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Abstract: This study explores optimizing Synthetic Aperture Radar (SAR) satellite constellation
scheduling for multi-imaging missions in densely targeted areas using an in-house-developed Modi-
fied Dynamic Programming (MDP) algorithm. By employing Mixed-Integer Linear Programming
(MILP) to define the mission planning problem, this research aims to maximize observation of high-
value targets within restricted planning horizons. Numerical simulations, covering a wide range of
target numbers and satellite configurations, reveal the MDP algorithm’s superior mission allocation
efficiency, enhanced success rates, and reduced revisit times compared to the greedy algorithm. The
findings underscore the MDP algorithm’s improved operational efficiency and planning robustness
for complex imaging tasks, demonstrating significant advancements over traditional approaches.

Keywords: optimal scheduling; synthetic aperture radar (SAR); satellite constellation; multi-imaging
mission; high-density regional area; modified dynamic programming (MDP)

1. Introduction

Remote sensing technologies, particularly satellite-based systems, have revolutionized
various sectors, offering unparalleled data for applications like environmental monitoring,
urban planning, and disaster management [1]. A significant advantage of satellite-based
Earth observation is its capability to operate uninhibited by international borders, pro-
viding a comprehensive geographical coverage in a single observational pass. Such an
extensive array of applications has led to an ever-increasing demand for Earth observation
missions, driving the projected market value close to USD 9 billion by 2027 [2]. Synthetic
Aperture Radar (SAR) sensors stand out as versatile tools within this domain. Unlike
optical counterparts confined to the visible spectrum, SAR sensors offer a wider range of
wavelengths, enabling high-resolution imaging across varying atmospheric conditions.
This versatility allows for diverse applications, ranging from hydrological mapping to
environmental monitoring [3].

A noticeable paradigm shift in satellite deployment focuses on constellations of smaller
satellites instead of a few large platforms [4]. This transition is fueled by diversified mission
requirements, including the demand for higher temporal resolutions like shorter revisit
times, and the inherent advantages of small satellites such as modularity, cost-efficiency,
and shorter development cycles. South Korea aligns well with this global trend, planning to
deploy small satellites comprising over 130 units by 2030 [5,6]. Internationally, entities like
Finland’s ICEYE [7–9] and the United States’ Capella Space [10,11] have already successfully
deployed SAR satellite constellations, underlining the global consensus on their utility
and efficiency.
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Following this trend, there is an increased complexity and frequency in mission plan-
ning. For instance, while a Sun-synchronous orbiting large satellite may revisit the Korean
Peninsula every 12 h, a constellation of 40 smaller satellites in inclined orbits could ac-
complish this in intervals as brief as 30 min [12]. This augmented observational capability
necessitates a corresponding increase in planning intricacy. Traditional approaches of
programming each satellite’s mission individually are becoming impractical due to the
required human resources. Furthermore, advancements in satellite attitude control tech-
nologies have led to highly maneuverable platforms, while payload enhancements enable
a diverse range of imaging modes for Earth observation [13].

In addition to the agility of these satellites, advancements in payload sensor technol-
ogy now allow for more versatile observational strategies. Previously, focus was placed on
observing a single target or area. However, recent developments enable multiple imaging
modes, such as multi-stripmap or spotlight mode, allowing for the capture of multiple
targets in a single pass as shown in Figure 1. These capabilities, combined with the afore-
mentioned advancements, add layers of complexity to the mission planning process and
emphasize the crucial need for optimized strategies for the entire satellite constellation [14].

Figure 1. Observation comparison between single target and multi-targets.

Literature Review

Optimized mission planning in satellite operations has attracted significant scholarly
attention, leading to a variety of research methodologies. While traditional mathematical
models often rely on Mixed-Integer Linear Programming (MILP) [15] and make use of
established solvers like Gurobi, CPLEX, and Xpress, they also explore algorithms such as
Branch-and-Bound (BB) [16] and Dynamic Programming (DP) [17]. These approaches have
been tailored to suit different satellite configurations, including both agile [18] and non-agile
types [19], as well as to interact with ground stations [20]. In addition to MILP-based studies,
meta-heuristic methods like Genetic Algorithms (GAs) [21–23], Ant Colony Optimization
(ACO) [24], and Particle Swarm Optimization (PSO) [25] have gained traction for complex
scenarios, especially those requiring rapid response, such as natural disasters [26]. With the
rise of Artificial Intelligence (AI), the field has seen a paradigm shift toward utilizing
machine learning algorithms. Deep Reinforcement Learning (DRL) [27–29], in particular, is
carving a niche for itself, offering enhanced capabilities in autonomous mission planning
and a wide range of applications from online scheduling [30] to Agile Earth Observation
Satellite (AEOS) planning [31].

In recent advancements, Stephenson and Schaub [32] explored the optimization of
sequential target imaging scheduling for agile satellites using neural network function
approximators to model transition times, enhancing the efficiency of MIP formulations.
Similarly, Boshuizen et al.’s patent [33] on Earth Observation Constellation Methodology
& Applications presented a method for deploying a constellation of satellites capable of
capturing high-resolution planetary images in a week or less, emphasizing simplicity in
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satellite control for effective imaging. Further, Eddy and Kochenderfer [34] demonstrated
the application of Semi-Markov Decision Processes (SMDPs) for optimizing satellite imag-
ing plans across 1000 locations, leveraging forward search and Monte Carlo tree search
to outperform traditional methods. Berger et al. [35] addressed the scheduling and task
assignment for satellite clusters, utilizing the QUadratically constrainEd program Solver
Technology (QUEST) based on the CPLEX problem solver, showcasing its superiority
over established heuristics such as MYopic Planning-based Image aCquisition heuristic
(MYPICC) and Genetic Algorithm-based collecTion scHedulER (GATHER).

In addition, the research landscape for satellite mission planning has evolved to
address the distinctive challenges presented by satellite clusters. Recent studies have taken
steps to optimize mission planning for satellite constellation, acknowledging their rising
significance in space missions. Iacopino et al. [36] introduced the Mission Planning System
(MPS), developed by Surrey Satellite Technology Ltd (SSTL), as a tool for planning Electro-
Optical (EO) imaging tasks for small clusters of satellites. Moreover, Zheng et al. [37]
extended optimization techniques to satellite swarms, specifically for onboard scheduling
via a Hybrid Dynamic Mutation Genetic Algorithm (HDMGA). Cui and Zhang [38] tackled
the problem of scheduling and assigning imaging missions and emergency tasks for clusters
of up to five satellites with varying target priorities, ranging from 25 to 200. Lewis [39],
on the other hand, utilized weighted-sums optimization algorithms to optimize mission
planning for cubesat clusters. Furthermore, addressing the increasing challenge of orbital
debris monitoring, Cardona et al. [40] introduced Networked Instrument Coordinator
for Observations on debris (NICO), a scheduling system that utilizes genetic algorithms
for efficient debris observation. This innovation showcases the expanded applicability of
scheduling methodologies from traditional Earth observation to the critical areas of space
safety and debris monitoring.

Existing research has provided valuable methodologies for optimizing mission plan-
ning for a limited number of individual satellites, particularly in the context of Earth
imaging and communication objectives. However, there is a relative scarcity of research
focused on satellite constellations, aligning with the recent trend in satellite development.
Additionally, the current body of work often relies on widely used meta-heuristic algo-
rithms [21–26] for mission planning optimization. These algorithms, while effective in
certain scenarios, tend to fall into local optima and lack consistency in producing iden-
tical results in each iteration. Furthermore, the emerging DRL-based algorithms [27–31],
though beneficial for their real-time computation capabilities, encounter inherent limi-
tations in untrained areas, struggling to rectify inappropriate solutions, which poses a
challenge for immediate application in required high-robustness ground station mission
planning subsystems. This highlights a significant gap in the existing research, particularly
in addressing mission planning scenarios involving numerous targets densely distributed
within specific regional areas.

Recognizing these limitations, our research offers three contributions that aim to bridge
these gaps. First, it broadens the scope of mission planning optimization to encompass
satellite clusters, with a specific emphasis on South Korea’s emerging small SAR satellite
constellation that has been relatively underexplored in the realm of satellite mission plan-
ning research. Second, we employ a Modified Dynamic Programming (MDP) algorithm,
developed in-house [41], that surpasses traditional methods in adaptability to time-varying
conditions and ensures the optimal solutions while effectively managing dynamic con-
straints. Lastly, our work uniquely focuses on the optimization of multi-imaging mission
scheduling for high-density target regions with varying levels of significance and urgency,
a challenging scenario in satellite mission planning. In summary, our research offers both
a theoretical framework and practical applications for optimizing complex SAR satellite
constellation operations, delivering actionable insights and robust solutions.

The remainder of this paper is organized as follows: Section 2 provides an overarching
framework of the imaging mission, elaborating on the mathematical models that encapsu-
late the problem under study. In Section 3, we develop into the optimization algorithms,
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with a particular focus on the MDP algorithm developed by our team. For comparative anal-
ysis, this section will also introduce the widely utilized greedy algorithm as the heuristic
approach employed in this paper. Section 4 delineates the numerical simulation scenarios
and presents the resultant findings. Lastly, Section 5 offers concluding remarks and outlines
potential avenues for future research.

2. Problem Definition
2.1. Imaging Mission Description

In this study, the concept of an “imaging mission” is expanded to include a compre-
hensive series of processes in Earth observation satellite operations. These encompass
not only the remote sensing tasks where satellites equipped with sensors capture images
of designated terrestrial regions but also the entire sequence of steps from initial user
request to the final delivery of processed images. This intricate process is initiated with
the user’s requirements, which detail the desired area for observation, level of importance,
resolution, and other specifications. These requirements are then compiled and conveyed to
the ground station. At the ground station, an initial imaging acquisition plan is formulated,
taking into account the user’s needs. Following this, a comprehensive review of the satel-
lite’s orbit and status information is conducted to establish an optimized imaging mission
plan. As depicted in Figure 2, the process flow is represented by various colored lines: the
blue line denotes the flow of user requirements, while the green line indicates the flow of
information about the satellite, such as its orbit and status. These elements are integrated in
the mission scheduling subsystem to develop an optimized imaging mission plan, which is
then communicated to the satellite via S-band telemetry. Once the imaging plan is received,
a cluster of satellites executes the mission as per the instructions and transmits the raw
data back to the ground station using X-band communication, illustrated by the red line
in Figure 2. These data undergo a series of corrections and post-processing steps before
being rendered as a calibrated image product, ready for delivery to the user. The focus of
this paper is primarily on the integration of user requirements with satellite information
to establish an optimal imaging mission plan for satellite constellation, ensuring that the
entire imaging mission is conducted efficiently, meeting the specific needs of the users.

Figure 2. Schematic illustration of imaging mission flow.
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2.2. Problem Modeling

This chapter describes how key subsystems are mathematically modeled for optimal
scheduling based on the imaging mission flow as depicted in Figure 2. Table 1 summarizes
the definitions of the variables used in the modeling.

Table 1. Notation.

Variable Definition

i Index number of target candidates, i ∈ {1, ..., |I|}
j Index number of satellites, j ∈ {1, ..., |J|}
k Index number of visible time windows, k ∈

{
1, ...,

∣∣∣Vij

∣∣∣}
l Index number of time intervals, l ∈

{
1, ...,

∣∣∣Tj

∣∣∣}
I Set of target candidates
J Set of satellites

Vij Set of visible time windows of target i by satellite j
Tj Set of time intervals by satellite j

vijk kth visible time window of target i by satellite j
tjl lth time interval by satellite j
xijk Decision variable of target observation in vijk
ts
jl Start time of tjl

te
jl End time of tjl

τs
ijk Start time of observation in vijk

τe
ijk End time of observation in vijk

τo
ijk Observation time duration in vijk

τ
g
j Gap time of satellite j

dj Duty time per pass of satellite j
pi Profit obtained when observing target i
si Significance measure of target i
ui Urgency measure of target i

α, β Weighting factor

2.2.1. User Requests

Satellite imaging missions commence with user requests, and in the scheduling of
these missions, the requirements of the users are the most critical considerations. Therefore,
the foremost factor to prioritize in mission scheduling is the parameters related to the
targets requested for imaging by the users. In this study, “significance (si)” is a measure
that reflects the hierarchy of importance of the targets desired for imaging from the user’s
standpoint, while “urgency (ui)” indicates the time sensitivity concerning the user’s need
for images of the target. To enhance our mission scheduling approach, we adopt the
Eisenhower matrix [42] as a guiding framework in Figure 3. This matrix, dividing tasks
based on their significance and urgency, creates a comprehensive nine-cell grid, each cell
representing a combination of low, medium, and high levels of these two dimensions, with
low assigned a value of 0.3, medium a value of 0.6, and high a value of 0.9. The profit (pi)
derived from imaging a target is then determined by combining the target’s significance
and urgency with the weighting factors (α, β). Specifically, the profit for a target with the
highest significance and urgency is calculated as α× 0.9 + β× 0.9, reflecting the structured
approach to prioritize satellite imaging tasks. This enables a nuanced prioritization of
imaging tasks, facilitating a strategic allocation of satellite imaging resources to address
the most pressing and significant targets first. This strategic application of the matrix is
expressed in the following Equation (1):

pi = αsi + βui (1)
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Figure 3. Target priority in Eisenhower matrix framework.

2.2.2. Satellite Information

The performances of available satellites and payloads, as well as orbital informa-
tion, are also very important considerations in making imaging schedules. In this study,
the satellite is a small satellite under 500 kg equipped with an active phased array SAR
sensor. The satellite’s orbital motion is simulated using the J2 Perturbation propagator in
the Systems Tool Kit (STK) program, forming a Walker Delta constellation with a total of
40 satellites. This use of J2 perturbation reflects the study’s emphasis on optimal imaging
planning rather than precise orbit prediction, with the model providing a sufficient balance
between simplicity and the accuracy required for our analysis. More specific parameters
will be mentioned in Section 4.1, Test Scenario. There are two assumptions related to the
satellite in this study: 1. It is assumed that communication between the ground station and
the satellite for transmission and reception is out of research scope, and that the satellite has
already received the imaging scheduling command; 2. Contingencies such as functional
failures of available satellites are not considered, and it is assumed that all satellites are
operating normally.

2.2.3. Visible Time Window (VTW)

In this study, the concept of a Visible Time Window (VTW) is introduced to define
the feasible opportunities for imaging a target with a specific satellite based on the user
request and satellite information data. Figure 4 illustrates a scenario where a single satellite
aims to capture images of 1000 targets over a 7-day period. Derived using the STK 11, these
VTWs serve as crucial input parameters for optimization algorithms, which are tasked
with formulating the most efficient imaging scheduling strategy. The analysis reveals
that, on average, approximately 1000 VTWs are generated each day, culminating in nearly
7000 VTWs over the course of a week. These data suggest a proportional increase in
VTWs with more satellites, a greater number of targets, and longer scheduling periods.
Consequently, the effective application of optimization algorithms becomes increasingly
essential to establish efficient imaging schedules, highlighting their critical role in managing
the growing number of VTWs.
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Figure 4. Example of VTW count (case: single satellite and 1000 targets during 7 days).

2.2.4. Objective Function

The mission planning problem for satellites is mathematically modeled using the
Mixed-Integer Linear Programming (MILP) approach, which has been employed in pre-
vious research [15,16,18,19]. The decision variable is formulated as a binary variable,
as shown in Equation (2), where it takes a value of 1 if a target is imaged and 0 otherwise.
Specifically, xijk represents the variable indicating whether target i is observed by satellite j
during the kth VTW.

xijk ∈ {0, 1} (2)

The objective function of the imaging mission scheduling model, as defined in
Equation (3), aims to maximize the number of imaged targets, prioritizing targets with
higher profits (pi). Therefore, the focus is on maximizing the total profit of the imaging
sequence by strategically selecting targets rather than simply capturing a large quantity
of images.

maximize ∑
i∈I

∑
j∈J

∑
k∈Vij

pixijk (3)

2.2.5. Constraints

The constraints corresponding to the objective function are defined in Equation (4)
through (8):

nmin
i ≤ ∑

j∈J
∑

k∈Vij

xijk ≤ nmax
i for i ∈ I (4)

∑
i∈I

∑
j∈J

∑
k∈Vij

τo
ijkxijk ≤ ∑

j∈J
dj (5)

ts
jl ≤ τs

ijk and τe
ijk ≤ te

jl for i ∈ I, j ∈ J, k ∈ Vij, l ∈ Tj (6)

τs
ijk + τo

ijk ≤ te
jl and te

jl = ts
jl+1 for i ∈ I, j ∈ J, k ∈ Vij, l ∈ Tj (7)

τe
ijk + τ

g
j ≤ τs

i′ jk for i 6= i′, i, i′ ∈ I, j ∈ J, k ∈ Vij, l ∈ Tj (8)

- Equation (4) represents the constraint regarding the minimum and maximum number
of times that a target is observed. This constraint is modeled within a range to
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accommodate multiple imaging of the same target as per user requirements, and it is
not set as a constant to allow for future model scalability.

- Equation (5) pertains to the maximum observation time available for a satellite during
one pass over the mission area. Various limitations of the satellite, such as power,
thermal balance, and memory capacity, identified from the satellite development
stage, are integrated into a single variable termed “duty time (dj)”. Therefore, this
constraint ensures that the actual imaging mission time of the satellite does not exceed
this duty time.

- Equation (6) is a constraint necessary for the application of the MDP optimization
algorithm used in this study. It relates to each time interval in the sub-problem
formation, indicating that the start time of the time interval should be set before the
imaging starts, and the end time of the interval after the imaging ends.

- Equation (7), also related to the MDP algorithm, expresses the constraint that the
imaging mission must be completed within each respective time interval. These time
intervals serve as a fundamental criterion for segmenting the total targets within
the mission area into several grouped segments. This segmentation considers the
VTW, observation time, and gap time, ensuring that the end of the lth interval aligns
seamlessly with the start of the (l + 1)th interval. Such alignment is critical for the
effective implementation of dynamic programming, which tackles the larger problem
by sequentially addressing these interconnected sub-problems, each defined by its
distinct segment.

- Equation (8) addresses the requirement for a guaranteed gap time between consecutive
imaging targets. This is a critical condition, especially for multi-imaging missions
using active phased array SAR sensors, and is essential in determining the next target
post-imaging of the current one.

Figure 5 illustrates the constraints mentioned above, including the VTW, observation
duration time, gap time, and time intervals. It visualizes various conditions required
during consecutive imaging missions. In Figure 5, satellite j selects and images the kth
VTW of target i, i + 2, and i + 4, ensuring an appropriate gap time between the targets,
as depicted schematically.

Figure 5. A simplified illustration of the constraints.

3. Optimization Algorithm
3.1. Data Preprocessing

Before the optimization, an operation is carried out to place each vijk for Vij within the
interval Tj for each satellite j. Based on the Equations (6)–(8), vijk is placed on each interval
tjl . Figure 6 describes the process of placing a target in each interval tjl of the total interval
Tj and creating connections between targets in neighboring intervals. The process starts by
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placing a target in each interval. If it traverses each interval tjl and the target’s observation
start and end time satisfy the interval inclusion condition, the target is defined to belong to
tjl . To reduce unnecessary computation, if a target that does not belong to tjl is encountered
consecutively, the definition is terminated, and the same operation is performed in the
next interval tjl+1. After the placement of targets for all intervals Tj is finished, connection
information between each target in neighboring intervals tjl and tjl+1 is created based on
the azimuth of the targets. The pseudo code of the interval data preprocessor is described
in Appendix A.1, Algorithm A1.

Figure 6. BPMN diagram of interval data preprocessor.

3.2. Modified Dynamic Programming (MDP)

The Modified Dynamic Programming (MDP) algorithm is an advancement developed
by our research team based on deterministic Dynamic Programming (DP). Recognized
for its optimal methodology in managing time-varying systems, such as satellite mis-
sion planning, DP faces challenges when the number of variables and the problem space
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expand, leading to an exponential increase in computational demand (curse of dimension-
ality) [43,44]. To address this, our team developed the MDP algorithm, which has been
successfully implemented in mission planning for multiple agile satellites equipped with
EO/IR payloads [41]. Further refining this approach, the current paper extends the MDP al-
gorithm’s application to mission planning for satellite constellations carrying SAR payloads,
demonstrating its adaptability and enhanced performance in complex operational contexts.

Figure 7 shows the overall procedure of MDP. The operation is performed based on
the interval Tj, and the target connection information between neighboring intervals. MDP
employs a recursive strategy until a predefined termination criterion is met, delving into
the interval’s depth. Upon meeting the termination criterion, MDP reverses its exploration
order, updating the schedule by leveraging the connection data. Upon completion of this
reverse exploration, the schedule with the highest profit is selected as the final result. The
pseudo code of the MDP algorithm is provided in Appendix A.2, Algorithm A2.

Figure 7. BPMN diagram of MDP algorithm.



Aerospace 2024, 11, 280 11 of 24

3.3. Greedy Algorithm

To facilitate a comparative analysis of optimization algorithms, this study adopts the
widely used greedy algorithm for solving mission planning problems. Drawing inspiration
from the greedy algorithm outlined by Cho et al. [15], we have refined this approach to
suit the mission scheduling of satellite constellation. Figure 8 shows the overall procedure
of the greedy algorithm. It also utilizes the same information about the intervals and the
connectivity of the targets between neighboring intervals. However, unlike MDP, it does
not perform the operations in the reverse order of intervals. Instead, it commences from the
initial interval tjl within Tj and updates the schedule according to the most profitable target
linked with the preceding interval. The pseudo code of the greedy algorithm is expressed
in Appendix A.3, Algorithm A3.

Figure 8. BPMN diagram of greedy algorithm.
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4. Experimental Results
4.1. Test Scenario

The satellite system under consideration is a cluster satellite configuration, specifically
a Walker Delta constellation. This constellation is comprised of eight planes, with satellites
ranging from 1 to 5 per plane, amounting to a maximum of 40 satellites. These satellites
orbit at an altitude of 500 km and are equipped with state-of-the-art active phased array
Synthetic Aperture Radar (SAR) sensors. The orbital trajectories and configuration of
this satellite constellation are graphically represented in Figure 9, providing a clear visual
understanding of the spatial arrangement.

Figure 9. Satellite constellation on 3D map.

Targets are randomly generated within the geographic boundaries of the Korean Penin-
sula, between latitude 32–42◦ N and longitude 124–131◦ E, with their count progressively
increasing from 100 up to a maximum of 1000 in increments of 100. Figure 10 illustrates
the spatial distribution of these targets within the mission area. Additionally, each target is
randomly assigned a urgency and significance value, chosen from 0.3, 0.6, or 0.9, adding
layers of complexity to the target prioritization process.

The mission planning period is set from 00:00 on 1 January 2024 to 00:00 on 8 January
2024, spanning 7 days. The test scenarios involve varying numbers of satellites, from 8 (one
per plane) to 40 in total, and targets ranging from 100 to 1000. This results in 50 unique test
cases for the numerical simulation. Detailed simulation parameters are listed in Table 2.

The simulation environment is a crucial aspect, primarily focusing on the comput-
ing power and related resources required for the effective execution of the simulation.
The specific simulation environment is provided in Table 3.
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Figure 10. Distribution of 1000 targets in mission area.

Table 2. Simulation parameters.

Parameter Value

Scheduling period (day) {1, 2, 3, 4, 5, 6, 7}
Mission area (◦) 32–42◦ N, 124–131◦ E

Number of targets {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}
Walker Delta constellation 44.1◦: 40/8/1

Altitude (km) 500
Incidence angle (◦) 25–45

τo
ijk (s) 20

τ
g
j (s) 10

dj (s) 60
nmin

i , nmax
i 1

pi, ui {0.3, 0.6, 0.9}
α, β 0.7, 0.3

Table 3. Simulation environments.

Index Specification

Processor Intel® Core™ i7-11700
Memory (RAM) 32 GB

Orbit analysis tool AGI® STK (Systems Tool Kit)
Orbit propagator in STK J2 perturbation

Implement tool VS Code
Framework Python 3.10

The workflow of our simulation is a multi-step process, initiated with user-inputted
target information and satellite parameters fed into the STK program. Utilizing this input,
STK generates target data and propagates satellite orbit. A critical output of this process is
the VTW report, which becomes the foundational input for the MDP and greedy algorithms,
both written in Python language. These algorithms are used to derive the solution of the
optimal mission scheduling. The entirety of this workflow, from initial input to final
algorithmic processing, is depicted in Figure 11, offering a comprehensive visual guide to
the simulation process.



Aerospace 2024, 11, 280 14 of 24

Figure 11. Simulation workflow.

4.2. Mission Allocation

Mission allocation refers to the outcomes produced by optimization algorithms in
response to user-requested mission assignments. In Figure 12, the mission allocation
results are depicted over a single day for all test cases, spanning from 100 to 1000 targets.
The scenarios involve different numbers of satellite constellations (8 to 40) and apply
two algorithms, MDP and greedy. The upper graph illustrates the number of observed
targets, representing the sum of instances where the binary decision variable xijk is equal
to 1. In simpler terms, it reflects the total count of occasions when targets are successfully
observed, excluding the profit (pi) gained from observing a target in the objective function.
Meanwhile, the lower plot corresponds to Equation (3), revealing the objective function
value of total profit derived from target observation. This calculation includes the profit
associated with each target. In essence, the lower plot provides a comprehensive overview
of the objective function value, taking into account the profits obtained through capturing
individual targets.
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Figure 12. Mission allocation results under all test cases.
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Figure 12 illustrates an increasing trend in mission allocation results with a growing
number of targets and satellites. Notably, the MDP algorithm consistently outperforms the
greedy algorithm. As the number of targets increases, the impact of an increased number
of satellites on mission allocation results becomes more evident, along with the growing
disparity between the MDP and greedy algorithms. Moreover, when maintaining the same
number of satellites, the mission allocation results tend to converge even as the number of
targets increases, suggesting a threshold beyond which adding more targets has a limited
effect on the number of successfully allocated missions. For example, with eight satellites,
the number of missions stabilizes at approximately 180, even as the number of targets
increases to 1000. This phenomenon enables mission planners to determine the optimal
number of satellites required based on the number of targets.

4.3. Mission Success Rate

To evaluate the efficacy of the mission plan in response to user requests, this study
employs the mission success rate, a key concept in mission analysis being utilized by the
Korea Aerospace Research Institute (KARI) [45]. Equation (9) signifies the ratio of obtained
profit to the total profit when successfully observing all targets. Equation (10) expresses the
ratio of observed targets to the total targets requested by the user.

Mission success rate for profit (%) =
∑ ∑ ∑ pixijk

∑ pi
× 100 (9)

Mission success rate for target observation (%) =
∑ ∑ ∑ xijk

|I| × 100 (10)

Figure 13a illustrates the mission success rates achieved with 40 satellites and
500 targets over a day, utilizing both the MDP and greedy algorithms. The MDP algorithm
reached a 100% mission success rate at around 17:50, surpassing the greedy algorithm,
which reached the same rate at around 23:50. The efficiency of the mission planning
process is highlighted by MDP’s ability to complete all missions in a shorter timeframe
than greedy, despite having an identical number of targets and satellites. These findings are
further detailed in Figure 13b, depicting outcomes when extending the mission planning
period from 1 day to 7 days. Notably, MDP, after 4 days, attained a profit of 91.0% and
target observation of 86.4%, whereas greedy achieved only 68.3% and 69.2%, respectively.
Furthermore, considering the completion of a 7-day mission plan, MDP realized success
rates of 95.2% and 92.4%, while greedy demonstrated a significantly lower success rate of
75.0% and 76.2%, revealing an approximately 20% difference in mission success rates.
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Figure 13. Analysis of mission success rate. (a) Case: 500 targets and 40 sats in 1-day; (b) case:
500 targets and 8 sats during 7 days.

Upon examining the correlation between the number of observed targets and resulting
profit, it becomes evident that while greedy consistently displays an increase in both metrics
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throughout all time periods, MDP consistently achieves a higher profit relative to the
number of observed targets. Starting from the 4th day onward in Figure 13b, the objective
function value in the case of the greedy algorithm starts to fall below the target observation
value. This observation underscores the clear alignment of MDP with the problem’s
objective function, emphasizing the prioritization of high-profit target observation. These
data described in Figure 13 can serve as a valuable reference for analyzing the completion of
user-requested missions within the available satellite resources during the mission planning
phase. To summarize, the outcomes indicate that the quantity of observed targets and
resulting profits depend on the number of satellites and the planning horizon. The efficacy
of the MDP algorithm is demonstrated by its adept implementation of the problem’s
objective function. Employing the mission success rate as a metric proves instrumental in
evaluating the efficiency of incorporating users’ requests into the mission plan.

4.4. Revisit Time

Revisit time is a crucial figure of merit (FOM) in satellite mission planning, repre-
senting the periodicity of a satellite’s return to a designated imaging target or region.
In Figure 14, the mean revisit time is depicted based on the profit associated with each
target under a test scenario involving a constellation of 16 satellites observing 100 targets
five times over a 7-day period. It is calculated as the temporal difference between the
initiation of the first observation and the conclusion of the fifth, divided by four intervals.
Target profit is determined by Equation (1), categorized into nine segments. Figure 14 illus-
trates that, across all target profit segments, the mean revisit time for the MDP algorithm
consistently outperforms that of the greedy algorithm. Furthermore, the outcomes of linear
regression fitting, as expressed in Equations (11) and (12), indicate that MDP exhibits a
steeper slope and a smaller y-intercept.
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Figure 14. Target profit vs. mean revisit time (5-time revisit for 100 targets).

Delving into more detailed analysis, the mean revisit time for MDP at the lowest
profit of 0.3 is 9.02 h compared to 10.56 h for the greedy algorithm, and, at the highest
profit of 0.9, MDP’s mean revisit time significantly shortens to 3.2 h versus 5.1 h for greedy.
This trend demonstrates that the difference between the two algorithms becomes more
pronounced with increasing profit. The slope of the graph indicates that MDP is more
effective at capturing as many high-profit targets as possible within the constraints of
satellite mission planning.

Following this detailed analysis, it becomes pertinent to examine how this research
diverges from prior work. Previous studies [12,46,47] have predominantly aimed at opti-
mizing satellite constellations and orbits to reduce the mean revisit time to tens of minutes
across areas such as the Korean Peninsula, often treating it as a single, uniform target
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for system-level performance evaluations. Contrary to this approach, the present study
advances by accurately calculating the mean revisit times for individual targets within
specific regions, thereby offering a more refined analysis. This shift from a broad, areal
focus to a targeted, precise evaluation underscores the novelty and significance of our
approach, setting it apart from earlier methodologies.

MDP Fit Line : y = −9.70x + 11.93 (11)

Greedy Fit Line : y = −9.10x + 13.29 (12)

For a quantitative analysis of the results dataset, we present the mean revisit time
using a box plot in Figure 15, along with key statistical metrics in Table 4. As illustrated in
both Figure 15 and Table 4, the MDP algorithm exceeds greedy’s performance in all metrics,
excluding the minimum value. Notably, the standard deviation and presence of outlier
values are significantly reduced in the case of the MDP algorithm. This emphasizes that the
efficacy of the MDP algorithm is demonstrated in the satellite mission planning domain,
where a robust algorithm is essential.
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Figure 15. Box plot of mean revisit time.

Table 4. Statistics of mean revisit time.

Statistic MDP (Hour) Greedy (Hour)

Mean 6.08 7.80
Standard deviation 3.77 6.00

Minimum 1.48 0.78
25th percentile 3.20 3.48

Median 5.13 6.25
75th percentile 8.23 9.49

Maximun 17.84 23.56
The bold text indicates the best parameter values for the two algorithms.

4.5. Computation Time

Figure 16 presents the computation times for the MDP and greedy algorithms as
functions of the total number of targets, with the data displayed on a logarithmic scale.
This visualization underscores the correlation between increased computation times and
the rising numbers of both targets and satellites. It specifically highlights the exponential
growth in computational demand as the number of satellites increases, a factor that is
precisely plotted to illustrate its impact on computational time. Upon detailed analysis,
it becomes apparent that the volume of targets exerts a more substantial impact on the
computational complexity than does the satellite count. This augmented complexity
primarily arises from the intricacies of generating sub-problems. Specifically, as the target
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count increases, the task of calculating each target’s visibility window and the intervals
between them necessitates a significant escalation in computational resources.

A comparative assessment reveals that, across all tested scenarios, the greedy al-
gorithm outperforms the MDP algorithm in computation time, especially in complex
scenarios involving 1000 targets, where greedy’s computation time is merely 101 s com-
pared to MDP’s 998 s. This efficiency of greedy stems from its strategy of optimizing each
sub-problem individually for immediate results, in contrast to MDP, which assesses the
overall benefit pathway, leading to a more thorough optimization at the cost of longer
computation times. However, despite its DP-based nature, MDP manages to complete even
the most computationally demanding scenarios within a reasonable timeframe. With ad-
vancements in computing powers such as CPU and RAM, it is feasible to significantly
reduce computation times, establishing the MDP algorithm’s suitability for satellite con-
stellation mission planning by providing higher objective function outcomes efficiently.
This underscores the need to balance algorithmic efficiency with optimization potential in
computational resource allocation for complex tasks.

Furthermore, an interesting aspect of the computation times for both the MDP and
greedy algorithms emerges when considering the interplay between the number of targets
and satellites. While the computation time for the greedy algorithm increases directly
with the number of targets and satellites, the MDP algorithm displays a more complex
pattern of behavior. Specifically, scenarios with a lower count of satellites have occasionally
demanded more computational time than those with a higher count. This observation is
tied to the mission success rates discussed in Section 4.3. For example, an MDP scenario
with 40 satellites and 1000 targets reaches a 100% mission success rate by 3 January, whereas,
with only 8 satellites, a 95% success rate is only achieved by 7 January. This indicates
that scenarios with fewer satellites, despite their reduced satellite count, incur greater
computational demands due to the prolonged duration required to achieve mission success.
In contrast, scenarios employing the greedy algorithm for 1000 targets fail to reach a 100%
mission success rate by 7 January, regardless of the satellite count, necessitating ongoing
mission planning throughout the seven-day period. This scenario accounts for the relatively
shorter computation times observed in situations with fewer satellites.
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Figure 16. Computation time comparison of MDP and greedy algorithms under all test cases.
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5. Conclusions

This research utilizes an MDP algorithm, developed in-house [41], aimed at optimizing
imaging mission schedules for SAR satellite constellations. The core of this study lies in ad-
dressing the challenges of scheduling in regions with a high density of targets, showcasing
the algorithm’s effectiveness by contrasting it with the greedy algorithm, which is widely
used in existing literature. The formulation of the problem utilizes MILP to ensure the
observation of the maximum number of high-profit targets within a set planning horizon.

Critical to the mission planning process, parameters such as VTWs, time intervals, and gap
times are calculated through satellite orbit propagation using the STK software. The MDP
algorithm, by segmenting the mission planning into discrete time intervals based on VTWs,
strategically schedules consecutive target imaging. This includes calculating both the obser-
vation time duration and gap time to establish a comprehensive schedule for target imaging
across various test scenarios. Additionally, this study provides a comparative analysis of opti-
mal sequencing strategies for imaging targets utilizing both the MDP and greedy algorithms.

For the numerical simulations, the mission area around the Korean Peninsula is
set, with 100 to 1000 targets of various levels of significance and urgency. The satellite
constellation, equipped with SAR sensors, is configured as a Walker Delta constellation
comprising five inclined orbits, with the satellite count ranging from 8 to 40, over a 7-day
mission planning period. The evaluation of 50 test scenarios using both the MDP and
greedy algorithms yielded significant findings as follows:

1. In mission allocation analysis, the quantity of satellites significantly impacts the
observation strategy, diminishing the importance of the total number of targets. This
highlights the crucial role of satellite count in enhancing observation efficiency and
profitability, despite the limited benefits of increasing target numbers.

2. Across all scenarios, the mission success rate for profit surpasses that for target
observation, validating the goal of maximizing profit through prioritizing high-value
targets—a strategy effectively implemented by the MDP algorithm.

3. Analysis of revisit times reveals that targets of higher value benefit from shorter
intervals between observations. Confirmed by box plot analysis, this result highlights
the robustness of the MDP algorithm.

Lastly, the MDP algorithm, despite taking more time than the greedy algorithm,
consistently achieves better outcomes in mission allocation, success rates, and revisit times.
With advancements in computing power, the computational efficiency of MDP can be
enhanced, making it a more suitable choice for complex satellite mission planning.

A notable limitation in our study is the assumption that all satellites function without
failure throughout their missions. This overlooks potential operational contingencies,
such as technical failures, that could impact mission planning and execution. Addressing
this limitation, future research will incorporate the consideration of satellite failures and
the necessary re-planning of imaging tasks. This inclusion will provide a more realistic
approach to satellite mission planning, acknowledging the complex and unpredictable
nature of space operations. Also, we plan to broaden the optimization scope to encompass
both imaging missions and communication planning with ground stations. As ground
stations become more globally accessible, satellite communication planning emerges as
being equally vital as imaging scheduling. This expansion includes integrating tasks such
as receiving commands from ground stations, conducting imaging missions, and then
transmitting the raw data back to Earth. By optimizing this whole mission workflow, we
aim to significantly improve the operational efficiency of satellite constellations.
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Appendix A. Pseudo Codes

Appendix A.1. Pseudo Code of Interval Data Preprocessor

Algorithm A1 Interval Data Preprocessor

Require: Vij (Set of visible time windows of every target and satellite)
Ensure: Set of time intervals by satellite j, Tj, Connection information, C

1: C ← initialize zero value list . List for interval connections
2: τo

ijk ← 20 . Observation duration time
3: nl ← 0 . Current Interval number
4: τ

g
j ← 10 . Gap time

5: cstop ← 0 . Interval Set division count
6: nstop ← 10 . limit for stop iteration
7: lmax ← (VI j.τe

I J −V1j.τs
11)//τo

ijk . maximum number of Tj

8: Tj ← the size is same with lmax . Initialize list for total Interval
9: τbase ← V1j.τs

ijk . Base time set to start time of first target
10: for l ← 1 to Tj do
11: si← initialize empty list . Initialize list for single Interval
12: for vijk in Vij do
13: if τs

ijk ≤ τbase + τo
ijk · j and τe

ijk ≥ τbase + τ
g
j + τo

ijk · j then
14: si.append(vijk)
15: else
16: cstop ← cstop + 1
17: end if
18: if cstop ≥ nstop then
19: cstop ← 0
20: if not si is empty then
21: tjl .append(si)
22: end if
23: si← initialize empty list . Reset single interval
24: end if
25: end for
26: if not si is empty then
27: append si to tjl
28: end if
29: end for
30: for each pair of interval (l, l + 1) in Tj do
31: for each vijk in tjl do
32: for each vijk in tjl+1 do
33: α1 ← tjl .vijk.azimuth . Azimuth of target in l interval
34: α2 ← tjl+1.vijk.azimuth . Azimuth of target in l + 1 interval
35: if abs(α1 − α2) ≤ 50 then
36: C[vij1, vij2]← 1
37: end if
38: end for
39: end for
40: end for
41: return Tj, C
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Appendix A.2. Pseudo Code of MDP Algorithm

Algorithm A2 MDP Algorithm for Optimized Imaging Schedule

Require: Set of time intervals by satellite j, Tj, Connection information C, Set of visible
time windows, Vij, Duty time dj

Ensure: Optimized imaging schedule with MDP, MDP_result
1: l ← 0 . Current Interval number
2: MDP_result← initialize empty list
3: MDP_result← MDP(Tj, C, Vij, dj, l, MDP_result)
4: Sort MDP_result by profit in descending order
5: return MDP_result[ f irst] (the schedule with the highest profit)
6: function MDP(Tj, C, Vij, dj, nl , MDP_result)
7: if l = len(Tj) or l = dj then
8: for each vijk in tjl do
9: MDP_resultschedule ← vijk

10: MDP_resultpro f it ← vijk.pro f it
11: end for
12: else
13: MDP_result← MDP(Tj, C, Vij, dj, l + 1, MDP_result)
14: for each n, vijk in MDP_result do
15: for each vijk in tjl do
16: if C[MDP_result[n]schedule[last].vijk, tjl .vijk] = 1 then
17: schedule← append tjl .vijk to MDP_result[n]schedule
18: pro f it← MDP_result[n]pro f it + tjl .vijk.pro f it
19: append schedule, pro f it to MDP_result
20: end if
21: end for
22: end for
23: end if
24: return MDP_result
25: end function

Appendix A.3. Pseudo Code of Greedy Algorithm

Algorithm A3 Greedy Algorithm for Optimized Imaging Schedule

Require: Set of time intervals by satellite j, Tj, Connection information C, Set of visible
time windows, Vij, Duty time dj

Ensure: Optimized imaging schedule with Greedy, GR_result
1: nl ← 0 . Current Interval number
2: GR_result← initialize empty list
3: schedule← initialize empty list
4: pro f it← 0 . Initialize profit for GR_result
5: targetlast ← null . Initialize target marker
6: for l = 1 to len(Tj) do
7: if l = 1 then
8: Sort tjl by profit in descending order
9: vijk ← target in tjl [ f irst]

10: append vijk to
11: pro f it← pro f it + vijk.pro f it
12: targetlast ← vijk
13: else
14: Ctarget ← initialize empty list
15: for each vijk in tjl do
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Algorithm A3 Cont.

16: if C[targetlast, vijk] = 1 then
17: Ctarget ← vijk
18: end if
19: end for
20: if Ctarget is not empty then
21: Sort Ctarget by profit in descending order
22: vijk ← target in Ctarget[ f irst]
23: append vijk to schedule
24: pro f it← pro f it + vijk.pro f it
25: targetlast ← selected_target
26: end if
27: end if
28: if nl = dj then
29: break
30: end if
31: end for
32: Gr_resultschedule ← schedule
33: GR_resultpro f it ← pro f it
34: return GR_result
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