of the fins. Compared to the FVR with identical fins, the NVR reduces the pressure drop by 28.52%. In particular, the NVR is 25.82% lighter than the FVR, which has the best drag reduction performance.
- At turbulence parameters ranging from 0.1 to 0.5, the pressure drop in the NVR is monotonic. Considering the effect of the rotating speed and flow rate together, when the inlet swirl ratio at the design point of the cruising status is limited to 0.5, the inlet swirl ratio will not be less than −1 in the operating range of aeroengines. Therefore, the pressure drop grows monotonically as the turbulence parameter increases.
- The optimized NVR exhibits steadier air-entraining characteristics. The local pressure coefficient at the shroud orifices is employed as a fitness function, and the optimized local pressure drop is lowered by 15.34%. However, the decreased de-swirl velocity increases the centripetal pressure drop. Although the overall pressure drop does not change significantly before and after optimization, the weakened de-swirl jet improves the air-entraining characteristics.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Nomenclature
Nomenclature | |
a | Inner radius of the cavity |
b | Outer radius of the cavity |
c | Inlet swirl ratio |
Cm | Dimensionless flow rate, m/μb |
Cp | Pressure coefficient, 2Δp/ρω2b2 |
ls | Straight length of the de-swirl shroud orifices |
m | Mass flow rate |
r | Radius |
Reϕ | Rotating Reynolds number, ρωb2/μ |
p | Static pressure |
S | Axial width of the cavity |
Sr | Swirl ratio, Vϕ/ωb |
T | Static temperature |
Vϕ | Tangential velocity in the stationary frame |
x | Dimensionless radius, r/b |
X | Axial coordinates |
Greek letters | |
α1 | Leeward angle of the de-swirl shroud orifices |
α2 | Expansion angle of the de-swirl shroud orifices |
ρ | Density |
ω | Rotating angular velocity |
μ | Dynamic viscosity |
θ | Inclined angle of the shroud orifices |
λt | Turbulence parameter, Cm/Reϕ0.8 |
Subscripts | |
fi | Outer radius of the fins |
fo | Inner radius of the fins |
local | Shroud orifice region |
ϕ | Tangential component |
Abbreviations | |
ANN | Artificial neural network |
FVR | Finned vortex reducer |
HVR | Hybrid vortex reducer |
NVR | Novel vortex reducer |
PSO | Particle swarm optimization |
SAS | Secondary air system |
TVR | Tubed vortex reducer |
References
- Zhang, G.; Ding, S. Safety analysis of flow parameters in a rotor-stator cavity. Chin. J. Aeronaut. 2012, 25, 831–838. [Google Scholar] [CrossRef]
- Gong, W.; Liu, G.; Wang, J.; Wang, F.; Lin, A.; Wang, Z. Aerodynamic and thermodynamic analysis of an aero-engine pre-swirl system based on structure design and performance improvement. Aerosp. Sci. Technol. 2022, 123, 107466. [Google Scholar] [CrossRef]
- Kong, X.; Huang, T.; Liu, Y.; Chen, H.; Lu, H. Effects of pre-swirl radius on cooling performance of a rotor-stator pre-swirl system in gas turbine engines. Case Stud. Therm. Eng. 2022, 37, 102250. [Google Scholar] [CrossRef]
- Günther, A.; Uffrecht, W.; Kaiser, E.; Odenbach, S.; Heller, L. Experimental analysis of varied vortex reducer configurations for the internal air system of jet engine gas turbines. In Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea and Air, Berlin, Germany, 9–13 June 2008. [Google Scholar]
- Chew, J.W.; Farthing, P.R.; Owen, J.M.; Stratford, B. The use of fins to reduce the pressure drop in a rotating cavity with a radial inflow. J. Turbomach. 1989, 111, 349–356. [Google Scholar] [CrossRef]
- Farthing, P.R.; Chew, J.W.; Owen, J.M. The use of de-swirl nozzles to reduce the pressure drop in a rotating cavity with a radial inflow. J. Turbomach. 1989, 113, 106–114. [Google Scholar] [CrossRef]
- Hide, R. On source-sink flows in a rotating fluid. J. Fluid Mech. 1968, 32, 737–764. [Google Scholar] [CrossRef]
- Owen, J.M.; Pincombe, J.R.; Rogers, R.H. Source-sink flow inside a rotating cylindrical cavity. J. Fluid Mech. 1985, 155, 233–265. [Google Scholar] [CrossRef]
- Barcilon, V. Some inertial modifications of the linear viscous theory of steady rotating fluid flows. Phys. Fluids 1970, 13, 537–544. [Google Scholar] [CrossRef]
- Owen, J.M. An approximate solution for the flow between a rotating and a stationary disk. J. Turbomach. 1989, 111, 323–332. [Google Scholar] [CrossRef]
- Firouzian, M.; Owen, J.M.; Pincombe, J.R.; Rogers, R.H. Flow and heat transfer in a rotating cylindrical cavity with a radial inflow of fluid part 2: Velocity, pressure and heat transfer measurements. Int. J. Heat Fluid Flow 1986, 1, 21–27. [Google Scholar] [CrossRef]
- Firouzian, M.; Owen, J.M.; Pincombe, J.R.; Rogers, R.H. Flow and heat transfer in a rotating cylindrical cavity with a radial inflow of fluid part 1: The flow structure. Int. J. Heat Fluid Flow 1985, 6, 228–234. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Zhang, J. Flow and heat transfer in a rotating cavity with de-swirl nozzles: An LES study. Int. Commun. Heat Mass Transf. 2020, 118, 104816. [Google Scholar] [CrossRef]
- Pfitzner, M.; Waschka, W. Development of an aeroengine secondary air system employing vortex reducers. In Proceedings of the International Congress of Aeronautical Sciences, ICAS, Harrogate, UK, 27 August–1 September 2000. [Google Scholar]
- Negulescu, D.; Pfitzner, M. Secondary air systems in aeroengines employing vortex reducers. In Proceedings of the ASME TURBO EXPO 2001: Turbomachinery Technical Conference and Exposition, New Orleans, LA, USA, 4–7 June 2001. [Google Scholar]
- Farthing, P.R.; Owen, J.M. De-swirled radial inflow in a rotating cavity. Int. J. Heat Fluid Flow 1991, 12, 63–70. [Google Scholar] [CrossRef]
- Shen, W.; Wang, S.; Zhang, X.; Liang, X. Large-eddy simulation and mathematical model of vortex breakdown and pressure drop in a cavity with tubeless vortex reducer. Eng. Appl. Comp. Fluid 2022, 16, 1344–1363. [Google Scholar] [CrossRef]
- Lee, J.; Lee, H.; Park, H.; Cho, G.; Kim, D.; Cho, J. Design optimization of a vane type pre-swirl nozzle. Eng. Appl. Comp. Fluid 2021, 15, 164–179. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, B.; Kong, X.; Chen, H. Experimental study on the outlet flow field and cooling performance of vane-shaped pre-swirl nozzles in gas turbine engines. Case Stud. Therm. Eng. 2023, 44, 102878. [Google Scholar] [CrossRef]
- Gupta, S.; Paudel, A.; Thapa, M.; Mulani, S.B.; Walters, R.W. Optimal sampling-based neural networks for uncertainty quantification and stochastic optimization. Aerosp. Sci. Technol. 2023, 133, 108109. [Google Scholar] [CrossRef]
- Hines, D.; Bekemeyer, P. Graph neural networks for the prediction of aircraft surface pressure distributions. Aerosp. Sci. Technol. 2023, 137, 108268. [Google Scholar] [CrossRef]
- He, J.; Luo, X.; Bai, Y.; Song, A.; Yang, T. Experimental and numerical investigation on finned vortex reducer in a rotating cavity with a radial inflow. Aerospace 2023, 10, 655. [Google Scholar] [CrossRef]
- Liang, Z.; Luo, X.; Feng, Y.; Xu, G. Experimental investigation of pressure losses in a co-rotating cavity with radial inflow employing tubed vortex reducers with varied nozzles. Exp. Therm. Fluid Sci. 2015, 66, 304–315. [Google Scholar] [CrossRef]
- Luo, X.; Feng, A.; Quan, Y.; Zhou, Z.; Liao, N. Experimental analysis of varied vortex reducers in reducing the pressure drop in a rotating cavity with radial inflow. Exp. Therm. Fluid Sci. 2016, 77, 159–166. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Y.; Zhong, B.; Zhao, J.; Zhang, X. Fatigue life prediction of vortex reducer based on stress gradient. J. Mech. Design 2019, 141, 031701. [Google Scholar] [CrossRef]
- Ma, M.; Wei, D.; Wang, Y.; Li, D.; Zhang, H. Strength evaluation and failure analysis of the vortex reducer under overspeed condition. Aerospace 2021, 8, 394–409. [Google Scholar] [CrossRef]
- Du, X.; Zhu, H.; Zhang, Z. Numerical study on varied vortex reducer configurations for the flow path optimization in compressor cavities. In Proceedings of the ASME Turbo Expo 2011: Turbomachinery Technical Conference and Exposition, Vancouver, BC, Canada, 6–10 June 2011. [Google Scholar]
- Sibilli, T.; Cho, G.; Kholi, F.; Mucci, A. Numerical analysis of industrial gas turbine secondary air system employing vortex reducer. In Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Oslo, Norway, 11–15 June 2018. [Google Scholar]
- Mucci, A.; Kholi, F.K.; Sibilli, T.; Min, J.K.; Ha, M.Y.; Cho, G.H. Numerical analysis of secondary airflow in a rotating cavity of a gas-turbine at high operating points with vortex reducer implementation. Heat Mass Transf. 2021, 57, 1363–1378. [Google Scholar] [CrossRef]
- Wei, S.; Mao, J.; Yan, J.; Han, X.; Tu, Z.; Tian, R. Experimental study on a hybrid vortex reducer system in reducing the pressure drop in a rotating cavity with radial inflow. Exp. Therm. Fluid Sci. 2020, 110, 109942. [Google Scholar] [CrossRef]
- Kline, S.J. Describing uncertainties in single-sample experiments. Mech. Eng. 1963, 75, 3–8. [Google Scholar]
- Li, Y.; Zhang, H.; Yin, Z.; Wang, J.; Chen, H. Investigation of unsteady flow in the unscalloped radial turbine cavity. Aerosp. Sci. Technol. 2021, 113, 106675. [Google Scholar] [CrossRef]
- Jones, W.P.; Pascau, A. Calculation of confined swirling flows with a second moment closure. J. Fluids Eng. 1989, 111, 248–255. [Google Scholar] [CrossRef]
- Poncet, S.; Schiestel, R.; Chauve, M.P. Turbulence modelling and measurements in a rotor-stator system with throughflow. Eng. Turbul. Model. Exp. 2005, 185, 761–770. [Google Scholar]
- Vinod, K.B.; Chew, J.W.; Hills, N.J. Rotating flow and heat transfer in cylindrical cavities with radial inflow. In Proceedings of the ASME Turbo Expo 2012: Turbomachinery Technical Conference and Exposition, Copenhagen, Denmark, 11–15 June 2012. [Google Scholar]
- Wei, S.; Yan, J.; Mao, J.; Han, X.; Tu, Z. A mathematical model for predicting the pressure drop in a rotating cavity with a tubed vortex reducer. Eng. Appl. Comp. Fluid 2019, 13, 664–682. [Google Scholar] [CrossRef]
- Shen, W.J.; Wang, S.F.; Liang, X.D. Flow and heat transfer in a co-rotating cavity with tubes: A coupled prediction model. J. Appl. Fluid Mech. 2022, 15, 1403–1416. [Google Scholar]
- Huang, S.H.; Zhang, H. Artificial neural networks in manufacturing concepts applications and perspectives. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1994, 17, 212–228. [Google Scholar] [CrossRef]
- Mahmoodabadi, M.J.; Babak, N.R. Robust fuzzy linear quadratic regulator control optimized by multi-objective high exploration particle swarm optimization for a 4 degree-of-freedom quadrotor. Aerosp. Sci. Technol. 2020, 97, 105598. [Google Scholar] [CrossRef]
- Venter, G. Particle swarm optimization. AIAA J. 2003, 41, 1583–1589. [Google Scholar] [CrossRef]
- Tumse, S.; Bilgili, M.; Sahin, B. Estimation of aerodynamic coefficients of a non-slender delta wing under ground effect using artificial intelligence techniques. Neural Comput. Appl. 2022, 34, 10823–10844. [Google Scholar] [CrossRef]
- Tumse, S.; Ilhan, A.; Bilgili, M.; Sahin, B. Estimation of wind turbine output power using soft computing models. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 3757–3786. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
b | 185, 195 | mm |
a | 67 | mm |
rfi | 130 | mm |
rfo | 75 | mm |
S | 50 | mm |
rs | 3.3 | mm |
ls | 6.6 | mm |
θ | 45 | ° |
α1 | 60 | ° |
α2 | 0 | ° |
l | 7 | mm |
d1 | 5 | mm |
d2 | 12 | mm |
Parameter | Value | Unit |
---|---|---|
Rotating speed | 600, 900, 1200, 1500, 1800, 2100, 2400, 2700, 3000, 3300, 3600 | rev/min |
Mass flow rate | 0.047, 0.07, 0.078, 0.099, 0.109 | kg/s |
Parameter | Value | Unit |
---|---|---|
Inlet total pressure | 1538 | kPa |
Inlet static temperature | 686 | K |
Rotating speed | 4000, 6000, 8000, 10,000, 12,000, 14,000, 16,000 | rev/min |
Mass flow rate | 0.15, 0.3, 0.45, 0.6, 0.75, 0.855, 1.005, 1.305, 1.5 | kg/s |
Parameter | Value | Unit |
---|---|---|
l | 7~13 | mm |
α1 | 50~80 | ° |
α2 | 9~27 | ° |
No. | l | α1 | α2 | Cp.local | No. | l | α1 | α2 | Cp.local |
---|---|---|---|---|---|---|---|---|---|
1 | 7 | 50 | 9 | 0.666784 | 26 | 10 | 70 | 24 | 0.689993 |
2 | 7 | 55 | 24 | 0.647256 | 27 | 10 | 75 | 9 | 0.685423 |
3 | 7 | 60 | 18 | 0.64032 | 28 | 10 | 80 | 15 | 0.679867 |
4 | 7 | 65 | 12 | 0.67132 | 29 | 11 | 50 | 18 | 0.676843 |
5 | 7 | 70 | 27 | 0.639498 | 30 | 11 | 55 | 24 | 0.691834 |
6 | 7 | 75 | 21 | 0.619938 | 31 | 11 | 60 | 9 | 0.664121 |
7 | 7 | 80 | 15 | 0.641471 | 32 | 11 | 65 | 15 | 0.67464 |
8 | 8 | 50 | 27 | 0.667967 | 33 | 11 | 70 | 21 | 0.681215 |
9 | 8 | 55 | 12 | 0.665764 | 34 | 11 | 75 | 27 | 0.652976 |
10 | 8 | 60 | 18 | 0.703076 | 35 | 11 | 80 | 12 | 0.67063 |
11 | 8 | 65 | 24 | 0.648473 | 36 | 12 | 50 | 15 | 0.669183 |
12 | 8 | 70 | 9 | 0.66754 | 37 | 12 | 55 | 21 | 0.675068 |
13 | 8 | 75 | 15 | 0.664154 | 38 | 12 | 60 | 27 | 0.668888 |
14 | 8 | 80 | 21 | 0.671452 | 39 | 12 | 65 | 12 | 0.682464 |
15 | 9 | 50 | 24 | 0.668625 | 40 | 12 | 70 | 18 | 0.661655 |
16 | 9 | 55 | 9 | 0.656034 | 41 | 12 | 75 | 24 | 0.674608 |
17 | 9 | 60 | 15 | 0.644659 | 42 | 12 | 80 | 9 | 0.712577 |
18 | 9 | 65 | 21 | 0.675397 | 43 | 13 | 50 | 12 | 0.68493 |
19 | 9 | 70 | 27 | 0.645514 | 44 | 13 | 55 | 18 | 0.67875 |
20 | 9 | 75 | 12 | 0.709783 | 45 | 13 | 60 | 24 | 0.696995 |
21 | 9 | 80 | 18 | 0.665469 | 46 | 13 | 65 | 9 | 0.679933 |
22 | 10 | 50 | 21 | 0.716522 | 47 | 13 | 70 | 15 | 0.703142 |
23 | 10 | 55 | 27 | 0.703339 | 48 | 13 | 75 | 21 | 0.658171 |
24 | 10 | 60 | 12 | 0.68447 | 49 | 13 | 80 | 27 | 0.661261 |
25 | 10 | 65 | 18 | 0.644002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, W.; Wang, S.; Wang, M.; Suo, J.; Zhang, Z. Experimental and Numerical Investigation of a Novel Vortex Reducer in a Co-Rotating Cavity of Aeroengines. Aerospace 2024, 11, 225. https://doi.org/10.3390/aerospace11030225
Shen W, Wang S, Wang M, Suo J, Zhang Z. Experimental and Numerical Investigation of a Novel Vortex Reducer in a Co-Rotating Cavity of Aeroengines. Aerospace. 2024; 11(3):225. https://doi.org/10.3390/aerospace11030225
Chicago/Turabian StyleShen, Wenjie, Suofang Wang, Mengyuan Wang, Jia Suo, and Zhao Zhang. 2024. "Experimental and Numerical Investigation of a Novel Vortex Reducer in a Co-Rotating Cavity of Aeroengines" Aerospace 11, no. 3: 225. https://doi.org/10.3390/aerospace11030225
APA StyleShen, W., Wang, S., Wang, M., Suo, J., & Zhang, Z. (2024). Experimental and Numerical Investigation of a Novel Vortex Reducer in a Co-Rotating Cavity of Aeroengines. Aerospace, 11(3), 225. https://doi.org/10.3390/aerospace11030225