A Radio Frequency Fingerprinting-Based Aircraft Identification Method Using ADS-B Transmissions
Abstract
:1. Introduction
- The applicability and efficiency of PSD features extracted from ADS-B signals in the RFF of aircrafts are evaluated for the first time in the literature.
- The proposed method is shown to achieve acceptable performance levels, even when a small dataset is used. Therefore, it is expected that the proposed method could operate effectively in real-world applications with low computational resources.
2. Related Work
3. A Brief Overview of ADS-B System
4. The Proposed Method
4.1. ADS-B Signal Acquisition and Preprocessing
4.2. Feature Extraction
4.3. Classification
5. Experiments
5.1. Dataset Description
5.2. Implementation
5.3. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAA Aerospace Forecast: Fiscal Years 2013–2033|Federal Aviation Administration. Available online: https://rosap.ntl.bts.gov/view/dot/59850 (accessed on 1 November 2023).
- Next Generation Air Transportation System (NextGen)|Federal Aviation Administration. Available online: https://www.faa.gov/nextgen (accessed on 1 November 2023).
- Strohmeier, M. Large-Scale Analysis of Aircraft Transponder Data. IEEE Aerosp. Electron. Syst. Mag. 2017, 32, 42–44. [Google Scholar]
- Wu, Z.; Shang, T.; Guo, A. Security Issues in Automatic Dependent Surveillance-Broadcast (ADS-B): A Survey. IEEE Access 2020, 8, 122147–122167. [Google Scholar] [CrossRef]
- Strohmeier, M.; Lenders, V.; Martinovic, I. On the Security of the Automatic Dependent Surveillance-Broadcast Protocol. IEEE Commun. Surv. Tutor. 2014, 17, 1066–1087. [Google Scholar] [CrossRef]
- Manesh, M.R.; Kaabouch, N. Analysis of Vulnerabilities, Attacks, Countermeasures and Overall Risk of the Automatic Dependent Surveillance-Broadcast (ADS-B) System. Int. J. Crit. Infrastruct. Prot. 2017, 19, 16–31. [Google Scholar] [CrossRef]
- Soltanieh, N.; Norouzi, Y.; Yang, Y.; Karmakar, N.C. A Review of Radio Frequency Fingerprinting Techniques. IEEE J. Radio Freq. Identif. 2020, 4, 222–233. [Google Scholar] [CrossRef]
- Jagannath, A.; Jagannath, J.; Kumar, P.S.P.V. A Comprehensive Survey on Radio Frequency (RF) Fingerprinting: Traditional Approaches, Deep Learning, and Open Challenges. Comput. Netw. 2022, 219, 109455. [Google Scholar] [CrossRef]
- Köse, M.; Taşcioğlu, S.; Telatar, Z. RF Fingerprinting of IoT Devices Based on Transient Energy Spectrum. IEEE Access 2019, 7, 18715–18726. [Google Scholar] [CrossRef]
- Aghnaiya, A.; Dalveren, Y.; Kara, A. On the Performance of Variational Mode Decomposition-Based Radio Frequency Fingerprinting of Bluetooth Devices. Sensors 2020, 20, 1704. [Google Scholar] [CrossRef] [PubMed]
- Uzundurukan, E.; Dalveren, Y.; Kara, A. A Database for the Radio Frequency Fingerprinting of Bluetooth Devices. Data 2020, 5, 55. [Google Scholar] [CrossRef]
- Uzundurukan, E.; Ali, A.M.; Dalveren, Y.; Kara, A. Performance Analysis of Modular RF Front End for RF Fingerprinting of Bluetooth Devices. Wirel. Pers. Commun. 2020, 112, 2519–2531. [Google Scholar] [CrossRef]
- Almashaqbeh, H.; Dalveren, Y.; Kara, A. A Study on the Performance Evaluation of Wavelet Decomposition in Transient-based Radio Frequency Fingerprinting of Bluetooth Devices. Microw. Opt. Technol. Lett. 2022, 64, 643–649. [Google Scholar] [CrossRef]
- Ali, A.M.; Uzundurukan, E.; Kara, A. Assessment of Features and Classifiers for Bluetooth RF Fingerprinting. IEEE Access 2019, 7, 50524–50535. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Amin, M.G. Multifrequency-Based Range Estimation of RFID Tags. In Proceedings of the 2009 IEEE International Conference on RFID, Orlando, FL, USA, 27–28 April 2009; pp. 147–154. [Google Scholar]
- Morge-Rollet, L.; Le Roy, F.; Le Jeune, D.; Canaff, C.; Gautier, R. RF Eigenfingerprints, an Efficient RF Fingerprinting Method in IoT Context. Sensors 2022, 22, 4291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shen, G.; Saad, W.; Chowdhury, K. Radio Frequency Fingerprint Identification for Device Authentication in the Internet of Things. IEEE Commun. Mag. 2023, 61, 110–115. [Google Scholar] [CrossRef]
- Strohmeier, M.; Martinovic, I. On Passive Data Link Layer Fingerprinting of Aircraft Transponders. In Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security and/or PrivaCy, Denver, CO, USA, 16 October 2015; pp. 1–9. [Google Scholar]
- Leonardi, M.; Di Gregorio, L.; Di Fausto, D. Air Traffic Security: Aircraft Classification Using ADS-B Message’s Phase-Pattern. Aerospace 2017, 4, 51. [Google Scholar] [CrossRef]
- Zeng, M.; Yao, Y.; Liu, H.; Hu, Y.; Yang, H. A Specific Emitter Identification System Design for Crossing Signal Modes in the Air Traffic Control Radar Beacon System and Wireless Devices. Sensors 2023, 23, 8576. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, G.; Shi, J.; Li, H.; Hu, A. Real-World Aircraft Recognition Based on RF Fingerprinting with Few Labeled ADS-B Signals. IEEE Trans. Veh. Technol. 2023, 73, 2866–2871. [Google Scholar] [CrossRef]
- Stankowicz, J.; Robinson, J.; Carmack, J.M.; Kuzdeba, S. Complex Neural Networks for Radio Frequency Fingerprinting. In Proceedings of the 2019 IEEE Western New York Image and Signal Processing Workshop (WNYISPW), Rochester, NY, USA, 4 October 2019; pp. 1–5. [Google Scholar]
- Gopalakrishnan, S.; Cekic, M.; Madhow, U. Robust Wireless Fingerprinting via Complex-Valued Neural Networks. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Robinson, J.; Kuzdeba, S.; Stankowicz, J.; Carmack, J.M. Dilated Causal Convolutional Model for RF Fingerprinting. In Proceedings of the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 6–8 January 2020; pp. 157–162. [Google Scholar]
- Costin, A.; Francillon, A. Ghost in the Air (Traffic): On Insecurity of ADS-B Protocol and Practical Attacks on ADS-B Devices. Black Hat USA 2012, 1, 1–12. [Google Scholar]
- Schäfer, M.; Lenders, V.; Martinovic, I. Experimental Analysis of Attacks on Next Generation Air Traffic Communication. In Applied Cryptography and Network Security; Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7954, pp. 253–271. ISBN 978-3-642-38979-5. [Google Scholar]
- Leonardi, M.; Di Fausto, D. ADS-B Signal Signature Extraction for Intrusion Detection in the Air Traffic Surveillance System. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 2564–2568. [Google Scholar]
- Ying, X.; Mazer, J.; Bernieri, G.; Conti, M.; Bushnell, L.; Poovendran, R. Detecting ADS-B Spoofing Attacks Using Deep Neural Networks. In Proceedings of the 2019 IEEE Conference on Communications and Network Security (CNS), Washington, DC, USA, 10–12 June 2019; pp. 187–195. [Google Scholar]
- Leonardi, M.; Gerardi, F. Aircraft Mode S Transponder Fingerprinting for Intrusion Detection. Aerospace 2020, 7, 30. [Google Scholar] [CrossRef]
- Zha, H.; Tian, Q.; Lin, Y. Real-World ADS-B Signal Recognition Based on Radio Frequency Fingerprinting. In Proceedings of the 2020 IEEE 28th International Conference on Network Protocols (ICNP), Madrid, Spain, 13–16 October 2020; pp. 1–6. [Google Scholar]
- Nicolussi, A.; Tanner, S.; Wattenhofer, R. Aircraft Fingerprinting Using Deep Learning. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021; pp. 740–744. [Google Scholar]
- Louwen, A. Radio Frequency Fingerprinting for Aircraft Identification. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2022. [Google Scholar]
- Agadakos, I.; Agadakos, N.; Polakis, J.; Amer, M.R. Chameleons’ Oblivion: Complex-Valued Deep Neural Networks for Protocol-Agnostic RF Device Fingerprinting. In Proceedings of the 2020 IEEE European Symposium on Security and Privacy (EuroS&P), Genoa, Italy, 7–11 September 2020; pp. 322–338. [Google Scholar]
- Jian, T.; Rendon, B.C.; Ojuba, E.; Soltani, N.; Wang, Z.; Sankhe, K.; Gritsenko, A.; Dy, J.; Chowdhury, K.; Ioannidis, S. Deep Learning for RF Fingerprinting: A Massive Experimental Study. IEEE Internet Things Mag. 2020, 3, 50–57. [Google Scholar] [CrossRef]
- Smith, S. Digital Signal Processing: A Practical Guide for Engineers and Scientists; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Singh, D.; Singh, B. Investigating the Impact of Data Normalization on Classification Performance. Appl. Soft Comput. 2020, 97, 105524. [Google Scholar] [CrossRef]
- Welch, P. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- Hayes, M.H. Statistical Digital Signal Processing and Modeling; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing; Pearson: Upper Saddle River, NJ, USA, 2009; ISBN 978-0131988422. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 2000; ISBN 978-1-4419-3160-3. [Google Scholar]
- Li, H. Machine Learning Methods; Springer Nature: Singapore, 2024; ISBN 978-981-9939-16-9. [Google Scholar]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A Comprehensive Survey on Support Vector Machine Classification: Applications, Challenges and Trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Flach, P. (Ed.) Binary Classification and Related Tasks. In Machine Learning: The Art and Science of Algorithms that Make Sense of Data; Cambridge University Press: Cambridge, UK, 2012; pp. 49–80. ISBN 978-1-107-09639-4. [Google Scholar]
- Krichen, M. Convolutional Neural Networks: A Survey. Computers 2023, 12, 151. [Google Scholar] [CrossRef]
- Tas, S.; Sari, O.; Dalveren, Y.; Pazar, S.; Kara, A.; Derawi, M. Deep Learning-Based Vehicle Classification for Low Quality Images. Sensors 2022, 22, 4740. [Google Scholar] [CrossRef]
- Maiga, B.; Dalveren, Y.; Kara, A.; Derawi, M. Convolutional Neural Network-Based Vehicle Classification in Low-Quality Imaging Conditions for Internet of Things Devices. Sustainability 2023, 15, 16292. [Google Scholar] [CrossRef]
Ref. | Feature/Information | Classifier/Process | Number of Transmitters | SNR | Accuracy |
---|---|---|---|---|---|
[29] | Carrier phase and frequency features | Sliding Window Size and KNN | 2942 | - | - |
[30] | Contour stellar images | CNN | 5 | 20–30 dB | ~95% |
[31] | Preamble phase and phase patterns | CNN | 274 | - | 41.9% |
[32] | Preamble and bit synchronization | Complex-valued CNN | 50 | 10 dB | 44% |
[33] | Raw I/Q data | RDCN | 100 | 2–5 dB | 100% |
[34] | Raw I/Q data | Baseline and ResNet-50-1D | 100 | −13.3–15.3 dB | 92.5% |
Parameter | Value |
---|---|
Kernel Scale Parameter | Auto |
Standardize | True |
Box Constraint | 1 |
Polynomial Kernel Function | Auto |
Optimization Solver | Iterative Single Data Algorithm (ISDA) |
Cache Size | 1000 |
ClipAlphas | True |
Nu ( parameter for one-class learning) | 0.5 |
NumPrint | 1000 |
OutlierFraction, Verbose | 0 |
RemoveDuplicates | False |
SNR (dB) | Aircraft 1 | Aircraft 2 | Aircraft 3 | Aircraft 4 | Aircraft 5 | Aircraft 6 | Aircraft 7 | Aircraft 8 | Overall |
---|---|---|---|---|---|---|---|---|---|
10 | 99.23 | 88.97 | 88.37 | 90.54 | 90.78 | 90.54 | 91.58 | 96.56 | 92.07 |
15 | 99.47 | 90.14 | 89.71 | 91.24 | 92.28 | 91.68 | 93.36 | 97.39 | 93.16 |
20 | 99.35 | 90.74 | 90.09 | 91.77 | 92.56 | 91.91 | 94.20 | 97.64 | 93.53 |
25 | 99.31 | 90.91 | 90.46 | 92.26 | 92.60 | 92.27 | 94.27 | 97.79 | 93.73 |
30 | 99.46 | 91.24 | 90.76 | 92.02 | 93.05 | 92.41 | 94.43 | 97.92 | 93.91 |
SNR (dB) | Aircraft 1 | Aircraft 2 | Aircraft 3 | Aircraft 4 | Aircraft 5 | Aircraft 6 | Aircraft 7 | Aircraft 8 | Overall |
---|---|---|---|---|---|---|---|---|---|
10 | 99.28 | 87.97 | 87.603 | 89.49 | 89.68 | 90.01 | 90.73 | 95.41 | 91.27 |
15 | 99.08 | 88.70 | 88.02 | 90.06 | 91.09 | 91.06 | 92.55 | 96.43 | 92.12 |
20 | 98.65 | 88.83 | 88.259 | 90.05 | 91.24 | 91.36 | 92.69 | 96.39 | 92.18 |
25 | 98.57 | 88.87 | 88.417 | 90.06 | 91.29 | 91.12 | 92.72 | 96.42 | 92.19 |
30 | 98.70 | 88.93 | 88.724 | 90.26 | 91.46 | 91.44 | 92.73 | 96.38 | 93.33 |
SNR (dB) | Aircraft 1 | Aircraft 2 | Aircraft 3 | Aircraft 4 | Aircraft 5 | Aircraft 6 | Aircraft 7 | Aircraft 8 | Overall |
---|---|---|---|---|---|---|---|---|---|
10 | 97.41 | 87.61 | 87.50 | 89.13 | 87.98 | 88.65 | 89.20 | 93.63 | 90.14 |
15 | 97.81 | 87.79 | 87.53 | 89.50 | 88.63 | 89.30 | 90.09 | 94.47 | 90.64 |
20 | 97.55 | 87.84 | 87.58 | 89.70 | 88.65 | 89.29 | 89.86 | 94.16 | 90.58 |
25 | 97.31 | 88.03 | 87.62 | 89.89 | 88.79 | 89.48 | 89.76 | 94.14 | 90.63 |
30 | 97.43 | 88.38 | 87.60 | 90.11 | 89.19 | 89.82 | 90.02 | 94.28 | 90.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurer, G.; Dalveren, Y.; Kara, A.; Derawi, M. A Radio Frequency Fingerprinting-Based Aircraft Identification Method Using ADS-B Transmissions. Aerospace 2024, 11, 235. https://doi.org/10.3390/aerospace11030235
Gurer G, Dalveren Y, Kara A, Derawi M. A Radio Frequency Fingerprinting-Based Aircraft Identification Method Using ADS-B Transmissions. Aerospace. 2024; 11(3):235. https://doi.org/10.3390/aerospace11030235
Chicago/Turabian StyleGurer, Gursu, Yaser Dalveren, Ali Kara, and Mohammad Derawi. 2024. "A Radio Frequency Fingerprinting-Based Aircraft Identification Method Using ADS-B Transmissions" Aerospace 11, no. 3: 235. https://doi.org/10.3390/aerospace11030235
APA StyleGurer, G., Dalveren, Y., Kara, A., & Derawi, M. (2024). A Radio Frequency Fingerprinting-Based Aircraft Identification Method Using ADS-B Transmissions. Aerospace, 11(3), 235. https://doi.org/10.3390/aerospace11030235