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Abstract: The reachable set of controlled dynamical systems is the set of all reachable states from
an initial condition over a certain time horizon, subject to operational constraints and exogenous
disturbances. In astrodynamics, rapid approximation of reachable sets is invaluable for trajectory
planning, collision avoidance, and ensuring safe and optimal performance in complex dynamics.
Leveraging the connection between minimum-time trajectories and the boundary of reachable sets,
we propose a sampling-based method for rapid and efficient approximation of reachable sets for finite-
and low-thrust spacecraft. The proposed method combines a minimum-time multi-stage indirect
formulation with the celebrated primer vector theory. Reachable sets are generated under two-body
and circular restricted three-body (CR3B) dynamics. For the two-body dynamics, reachable sets are
generated for (1) the heliocentric phase of a benchmark Earth-to-Mars problem, (2) two scenarios
with uncertainties in the initial position and velocity of the spacecraft at the time of departure from
Earth, and (3) a scenario with a bounded single impulse at the time of departure from Earth. For
the CR3B dynamics, several cislunar applications are considered, including L1 Halo orbit, L2 Halo
orbit, and Lunar Gateway 9:2 NRHO. The results indicate that low-thrust spacecraft reachable sets
coincide with invariant manifolds existing in multi-body dynamical environments. The proposed
method serves as a valuable tool for qualitatively analyzing the evolution of reachable sets under
complex dynamics, which would otherwise be either incoherent with existing grid-based reachability
approaches or computationally intractable with a complete Hamilton–Jacobi–Bellman method.

Keywords: reachability; low thrust; indirect; optimization; trajectory; cislunar; halo orbit; two-body;
Lunar; NRHO

1. Introduction

Optimal control techniques are used extensively for solving challenging practical
engineering problems [1–3] and for trajectory optimization tasks [4,5]. Optimal control
and robotics applications frequently use reachable set theory as a metric to assess cost and
safety. In astrodynamics, solutions to reachability problems are useful for determining the
spacecraft states that will lead to an inevitable collision or encounter, regardless of future
collision avoidance maneuvers [6]. Knowledge of an object’s reachable set can be used
to perform evasive maneuvers (in the case of the International Space Station) or orbital
rendezvous and docking [7]. Beyond low-Earth orbits, the ability to compute reachable
sets is advantageous for cislunar [8] and interplanetary mission design, as reachable sets
provide mission designers with information regarding future planetary encounters from
a given set of initial conditions [9]. Future NASA deep-space missions with numerous
planetary flybys could substantially benefit from knowledge about the reachable set of their
respective spacecraft [10].

A reachable set is defined as the set of all states that can be reached from a given initial
condition within a specified time horizon. Determining the reachable set, however, is a
problem that suffers from the “curse of dimensionality” since the Hamilton–Jacobi–Bellman
(HJB) equation [11], a partial differential equation (PDE), has to be solved to determine
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the reachable sets. The exact reachable set can be found by computing the zero-level set
of the viscosity solution of an HJB problem [12]. Across all classes of systems, linear,
time-invariant systems have been the most thoroughly analyzed. Results of studies of
linear, time-invariant systems have shown that an analytical solution to the reachable
set exists for cases of convex polyhedral state and control spaces [13]. However, once
constraints that lead to a nonconvex control space are introduced (common in astrody-
namics problems), analytical solutions do not exist, and numerical methods (i.e., direct
and indirect) must be used instead [2]. Indirect methods solve the viscosity solution of the
HJB, while direct methods discretize the continuous-time optimal control problems (OCPs)
into parametric nonlinear optimization problems [14,15]. In 1980, Vinter showed how to
approximate the reachability problem as a convex optimization problem and conducted the
first study to demonstrate how to approximate the reachable set using a series of smoothing
functions [16]. Determination of the reachable set becomes an increasingly difficult problem
as the dimensionality of the problem and the number of control signals increases [17]. It
becomes computationally infeasible to compute every possible trajectory variation through
simulation alone [18]. Modern research has expanded these approximation techniques to
generate over- or under-approximations for continuous-time linear systems [19], general
nonlinear dynamics [20], and more complex systems [21].

In astrodynamics, reachability problems for both chemical rockets and electric propul-
sion spacecraft are studied. Chemical rocket propulsion reachability largely focuses on
single-impulse maneuvers and has been studied within the cislunar environment [22–35].
Electric propulsion or continuous-thrust reachability problems have been proposed for
low-Earth, cislunar, and interplanetary mission planning applications [15,17,36–39]. Other
methods attempt to calculate reachable sets by utilizing passive ∆V maneuvers such as grav-
ity assists and solar radiation pressure in small-body proximity operations [7,9,10,40,41].

For chemical propulsion systems, an on-orbit range equation was derived for ∆V with
J2 perturbations [42]. These results were used in [34] to develop closed-form impulsive
control schemes by computing a minimum ∆V and then solving a geometric path-planning
problem. The reachable domain for spacecraft with ellipsoidal ∆V distributions was also
studied in [43]. For electric propulsion systems, Ref. [44] derived continuous indirect
equations incorporating ellipsoidal uncertainty. Several works have formulated OCPs
and directly solved the HJB equation to generate reachable sets in the CR3BP over short
time horizons [45,46]. Specifically, Ref. [46] took a Poincaré section approach and detailed
analysis with invariant manifolds, and [45] utilized a power-series approximation of the
HJB to determine periodic orbit transfer trajectories. More recently, a cross-disciplined
reachability-based trajectory design (RTD), developed by Kousik, has been used to perform
safe path planning for quadcopters, wheeled vehicles, and robotic manipulators [47,48].
RTD computes the forward reachable set of a vehicle offline using zonotope reachability [49].
The forward reachable set is used in real time to perform obstacle avoidance maneuvering
by comparing the forward reachable set with an environment map that dictates the safe
set. RTD uses this method to perform path planning in real time before feeding the safe
trajectory to a low-level tracking controller.

The boundary of reachable sets of low-thrust trajectories can be characterized with
minimum-time trajectories [50]. For a spacecraft equipped with a low-thrust propulsion sys-
tem, minimum-time maneuvers require the propulsion system to operate at its maximum
thrust level, and only the direction of the thrust vector is subject to variations across the
reachable set. In fact, there is a duality between minimum-time and minimum-thrust solu-
tions [50], which allows one to view the reachability of a state or set of states by modifying
the propulsion system parameters. For a fixed time horizon and specified thrust parameters,
the set of states interior to the boundary of reachable sets will require a bang-bang control
profile and correspond to minimum-fuel trajectories [43].

The main contributions of the paper are as follows. First, we propose a rapid reachable
set approximation algorithm using an indirect multi-stage formulation (IMF) for solving
OCPs. Note that we only consider the boundary of reachable sets. The proposed algorithm
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leverages the theoretical connection between minimum-time trajectories and the boundary
of the reachable sets. This connection leads to noticeable algorithmic simplification and
speedup compared to the minimum-fuel method proposed in [51–53]. This algorithm
requires no initial guess, and only one first-order forward-in-time propagation of the non-
linear equations of motion is required for each sample. Second, we present the low-thrust
reachability results for interplanetary trajectory optimization. In particular, minimum-time,
rendezvous-type, and Earth-to-Mars maneuvers for a low-thrust spacecraft are presented.
We show how the results can be used to rapidly determine position and velocity reachability
subject to additional initial boundary constraints for a low-thrust Earth-to-Mars rendezvous
trajectory optimization problem. Third, we apply the low-thrust reachability to a number
of orbits in the CR3B problem (CR3BP) of the Earth–Moon system. We demonstrate the
versatility of this approach by generating novel results on the reachable set for a low-thrust
spacecraft in cislunar space. We illustrate the unique evolution of the reachable set for an
L2 Halo orbit and the Lunar Gateway 9:2 NRHO. The final contribution of this paper is
to offer theoretical insights into the behavior and evolution of the reachable sets in the
CR3BP. We show empirically that the reachable sets are connected to invariant manifolds
of periodic orbits.

The remainder of this paper is organized as follows. First, the IMF OCP is introduced in
Section 2.1, which precedes discussions on the two-body equations of motion in Section 2.2,
the CR3BP in Section 2.3, a derivation of minimum-time optimal control relations in
Section 2.4, and details on the application of initial boundary conditions in Section 2.5.
Next, we outline the rapid reachable set determination algorithm in Section 3. Finally, the
results are presented for the two-body dynamics in Section 4 and for the CR3BP in Section 5.
We add remarks on invariant manifolds in Section 5.4 to explain some low-thrust reachable
set trends identified within the CR3BP. Section 6 presents the conclusions of this paper.
Please note that in the remainder of this paper, vectors are denoted by boldface letters.

2. Indirect Multi-Stage Formulation of Optimal Control Problems
2.1. Indirect Multi-Stage Formulation

An IMF of OCPs is adopted, which offers notable computational advantages since
IMF allows for dynamics, constraints, and even cost functions to change between different
stages. This is an important feature for the introduction of initial boundary conditions since
the incorporation of boundary conditions is achieved through a different cost function to
account for any mass discrepancies due to an impulse maneuver (see Section 2.5). The other
reason for using an IMF is the ability to derive analytical expressions for control, which
simplifies the solution procedure.

At its core, the IMF divides a complete trajectory into a series of stages but “connects”
each stage through a sequence of equality constraints (see Figure 1). Each stage receives
inputs of the states and controls from the previous stage but independently optimizes
control over only its respective stage [54]. Please note that the IMF is used for deriving the
required rigorous optimality relations associated with minimum-time trajectory optimiza-
tion problems. These relations are later used within a backward-forward framework to
determine reachable sets. The entire trajectory can be discretized into N stages, and the i-th
stage (for i ∈ {1, · · · , N}) can be modeled with its dynamical system consisting of states,
x ∈ Rnx ; controls, u ∈ Rnu ; and parameters, p ∈ Rnp , where the superscript denotes the
stage index as,

xi+1 = F i
(

xi, ti, ui; p
)

, with F i = xi +
∫ ti+1

ti

ẋdt = xi +
∫ ti+1

ti

f i−1(x, t, u; p)dt. (1)
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Figure 1. Flowchart for a multi-stage formulation.

The IMF solves OCPs recursively; that is, stage i = 1 is solved first, then i = 2, · · · , i = N
until the solutions to all stages are computed. The derivation of the optimal control expressions
is similar to continuous-time indirect formulations, except for some additional notation
bookkeeping to track stages. The cost function for an IMF can be written as

J = ϕ
(

xN , N
)
+ ∑

i
Li
(

ti, xi, ui
)

, (2)

where ϕ denotes the final cost and L(·) is the stage cost evaluated over the time horizon of
each independent stage. The Hamiltonian of the complete trajectory can be written as the
summation over the Hamiltonian of individual stages,

H = ∑
i

Hi, with Hi =
(

λi+1
)⊤

F i + Li + ∑
k

vkCk. (3)

The costate vector, λ ∈ Rnx , is specified with an i + 1 superscript for convenience in
the implementation of the algorithm, which includes a backward-in-time integration for
the costates. In Equation (3), Ck and vk indicate the k-th path constraint and its associated
Lagrange multiplier (dimension of constraints, k, depends on the problem and the con-
straints). For each stage, partial derivatives of the Hamiltonian with respect to states and
controls can be formed (note that in discrete form, we have λi = ∂Hi/∂x; see Chapter 2
in [54]) as

λi =
∂Hi

∂x
= (Fx

i)⊤λi+1 + Li
x + ∑

k
vkCk,x,

∂Hi

∂u
= Hi

u = 0 = (Fu
i)⊤λi+1 + Li

u + ∑
k

vkCk,u. (4)

2.2. Two-Body Equations of Motion

For the first results presented in this paper, the heliocentric phase of an Earth-to-Mars
rendezvous problem (with zero hyperbolic excess velocity) is considered, and third-body
perturbations are ignored. Let r ∈ R3 and v ∈ R3 denote the position and velocity vectors,
respectively. Let x = [r⊤, v⊤]⊤ denote the state vector, and let α̂ denote the thrust-steering
unit vector. The state dynamics can be written as [55]

ẋ =

[
ṙ
v̇

]
=

[
v

− µ

||r||3 r + Tmax
m α̂δ

]
, (5)

where µ denotes the gravitational parameter of the Sun; c = Ispg0 is the net exhaust velocity,
with Isp denoting the specific impulse; and g0 is the gravitational acceleration at the Earth’s
surface. In Equation (5), Tmax is the maximum thrust of the propulsion system operating
in a thrust direction, α̂ ∈ R3, with a throttle setting of δ ∈ [0, 1]. In a minimum-fuel
solution [56], the optimal control of a low-thrust propulsion system will involve finding
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both α̂ and δ; however, for a minimum-time solution, it is known that the engine has to
operate at maximum throttle during the entire trajectory (δ(t) = 1 ∀t ∈ [t0, t f ]) [57]. Thus,
different minimum-time trajectories can be generated by varying thrust directions, α̂, all of
which characterize the low-thrust reachable set. The spacecraft mass, m, can be calculated
as m(t) = m0 − Tmax

c (t− t0). This minimum-time formulation leads to the extremal control
vector, u ∈ R3, which can be simply stated as

u(t) = α̂(t), ∥α̂(t)∥ = 1. (6)

Alternative approaches for modeling a low-thrust spacecraft invoke a minimum-fuel
formulation, which necessitates the tracking of mass and additional parameterization of
the control vector by including both the thrust magnitude and thrust direction [58]. A
similar reachable set determination method, proposed by Patel in [51,52,59,60], formulates
a minimum-fuel problem and utilizes an inverse mass parameter, n = 1/m, to track mass
flow. This method resolves some common problems encountered when using standard
mass flow dynamics, ṁ = −∥T∥/c, in that this relation is non-differentiable when T = 0.

The adopted parameterization of the control vector allows for the thrust vector, T,
to be linked to the position and velocity states, whereas the thrust magnitude, Tmag, is
only used to track the change in mass (or inverse mass) of the spacecraft. Most popular
implementations of Keplerian motion do not use inverse mass and simply track mass,
leading to the dynamics, ṁ = −∥T∥/c. However, this formulation is non-differentiable
when T = 0, which is eliminated by using n and separating Tmag. Two constraints are
imposed on the control that simplify the formulation of the reachable set determination
problem: the thrust magnitude must be less than the maximum capable by the propulsion
system due to power limitations or thruster design considerations. An alternative approach
that is convenient for parameterizing the control vector was proposed in Ref. [58].

2.3. Circular Restricted Three-Body Problem (CR3BP)

The reachable set analysis of spacecraft in three-body dynamics has significant utility
for near-term cislunar reachability applications. We consider the CR3BP model, which,
as demonstrated here, offers more insights into the class of solutions that are obtained.
The problem utilizes the rotating synodic frame depicted in Figure 2, where the motion of
the two primaries is assumed to be circular and the mass of the third object is negligible.
The CR3BP model is normalized such that the distance between the two primaries, the
total mass of the system, and the mean motion of the two primary masses are unity. The
characteristic length is defined as the distance between the two primaries, l∗; characteristic
mass is defined as the sum of the masses of the two primaries, m∗ = m1 + m2; and char-
acteristic time is the mean motion of the primary system, t∗ =

√
l∗3/(Gm∗), where G is

the universal gravitational constant. In the CR3BP model, the mass ratio is an important
parameter used to differentiate between different systems, defined as µ = m2/m∗. These
characteristic values for the Earth–Moon system are as follows [61]: l∗ = 3.844× 105 km,
m∗ = 6.0458× 1024 kg, t∗ = 375200 s, and µ = 0.0121505856. Additional terms involving
spacecraft mass and thrust must be normalized. Since we assumed the mass of the space-
craft to be negligible from CR3BP first principles, these terms must be normalized by the
initial mass of the spacecraft to avoid numerical issues. Since m does not explicitly depend
on the state, x, we normalize the control accordingly: m∗s/c = m0,s/c and T∗s/c = m∗s/cl∗/t∗2.

Let r1, r2, and r = [x, y, z]⊤ denote the position vector of the center of mass of the space-
craft from the Earth (m1), Moon (m2), and barycenter, respectively. Let α̂ = [αx, αy, αz]⊤

denote the thrust-steering unit vector.
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Figure 2. Normalized synodic coordinate system for the CR3BP models.

The equations of motion for a low-thrust spacecraft, expressed in terms of the normal-
ized synodic coordinate system, are

ẋ =

[
ṙ
v̇

]
=


v

x + 2vy − (1−µ)(x+µ)

r3
1

+ µ(x+µ−1)
r3

2
+ Tmax

m αx

y− 2vx − (1−µ)y
r3

1
− µy

r3
2
+ Tmax

m αy

− (1−µ)z
r3

1
− µz

r3
2
+ Tmax

m αz

, (7)

where r1 =
√
(x + µ)2 + y2 + z2 and r2 =

√
(x + µ− 1)2 + y2 + z2 denote the spacecraft

distances from the Earth and Moon, respectively.

2.4. Formulation of Minimum-Time Optimal Control Problems

Let ∆t denote the stage time interval, where ∆t is held constant across all stages. The
objective function associated with minimum-time trajectories can be written as

minimize J = ∑
i

∆t. (8)

The Hamiltonian for each stage from the single-stage dynamics, F i; the objective
function, J; and the constraint given in Equation (6) can be written as

Hi = ∆t + (F i)⊤λi+1 + ν1

(
∥α̂i∥ − 1

)
, (9)

where ν1 is a Lagrange multiplier used to augment thrust constraints to the Hamiltonian.
The value of ν1 must be determined as part of the solution procedure. Let λ⊤ = [λ⊤r , λ⊤v ]
denote the costate vector associated with the states. The costate differential equations are
derived by forming the partial derivative of the Hamiltonian in Equation (9) with respect
to the state vector, x, written as (we use F i,⊤

x = (F i
x)
⊤)

λi =
∂Hi

∂x
= Hi

x = F i,⊤
x λi+1. (10)

Please note that unlike the continuous-time formulation, there is no negative needed
for the ∂Hi/∂x term. However, Equation (10) is indeed set up to be integrated backward
with respect to time since the costate vector from the next stage, λi+1, is on the right-
hand side. This backward-in-time step is related to the negative sign in λ̇ = −[∂H/∂x]⊤
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for continuous-time relations obtained from applying the Euler–Lagrange equation in a
continuous-time indirect method. The control law is found from the partial derivative of
Equation (9) with respect to the control vector, u, as

∂Hi

∂u
= Hi

u = 0 = F⊤u λi+1 + ν1

(
α̂i

∥α̂i∥

)
. (11)

In Equations (10) and (11), matrices Fx and Fu denote the state transition and sensi-
tivity matrices, respectively, for linear systems [62]. To evaluate matrices Fx and Fu, their
matrix differential equations must be propagated through each stage to evaluate their
values at the final time of each stage. Let Φ = Fx and Ω = Fu, and their matrix differential
equations [62] can be written as

Φ̇(t, ti) = A(t)Φ(t, ti), Ω̇(t, ti) = A(t)Ω(t, ti) +C(t), (12)

where the matrices A(t) ∈ Rnx×nx and C(t) ∈ Rnx×nu can be derived as

A(t) = ∂ẋ
∂x

=

[
0 I
∂v̇
∂r 0

]
, C(t) = ∂ẋ

∂u
=

[
0

diag( Tmax
m )

]
. (13)

The IMF notation can be updated, and we can rewrite Equation (12) in an integral
form as

F i
x =

∂xi+1

∂xi = Φ
(

ti+1, ti
)
=
∫ ti+1

ti
A(t)Φ

(
t, ti
)

dt,

F i
u =

∂xi+1

∂ui = Ω
(

ti+1, ti
)
=
∫ ti+1

ti
[A(t)Ω

(
t, ti
)
+C(t)]dt, (14)

with the initial conditions defined as Φ(ti, ti) = I and Ω(ti, ti) = 0 (with I denoting the
nx × nx identity matrix). The final step of the IMF is to solve Equation (11) for an optimal
control law. Applying the strong form of optimality, such that Equation (11) is equal to
zero, leads to (since ∥α̂i∥ = 1)

0 = F⊤u λi+1 + ν1
α̂i

∥α̂i∥
,→ − F⊤u λi+1

ν1
=

α̂i

∥α̂i∥
= α̂i. (15)

Using the definition of α̂, ν1 must be equal to ||F⊤u λi+1||, which yields the familiar
primer vector optimal control law,

α̂i = − F i,⊤
u λi+1∥∥∥F i,⊤
u λi+1

∥∥∥ . (16)

An immediate observation is that the optimal control, given in Equation (16), and the
costate update map, given in Equation (10), are homogeneous in costates, i.e., multiplying
their values by a constant positive factor (e.g., a > 0) does not change the solution. The
homogeneity property is often used for normalizing the range of the costates (e.g., see
Section 10.6 in [63]). We use the homogeneity property of the costate differential equa-
tions and the optimal control law in the proposed sampling-based algorithm outlined in
Section 3.

2.5. Incorporating Uncertainties in Initial Boundary Conditions

The IMF allows for imposing constraints on only one stage or even using a different
cost function across different stages. We take advantage of this feature to incorporate
position and velocity ellipsoid uncertainty constraints (per the method of [44]), as well as
an impulse maneuver at the simulation start time, adapting the work presented in [52,60].
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However, we present numerical results related to the Earth-to-Mars problem. To accomplish
this, we add a pseudo-zero stage that converts the reference trajectory initial states, rref and
vref, into perturbed initial states, r* and v*. We use a matrix-mapping technique to account
for the variation in each of the states as,

[
r∗

v∗

]
=

[
rref

vref

]
+

[
I 0 0
0 I I

] δr
δv1
δv2

. (17)

Our goal is to solve for [δr, δv1, δv2]
⊤, which are the states associated with the varia-

tions from the reference state. In Equation (17), δr and δv1 are associated with ellipsoid
position and velocity uncertainty constraints. In addition, ∆V impulse maneuver con-
straints are handled through δv2 . An additional cost function is required to account for
the variation in initial mass due to the impulse maneuver. We select the Tsiolkovsky rocket
equation as the cost function to track the mass consumed due to this impulsive maneuver,
defined as L∗ = m0 −m0e−

∆V
c . The (pseudo-zero stage) Hamiltonian is formed as

H∗ = m0 −m0e−
∆V

c + λ⊤[r∗⊤, v∗⊤]⊤ + ∑
k

νkCk. (18)

Next, we must express Ck for both types of constraints. We use the ellipsoid uncertainty
constraint formulations from [44] to express the position and velocity uncertainty in the
form of equality constraints as

1
2

δr⊤Erδr− 1
2

r2
ref = 0,

1
2

δv⊤1 Evδv1 −
1
2

v2
ref = 0, (19)

where Er and Ev are matrices determining the major axes of the uncertainty ellipsoid. We
need expressions for δr and δv1 to successfully implement the constraints in Equation (19).
Computing the partial derivative of H∗ with respect to δr yields

∂H∗

∂δr
= H∗δr = 0 = λr + ν1Erδr,→ δr = −(ν1Er)

−1λr , (20)

where λr is the pseudo-zero stage costates associated with the position vector. Substituting
Equation (20) into the position ellipsoid constraint, Equation (19), yields an expression for
ν1, which can be written as

0 =
1
2

r2
ref −

1
2

λ⊤r E−1
r λr

ν2
1

,→ ν1 =
λ⊤r E−1

r λr

r2
ref

. (21)

Substituting v1 into Equation (20) yields the final equation as

δr = −rref
E−1

r λr√
λ⊤r E−1

r λr

. (22)

All parameters in Equation (22) are given, aided by the backward integration in the
second stage of the algorithm, which yields the costates, λr . The initial condition position
uncertainty constraint can be implemented. It is possible to follow the same process to
obtain a solution for δv1 as

H∗δv1
= 0 =λv + ν2Evδv1, δv1 =− vref

E−1
v λv√

λv
⊤E−1

v λv

. (23)

Equations (22) and (23) are analytical closed-form expressions for the change in initial
conditions due to an ellipsoid uncertainty. These changes can be implemented in the reach-



Aerospace 2024, 11, 380 9 of 30

able set algorithm without any structural modification to the algorithm (see Equation (17)).
The other type of scenario is the ∆V impulse maneuver, which involves a separate bound-
ary condition since one must allow the magnitude of the ∆V impulse to take values less
than or equal to the maximum capability of the propulsion system, ∆Vmax. This constraint
associated with the initial impulse can be written as

1
2

δv2
⊤δv2 −

1
2

∆V2
max ≤ 0. (24)

The derivation of the closed-form solutions for these constraints is more involved due
to the introduction of an inequality constraint that can be active or inactive. A complete
derivation of the solution for δv2 and ∆V is given in Appendix A. However, if the inequality
constraint is active, we have the following two relations

∆V = ∆Vmax, δv2 = −∆Vmax
λv

∥λv∥
. (25)

If the inequality constraint is not active, the optimal solution can be derived as

∆V = −c ln

∥λv∥c +
√
∥λv∥2c2

2m0

, δv2 = c ln

∥λv∥c +
√
∥λv∥2c2

2m0

 λv

∥λv∥
. (26)

The final step is to address the initial mass perturbation due to an impulse maneuver,
which can be written as δm = m0 −m0e−

∆V
c , with ∆V becoming the computed value using

the logic presented above. Finally, we need to update the initial mass as m∗ = m0 + δm. We
emphasize that the analytical solutions (for an initial condition variation due to an impulse
maneuver) are only functions of the costates and other constants specified by the problem.
This makes the implementation of these types of constraints simple given the algorithm
structure (i.e., treating stages differently).

3. Reachable Set Approximation Algorithm

The rapid reachable set approximation algorithm consists of three main phases. First, a
zero-thrust reference trajectory is used to obtain all reference states, state transition matrices,
and sensitivity matrices. Second, a sufficiently large number of costates (at the final stage,
N) are sampled from a six-dimensional unit ball corresponding to the costates associated
with the position and velocity vectors. It is at this stage that the homogeneity property of
the costate differential equations is leveraged. For each sampled costate vector, the costate
vectors are propagated backward in time using the costate update mapping in Equation (10)
until the initial stage. Control laws, given by Equation (16), are computed and stored. Lastly,
the reachable set is reconstructed using a forward-in-time integration of the fully nonlinear
state dynamics with the computed optimal control. The sampling-based aspect of the
algorithm allows for thousands of reachable trajectories to be generated rapidly and in a
parallel manner. Note that for each trajectory, there is only one numerical integration, and
no optimization solver is used (as opposed to a direct optimal control method).

To generate a reference trajectory, we consider a zero-thrust (i.e., ballistic) trajectory.
This is due to a trivial solution of the OCP in which λN = 0, causing {ui}N

i=1 = 0. The
system dynamics are forward-in-time integrated from the initial conditions, x0, with no
control to obtain the reference trajectory, xref, and matrices {Fx

i}N
i=1 and {Fu

i}N
i=1. Next, we

sample terminal stage costates, λN , from a six-dimensional unit ball (i.e.,
∥∥∥λN

∥∥∥ = 1). The

reason we uniformly sample λN is due to the control law in Equation (16), which indicates
that the magnitude of λN does not matter (the control law is homogeneous in costates);
hence, a reasonable method to determine these values is to uniformly sample them from a
unit ball. The proper sampling algorithm is provided in Appendix A. All previous stage
costates are recovered backward in time through a recursive matrix multiplication, as
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outlined in Equation (10). The optimal control can be computed using Equation (16), and a
final forward-in-time integration is used to produce the entire reachable set. The indices i
and j in Figure 3 indicate the i-th stage variable quantity and the j-th trajectory forming the
reachable set. The reachable set approximation algorithm is outlined in Algorithm 1.

Figure 3. Flowchart for the reachable set approximation algorithm.

Note that (−Fi,⊤
u λi+1) denotes the primer vector since Pontryagin’s minimum principle

is used to minimize the Hamiltonian. The proposed algorithm shares multiple aspects
with a recent minimum-time-based algorithm by Patel [60], but we briefly discuss some
key differences between the method dubbed “FFOE” and our proposed algorithm. First,
FFOE utilizes a cost function designed to maximize the final state in a unit-ball sampled
direction, whereas our proposed method formulates a minimum-time IMF problem that
allows direct comparison with the solution to a minimum-time OCP. Additionally, our
formulation simplifies the dynamics by removing mass and its costate differential equations
from the set of state–costate vectors. This is aided by the minimum-time formation since it
is known that mass can be integrated analytically using the thrust value, specific impulse
value, and time of flight [57]. Ref. [60] tracked the inverse of mass, which increased the
dimensionality of both the differential equations and the involved matrices, leading to
a longer computational time compared to our proposed algorithm. The computational
advantage of our proposed method remains valid and is independent of the computational
platform and programming language.

Nevertheless, we can use the combined observations from this study and [60] to draw
conclusions on a few salient aspects of the sampling-based reachable set estimation method.
In general, the algorithm’s accuracy begins to deteriorate over long time horizons unless
the number of sample points increases. Additionally, since the core of this method involves
linearization about an unpowered reference trajectory, we expect that as the ratio of the
propulsive acceleration to the natural acceleration due to the gravity of the gravitational
body(s) increases, the accuracy of the reachable set algorithm will decrease.

These issues were also identified in [60], in which FFOE was used in an iterative
manner. In this approach, each sample trajectory was linearized, and the reachable set was
recomputed. However, the method exhibited diminishing returns and numerical stability
issues. For the Earth-to-Mars problem [64], the results indicate that for the two-body
problems, the number of samples does not have to be large. The presented numerical
results for the CR3BP model indicate that accurate and rapid approximation of reachable
sets is possible with a sufficiently large sample of points, in particular, over relatively short
time horizons, which are practical for reachable set approximation of low-thrust spacecraft.
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Algorithm 1: Reachable set determination

Result: xi,j Reachable Trajectories
x0 ← Initial Conditions;
p← Constant Parameters;
N ← Number of Segments;
∆t← Segment Duration;
J ←Number of sampled reachable points;
uref ← 0;
ti ← 0;
while i = 0; i < N; i← i + 1 do

xi+1, F i
x, F i

u ← F i(xi, uref, ti, ti + ∆t; p
)
; /* Unpowered ref trajectory */

xi ← xi+1;
ti ← ti + ∆t;

end
for j = 1 : J do

λN,j ← Sampled from a unit 6-D ball (i.e., ||λN,j|| = 1);
i← N;
while i = N; i ≥ 1; i← i− 1 do

α̂i,j ← − Fi,⊤
u λi+1,j∥∥∥Fi,⊤
u λi+1,j

∥∥∥ ; /* Optimal unit thrust steering vector */

λi,j ← F i⊤
x λi+1,j;

end
end
for j = 1 : J do

while i = 0; i < N, i← i + 1 do
xi+1 ← F i

(
xi, α̂i,j, ti, ti + ∆t; p

)
; /* Reachable trajectories */

xi ← xi+1;
ti ← ti + ∆t;

end
j← j + 1;

end

4. Two-Body Dynamics Results

The results obtained for the rapid reachability and rendezvous determination problem
for a minimum-time Earth-to-Mars transfer are presented in this section. This example
was taken from [65]. For all results, Tmax = 0.5 Newton, Isp = 3000 s, and m0 = 1000 kg.
The initial position and velocity vectors are r = [−140699693;−51614428; 980]⊤ km and
v = [9.774596;−28.07828; 4.337725E-4]⊤ km/s, respectively. The complete state vector of
the spacecraft at the beginning of the maneuver is given as x = [−140699693;−51614428;
980; 9.774596;−28.07828; 4.337725E-4]⊤, with units km and km/s corresponding to a depar-
ture epoch of 10 April 2007. The segment duration, ∆t, is set to 86,400 s. The reachable set
algorithm was implemented in MATLAB R2023a on a 2018 MacBook Pro with a quad-core
2.3 GHz processor, using parallel computing capabilities with 4 CPU cores. Additionally,
MATLAB’s integrated code compiler was used to generate MEX files to speed up the
algorithm. NASA’s spice toolkit was used to access DE440 planetary ephemerides. The
computations were completed in the J2000 ecliptic reference frame, centered at the solar
system barycenter.

4.1. Reachable Set Analysis for a Fixed Time Horizon

We consider a time horizon of 200 days with a total of 5000 sample trajectories. This
simulation completed in 13.61 s, demonstrating rapid trajectory generation ability with
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2.72 ms per trajectory. The first, and most important, observation from Figure 4a is that
for the time horizon of 200 days, a portion of the Mars orbit is within the reachable set.
However, the position of Mars (red square) is not within the reachable set (red). A longer
time of flight is required for Mars to become reachable. The reference trajectory (blue line)
is equivalent to the orbit of the Earth, since no control is applied. In Figure 4a, AU stands
for the astronomical unit (AU = 149× 106 km).

(a) Two-dimensional view of the position reachable set

(b) Three-dimensional view of the position reachable set

Figure 4. Position reachable set over a 200-day time horizon with 5000 sample trajectories.

Figure 4b depicts a three-dimensional (3D) view of the reachable set, which is a
deformed ellipsoid-like 3D shape created by the endpoint of all reachable trajectories. A
funnel-like structure exists when we plot the time history of all reachable trajectories (light
gray lines); we refer to this as the reachable funnel. The boundary points of the reachable
funnel represent the time history of all reachable sets within a 200-day time horizon. The
feasible set and feasible funnel encompass all position states classified as the interior of
the reachable set and reachable funnel, corresponding to minimum-fuel solutions for the
fixed time horizon. As the time of flight increases, the number of sample trajectories has
to be increased because for long-time-horizon maneuvers, the volume of the reachable set
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expands rapidly, so more sample points are required to construct an accurate approximation
of the reachable set.

4.2. Reachable Set Comparison with the Solution from a Direct Optimization Formulation

We seek to validate the accuracy of the reachable set estimate by comparing the results
in Section 4.1 with a minimum-time trajectory optimization problem, as minimum-time
trajectories lie on the boundary of the reachable set. We solve a minimum-time direct
OCP with the same initial conditions listed above. The minimum-time Earth-to-Mars
OCP was solved using CasADi v3.5.5 [66]) ; the resulting optimal trajectory and thrust
vector are shown in Figure 5. It can be observed that the propulsion system operates at
maximum thrust for the duration of the flight, with only the thrust direction (red arrows)
in Figure 5 varying. The minimum-time Earth-to-Mars problem, when solved, resulted
in a trajectory with a time of flight of 307 days. The trajectory also leveraged the Oberth
effect (i.e., it utilized the gravitational well of the Sun to maximize the rate of change of its
energy). Taheri posed a minimum-fuel Earth-to-Mars problem in [65] and described how
a (Hamiltonian) two-point boundary-value problem arises from an indirect formulation,
which can be solved with a single-shooting method (e.g., using MATLAB’s built-in fsolve
function). We used this same formulation and manually iterated on the time of flight until a
trajectory was determined that produced a constant maximum thrust profile in the shortest
time of flight. The same solution can also be obtained by formulating a minimum-time
OCP and using an NLP solver (e.g., CasADi v3.5.5 [66]).

Figure 5. Minimum-time trajectory and thrust vector solved with CasaDi.

The solution of the minimum-time Earth-to-Mars problem aligns with ephemeris-
consistent rendezvous boundary conditions (i.e., when the position and velocity of Mars
depend on the time of flight). The resulting minimum-time trajectory can be used to
demonstrate the validity of the reachable set estimations because a minimum-time trajectory,
by definition, must terminate on the reachable set. To show this, we computed the reachable
position and velocity sets for the time of flight computed by the optimal single-trajectory
indirect OCP [57]. Figure 6 shows the evolution of the velocity reachable set through flight
times from 120 to 180 days. We selected these times of flight since they correspond to the
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thruster direction reversing in Figure 5. The reachable set appears to fold upon itself when
chronologically stepping from 140 days (Figure 6b) to 160 days (Figure 6c).

The reachable set algorithm was used to compute the reachable set for a time horizon
of 307 days with 5000 sample points. Figure 7a shows the position reachable set for the
given initial conditions. Upon examination, we can see that the indirect OCP generates a
position-feasible trajectory (green line) due to the fact that in position space, the minimum-
time trajectory terminates on the interior of the projected position reachable set. Figure 7b
depicts the velocity reachable set. The indirect minimum-time trajectory terminates on
the boundary of the velocity reachable set. The results indicate that for the considered
parameters of the propulsion system, the velocity states are more restrictive compared
to the position set and reduce the combined reachable velocity. Moreover, the results are
consistent and validate the accuracy of our proposed method for determining an accurate
estimate of the reachable set for low-thrust spacecraft. However, the sensitivity of the
reachable set for fixed-time rendezvous maneuvers is more nuanced, as discussed for a
rendezvous maneuver from Earth to asteroid 1989ML in [50], which is a consequence of
the deformed reachable set within the orbit of asteroid 1989ML.

(a) Velocity reachable set over 120 days. (b) Velocity reachable set over 140 days.

Figure 6. Cont.
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(c) Velocity reachable set over 160 days.

(d) Velocity reachable set over 180 days.

Figure 6. Evolution of velocity reachable set vs. different time horizons.
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(a) Position reachable set over a 307-day time horizon.

(b) Velocity reachable set over a 307-day time horizon.

Figure 7. Reachable set over a 307-day time horizon with 5000 samples.

4.3. Reachable Set Propagation and Analysis of the Required Computation Time

One useful application of the proposed reachable set approximation method is the
ability to rapidly determine whether a planet/object can be encountered from given initial
conditions within a specified time horizon. To demonstrate this capability, the reachable set
algorithm was initialized such that one stage was equal to one day. Then, 10,000 sample
trajectories were computed for each trial. Data indicating the time of flight and simulation
run times are presented in Table 1. The fast computation time allows for rapid iteration to
“brute force” search for a time of flight that allows a target to become reachable.

Figure 8 indicates the expansion of the reachable position set over an increasing time
horizon, with flight times ranging from 100 to 300 days. This pseudo-qualitative plot
was generated by interpolating all sampled trajectories on the reachable set to graphically
illustrate the reachable set. The trajectory of Mars (red line) shows how the target position
evolves with increasing time of flight.
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Table 1. Earth-to-Mars reachable set propagation with 10,000 sample points.

Time of Flight Computation Time
(days) (seconds)

100 9.0599

150 17.3945

200 18.1148

250 21.8414

300 26.2118

Figure 8. Depiction of the Earth-to-Mars position reachable set.

The utility of the rapid reachable algorithm is illustrated here, since the successive
generation of many reachable sets for complex problems is extremely computationally
expensive. In Figure 8, we can see that the time of flight must be greater than 250 days
for Mars to be reachable. Recall that position reachability is the first step in determining
whether an object can be reached in a rendezvous scenario, which confirms the results of
the previous section.

4.4. Reachable Set Variations with Uncertainties in Initial Boundary Conditions

We revisit the simulation presented in Section 4.1 to demonstrate the ability to add
uncertainties in initial boundary conditions and assess their impact on the reachable
set. Two types of initial boundary conditions are considered: (1) position and velocity
uncertainty, and (2) a bounded impulsive maneuver. Both types of constraints can be
incorporated simultaneously; however, we separate them in these results to demonstrate
their individual effects. We consider departure from the Earth (reference) orbit.

Figure 9a shows the reachable set for a case without position and velocity uncertainty
(green surface) and a case for ellipsoidal position and velocity (red surface). The addition of
ellipsoidal uncertainty constraints clearly affects the nominal reachable set, and it appears
that the red set has decreased in size relative to the green set. However, this is not necessarily
the case since the uncertainty constraint has also shifted the red reachable set out of the
plane relative to the green reachable set, making it appear smaller. The main conclusion
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is the demonstration that ellipsoidal uncertainty constraints can significantly affect the
reachable set. Figure 9b presents the expected result of adding an initial ∆V impulse (which
can be regarded as excess velocity provided by a launch vehicle). The impulse maneuver
excites the spacecraft to a higher energy state, which ultimately leads to a larger reachable
set. The red set resulting from the impulse maneuver has noticeably expanded after a
200-day time horizon compared to the zero-impulse-maneuver reachable (green) set.

(a)

(b)

Figure 9. Comparison of position reachable sets over a 200-day time horizon with 5000 samples
with different initial types of uncertainties. (a) With uncertainties on the initial position and ve-
locity vectors as defined in Equation (19). (b) With an initial impulse maneuver as defined in
Equations (25) and (26).

5. CR3BP Dynamics Reachable Set Results

Results are presented for three cases, considering different spacecraft propulsion and
mass parameters across various time-horizon values. Case 1 starts from an L1 point initial
condition with zero velocity and extends over increasing time-horizon values. The results
of our algorithm are in agreement with the results presented in [67] for the same problem
and parameters. Case 2 simulates an L2 Halo orbit over both short- and long-time-horizon
values and illustrates the chaotic natural dynamics and the evolution of the reachable set in
the CR3BP dynamics. Case 3 updates the initial condition to a Lunar Gateway 9:2 NRHO,
which is the chosen orbit for NASA’s Lunar Gateway station [68]. Case 1 serves to validate
the reachable set results within the CR3BP dynamics, whereas Cases 2 and 3 present
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novel reachable set solutions in cislunar space. Lastly, an explanation involving invariant
manifolds is presented to offer additional insights into the evolution of the reachable sets
in the CR3BP dynamics. In all results presented, the Earth and Moon are not illustrated
to scale, and the segment duration, ∆t, was determined empirically as the time of flight
normalized by the characteristic time, divided by 200.

5.1. Reachability from the L1 Point (Case 1)

A low-thrust spacecraft with Tmax = 1 N, Isp = 2000 s, and 1500 kg of initial mass
is considered. The initial state vector is given in nondimensionalized coordinates as
x = [0.836892919; 0; 0; 0; 0; 0]⊤. The reachable set was computed for time-horizon values
ranging from 50 to 200 h. Each trial used 100,000 sample trajectories. The longest simulation
run time, for 200 h, took 119 s. Compared with [67], which is a planar implementation of
cislunar CR3BP, Figure 10 utilizes full three-dimensional dynamics. The computational
advantage of our proposed method is significant and is expected since the determination
of the reachable set using a direct optimization method is computationally demanding.

The sample points that appear to be interior to the reachable set with this X − Y
projection are due to the out-of-plane effects and are simply reachable points with a Z-
coordinate not equal to zero. The results validate the accuracy of the linearization of the
CR3BP dynamics. One interesting result corresponds to the area to the right of the Moon,
where the chaotic nature of the CR3BP dynamics results in large discontinuities in the
solution. It is suspected that the singularity of the trajectories due to the presence of the
Moon gives rise to the chaotic behavior of the reachable set. As is common in constrained
trajectory optimization, it is possible to enforce position-level path inequality constraints
on the radius vector of the spacecraft to avoid singularities. The tendency of the reachable
set to grow toward the Earth is attributed to the CR3BP dynamics, with the influence of the
eigenvectors at the L1 diverging toward the Earth corresponding to larger eigenvalues.
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(a) 50–100 h time horizon.
Figure 10. Cont.
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(b) 150–200 h time horizon.

Figure 10. L1 point reachable sets with increasing time-horizon values.

5.2. Reachability from the L2 Halo Orbit (Case 2)

Case 2 considers the computation of the reachable set for an L2 Halo orbit. A low-
thrust spacecraft with Tmax = 0.2 N, Isp = 3000 s, and m0 = 1000 kg is considered. The
initial state vector is given in nondimensionalized coordinates as

x = [1.17204419281306; 0;−0.0862093101977581; 0;−0.188009087163036; 0]⊤.

The period of the L2 reference orbit is 346.322857 h. The reachable set was computed
for time-horizon values equal to 150 and 350 h. The 150 h time horizon demonstrates the
evolution of the reachable set in the vicinity of the Moon, and the 350 h time horizon shows
growth and a distributed reachable set.

Figure 11 shows the 150 h expansion of the reachable set with 2000 sample trajectories.
Even on this short time horizon, one can identify that small changes in the thrust vector
(especially during the initial stages) directly contribute to a reachable set that is fully
developed in three dimensions. Unlike the short time-horizon two-body results in which
it is straightforward to interpolate the reachable sample points to generate a reachable
set boundary projection, it is difficult to fully capture the shape of the abstract reachable
set. Additionally, Figure 11 shows an incipient tendency for the reachable trajectories to
cluster into two bands, each propagating in opposite directions from the initial point. This
phenomenon is the primary purpose of including the relatively long 350 h time-horizon
case and is explained in the section on invariant manifolds.

For the 350 h time-horizon case, the number of sample points was increased to 10,000
to improve the resolution of the captured reachable set. Figure 12 presents the computed
reachable set for the L2 Halo reference orbit. These results clearly show that the reachable
set has distributed into two primary clusters. One cluster completes a close flyby with the
Moon, and the second cluster exits the near vicinity of the Moon into an area dominated by
the gravitational attraction of the Earth. The section detailing invariant manifolds outlines
the theoretical foundation for why this reachable set is deformed in such a manner and
why the uniformly sampled trajectories exhibit unexpected clustering behavior.
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(a) Three−dimensional view of the position reachable set.

(b) XY view of the position reachable set.

Figure 11. Position reachable set over a 150 h (6.25 days) time horizon with 2000 samples.
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(a) Three-dimensional view of the position reachable set.

(b) XY view of the position reachable set.

Figure 12. Position reachable set over a 350 h time horizon with 10,000 samples.

5.3. Reachability from the Lunar Gateway 9:2 Near Rectilinear Halo Orbit (Case 3)

Case 3 considers the reachable set for the Lunar Gateway earmarked 9:2 NRHO. A low-
thrust spacecraft with Tmax = 0.2 N, Isp = 3000 s, and m0 = 1000 kg is used. The period of
the L2 reference orbit is 157.500622 h. The initial state vector is given in nondimensionalized
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coordinates as x = [1.0221, 0,−0.1821, 0,−0.1033, 0]⊤ [61]. All results are computed with a
75 h time horizon and 2000 sample trajectories. The region in the vicinity of the 9:2 NRHO
will become a congested area in the near future, so it is imperative to be able to compute
reachable sets to perform accurate spacecraft proximity operations in this space and execute
potential collision-avoidance maneuvers.

Figure 13 presents the computed reachable set. This result shows a new characteristic
of the reachable set: the reachable set not only expands, but also contracts with this time
horizon. Before the spacecraft reaches the perilune of the 9:2 NRHO reference orbit, the
reachable set expands in a manner consistent with previous results. At perilune, the natural
CR3BP dynamics contract the reachable set before expanding again after perilune.

(a)

(b)

Figure 13. Position reachable set over a 75 h time horizon with 2000 samples. (a) Three-dimensional
view of the position reachable set. (b) XY view of the position reachable set.
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5.4. Connection between Reachable Sets and Invariant Manifolds in CR3BP

Historically, low-energy transfers in three-body dynamical models originated with the
idea of invariant manifolds. These dynamical structures exist in the vicinity of the circular
restricted three-body libation points and can be used to connect trajectories across vast
distances in space [69]. An observation from the results presented for a low-thrust spacecraft
in the CR3BP dynamics reveals an interesting behavior over long time-horizon values,
namely the reachable set exhibits a bifurcation (i.e., there exist “two” different directions
leading to reachable sets starting from the same initial condition). Additionally, when all
the sampled minimum-time trajectories are plotted, they appear to be clustering around
some unknown dynamical structure in the CR3BP dynamics. Examining the structure
of the presented algorithm, the terminal costates are sampled from a six-dimensional
hypersphere, which implies that the reconstructed thrust vector should be affected by the
sampling algorithm. However, some of the thrust vector directions appear to be “more
likely” due to the chaotic nature of the CR3BP dynamics. We now attempt to explain
this phenomenon of a thrust vector sampling and the distributed reachable set and the
clustering of sampled trajectories.

We briefly digress to a discussion of Chaos Theory and the bifurcation of the logistic
map. The original 1967 paper by May [70] details how chaos emerges from the iterative
solution to the logistic difference equation when the growth rate exceeds 3.570. In the
detailed plots of the logistic map, when examining the regions beyond 3.570 with an
unstable fixed point, there appear to be some “more” stable points that appear as peaks of
a probability distribution in the chaotic region. These are referred to as supertracks [71].
Returning to the analysis of the reachable sets in the CR3BP dynamics, we hypothesize
that the clustering of the sampled reachable trajectories is analogous to the supertracks of
the logistic map. The CR3BP dynamics is a chaotic one similar to the logistic map in that
there exist stable manifolds and libation points. We ascertain that the clustering of sample
trajectories is coincident with the invariant manifolds that exist as quasi-stable/unstable
structures in the CR3BP dynamics.

To empirically validate our hypothesis, the invariant manifolds associated with the
considered L2 Halo orbit are computed. These invariant manifolds are overlaid on the
results from the reachable set analysis. The invariant manifolds are computed according
to the process outlined in [72,73] and are straightforward to construct using the IMF. The
invariant manifolds associated with the reference L2 Halo orbit are shown in Figure 14 for
a short time horizon. The motivation for this brief discussion about invariant manifolds is
to explain the bifurcation and reachable sample trajectory clustering observed in Figure 12.
The unstable and stable manifolds are computed for this same L2 Halo reference periodic
orbit and then overlaid onto the reachable set results from Figure 12 to identify any possible
trends in the reachable trajectories arising from underlying dynamical structures associated
with the chosen periodic orbit.

Figure 15 presents the reachable set with the associated invariant manifolds for the
350 h L2 Halo reference orbit. For this long time horizon, there is a clear direct relationship
indicating the tendency for reachable set sample trajectories to cluster on the invariant
manifolds. It is important to note that the invariant manifolds propagate in two primary
directions originating at the periodic orbit, which is due to the integration in both the
forward and backward directions due to stable and unstable manifolds [73]. Since the
reachable set, by definition, is the set of all possible states that could be achieved from a
given initial condition, it is expected that the sample points terminating the furthest linear
distance from the initial condition arrive at the terminal point by exploiting the invariant
manifold structure existing in the CR3BP dynamics. Additionally, since the propulsion
system used for this model (0.2 N) leads to an overall small perturbation acceleration,
the reachable set evolution on this time horizon is expected to be dominated more by
the dynamics in the CR3BP dynamics than by the onboard propulsion system. That is,
there is a higher probability of a reachable sample point terminating near an invariant
manifold than at any other random spatial coordinate, making these invariant manifolds
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essentially analogous to supertracks in a general chaotic dynamical system. To the best of
our knowledge, the relationship between the reachable set of low-thrust trajectories and
invariant manifolds in the CR3BP dynamics has not been identified in the literature.

Figure 14. Stable and unstable invariant manifolds of the Earth–Moon L2 Halo orbit.

(a) Three-dimensional view

Figure 15. Cont.
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(b) XY view

Figure 15. Reachable set overlaid with invariant manifolds for the 350 h L2 reference orbit.

Remarks: Please note that the proposed method is based on rigorous formulations of
OCPs (i.e., the variational approach to optimal control). In particular, the class of minimum-
time trajectory optimization problems is formulated and studied. The proposed method is
sampling-based and is amenable to parallel implementation for rapid approximation of
reachable sets. We emphasize that the change in mass of the spacecraft is not neglected
but rather integrated analytically. In fact, the dynamics are fully nonlinear. We hope that
our method enables researchers and astrodynamicists experts to have an efficient tool
for addressing the urgent and interesting problem of approximating the reachable sets of
low-thrust spacecraft in complex dynamic regimes, including cislunar space.

6. Conclusions

The indirect multi-stage formulation of optimal control theory was used to implement
a rapid reachable set approximation algorithm. A minimum-time low-thrust trajectory
formulation was used to recover minimum-time trajectories corresponding to reachable
sets. Results are presented detailing the application of this algorithm to a minimum-time
Earth-to-Mars transfer. The results indicate that the minimum-time rendezvous lies on
the interior of the reachable position set and on the boundary of the reachable velocity set.
The effects of injecting initial condition uncertainty and an impulsive maneuver were also
evaluated, showing variations in the reachable set.

Novel results detailing the reachable set for low-thrust spacecraft in circular restricted
three-body problem (CR3BP) dynamics are presented for L1 point, L2 Halo, and Lunar
Gateway 9:2 NRHO reference conditions. Theoretical insight into the behavior of the



Aerospace 2024, 11, 380 27 of 30

reachable set, subject to multi-body perturbations, is provided to show that the reachable set
and the invariant manifold structures closely align. The results indicate a new characteristic
of the reachable set: the reachable set not only expands but also contracts with the time
horizon for the Lunar Gateway 9:2 NRHO case. The presented numerical results for the
CR3BP indicate that accurate and rapid determination of reachable sets is possible with a
sufficiently large sample of points. In general, reachable sets are typically useful over short
time horizons. Thus, sampling-based methods offer a rapid reachable set determination
methodology, which is the most likely application for a space-domain awareness situation.

The power of using the proposed sampling method lies in the ability to recover the
true reachable set from an HJB solution. The results presented are accurate approximations
of the reachable sets of low-thrust spacecraft that can be used to inform grid-based HJB
solvers. This means that a mission designer can use the proposed tool to rapidly generate
approximate reachable sets, make a decision on whether maneuvers are required (due to
collision avoidance, rendezvous, etc.), and feed the approximation to assist a high-fidelity
solver that will be used to determine exact reachable boundaries for maneuvering.
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Appendix A. Six-Dimensional Costate Sampling Algorithm

Sampling from a six-dimensional sphere is a step in the proposed method. A general
n-dimensional unit sphere can be parameterized in spherical coordinates by (n− 1) angles
ϕ1, . . . , ϕn−2 ∈ [0, π] and ϕn−1 ∈ [0, 2π] [74]. We can randomly sample an (n− 1) vector of
angles using the MATLAB function rand. Algorithm A1 summarizes the steps.

Algorithm A1: Six-dimensional costate sampling algorithm

Result: λN

n← 6;
ϕ← π∗ rand(n− 2, 1) ; /* Angles ϕ1, ..., ϕn−2 ∈ [0, π] */
ϕ(n− 1)← 2π∗ rand ; /* Angle ϕn−1 ∈ [0, 2π] */
λN(1)← cos(ϕ(1));
λN(2)← sin(ϕ(1)) cos(ϕ(2));
λN(3)← sin(ϕ(1)) sin(ϕ(2)) cos(ϕ(3));
λN(4)← sin(ϕ(1)) sin(ϕ(2)) sin(ϕ(3)) cos(ϕ(4));
λN(5)← sin(ϕ(1)) sin(ϕ(2)) sin(ϕ(3)) sin(ϕ(4)) cos(ϕ(5));
λN(6)← sin(ϕ(1)) sin(ϕ(2)) sin(ϕ(3)) sin(ϕ(4)) sin(ϕ(5));
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