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Abstract: A multisubstructure-based method for assessing the deformation and stress of a fine-
meshed model according to a coarse model was proposed. Integrating boundary conditions in a local
fine-meshed model, a displacement mapping matrix from the coarse model to the fine-meshed model
was constructed. The method was verified by a three-level panel in a fluid–structure interaction (FSI)
framework by integrating the steady vortex lattice method (VLM). A comparison between the inner
deformation distribution of the coarse model and that of the global fine-meshed model obtained from
MSC.Nastran was carried out, and the results showed that the coarse model failed to demonstrate
reliable strains and stresses. In contrast, the proposed method in this paper can effectively depict the
inner deformation and critical stress distribution. The deformation error was lower than 8%, meeting
engineering requirements. Moreover, the results of different working conditions can achieve a similar
relative error of displacement for an identical position. The easy storage of the displacement mapping
matrix and the convenience of the boundary information transformation among all substructure levels
are prominent aspects. As a result, there is a solid foundation for addressing the time-dependent
problem in spite of the simultaneity and region.

Keywords: dynamic substructure; mapping; finite element method; vortex lattice method; deformation

1. Introduction

A variety of aeroelasticity phenomena, such as the flutter margin, static and dynamic
loads, and structure stress, need to be taken into consideration in aircraft structure de-
sign. An initial structure using a finite element model (FE model) that meets basic stress
and buckling requirements under a series of preliminary design load conditions was con-
structed during a preliminary design process. The lowest-fidelity model was utilized for
the aeroelastic design and analysis in several iterations [1,2]. However, this meant that, on
the one hand, the model of the structure could not be updated in real time and, on the other
hand, it failed to provide adequate and accurate information for designers in predicting
performance [3]. In addition, the literature indicates that a reduced-order structure model
can be used to balance the efficiency and precision of the aeroelastic calculations, while
a full-order structure FE model is imperative for strength analysis [1]. Confronted with
the structure design of flight vehicles, the different focuses on aeroelasticity and structure
strength imply further integration reinforcement for multiple disciplines in order to con-
sider how structure strength can be obtained through a rational strength design. Currently,
many researchers are investigating the application of multiple discipline optimization
(MDO) in flight vehicle design with respect to model order reduction and design efficiency
improvements through the integration of multiple disciplines [4]. In an MDO framework,
Livne et al. [5] applied the equivalent plate approach to assess specific effects, whereas
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ignorance of the actual structure and the FE model resulted in a failure to provide stress
details. Bindolino et al. [6] identified displacement with satisfactory accuracy based on
the perturbation mode approach [7], but their model was still deficient in the accuracy of
its strain and stress analyses. Accordingly, MDO focuses limited attention on the stress of
the structure during the preliminary design process; moreover, the reduced-order struc-
ture model fails to depict the stress of the structure with respect to both geometry and
timescales. Specifically, MDO is carried out in three stages (conceptual, preliminary, and
detailed) during the aircraft design process, with the result that long-term monitoring of
the structure is not supported. For the MDO framework, aeroelasticity is evidently a factor,
which can introduce radical impacts on the design of the structure [3,8–10]. In addition,
aeroelasticity is a real scenario that aircrafts encounter. Therefore, stress analyses should
take aeroelasticity into consideration. However, due to the lack of investigation regarding
the aeroelasticity output with respect to the structure [11], it is necessary to build an aero-
dynamic structure framework embedding a multisubstructure-based mapping method,
which is based on the geometric multiscale finite element method (GMsFEM) [12] and
the dynamic substructure method to describe the displacement and stress of structures
influenced by aerodynamic loads.

The dynamic substructure method is divided into a fixed-interface substructure class and
a free-interface substructure class [13]. For the former class, the integration of the interface’s
displacement and the constraint mode set is used to depict the implicated movement, and the
free vibration mode set with all restrained boundaries (that is, the fixed-interface main mode
set) is regarded as the basis for describing the relative movement [14,15]. The distinction
between these two substructure classes lies in the main mode set with different displace-
ment boundary settings. For the fixed-interface substructure class, the fixed-interface main
mode set is obtained with a fixed boundary, whereas all the interface physical degrees of
freedom are set free for the substructure modal analyses with respect to a free-interface
substructure. The free boundary modal set for the free-interface substructure requires a
balance between precision and the number of modal bases. The modal basis set requires
supplementation due to the neglecting effect of adjacent substructures [16] and the trun-
cation of higher-order modes [17–20]. Based on the comparison of different substructure
classes, the fixed-interface substructure class is considered, due to having less of a modal
basis and relatively reliable precision.

There exists an analog between the substructure and the element in the finite element
method (FEM). The shape function set is composed of a nodal-based shape function, an
edge-based shape function, and a face-based shape function in the higher-order FEM [21].
Furthermore, the constraint mode set resembles the nodal-based shape function, and
the fixed-interface main mode set resembles the face-based shape function. Naturally, the
displacement in the interface can be realized by combining the displacement of known grids
with the edge-based shape function. Zander et al. [22] investigated the multi-level element
method, by discretizing proportionally and reconstructing the element shape function.
This method revealed an efficiency problem due to the reproduction of the element shape
functions. However, the substructure method is based on the component level and not
the element level, which means that this technology may be capable of overcoming this
efficiency problem.

The dynamic substructure method is widely used in aeroelasticity analysis for struc-
tural order reduction while possessing similar properties to the FE; it can bridge the research
gap in analyzing aeroelasticity and structure strength for both preliminary design and
long-term structure monitoring. Higher-order modes are required in order to seize detailed
physical information for describing the displacement and stress of delicate positions. The
proposed multisubstructure-based displacement mapping can create a hierarchy for the
target positions to capture detailed data on their displacement using relatively fewer de-
grees of freedom globally. The proposed mapping method can transfer the influence of the
last coarse-mesh substructure to the current fine-mesh substructure through displacement
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boundary, thus facilitating independent analysis among different meshed substructures,
which is a distinct advantage.

This paper is structured as follows. In Section 1, the theoretical method used for the
proposed structure mapping and aerodynamic modelling is introduced. In Section 2, an
aerodynamic model and a three-level panel FE model are established to verify the proposed
method and build an aerodynamic structure analysis framework. The results are analyzed
and discussed in Section 3. Conclusions are drawn in Section 4.

2. Methodology

Due to the previously discussed advantages, the proposed mapping method is based
on a multi-level substructure, with the deduction based on a fixed-interface substructure
method (Craig-Bampton Substructure Method, CB Method) due to its advantages. Using
the CB method, the substructure’s displacement was analyzed in two parts: (1) the impli-
cated movement determined by integrating the boundary displacement and the constraint
mode set and (2) the relative movement determined by integrating the fixed-interface main
mode set and its generalized coordinates. The generalized coordinates corresponding to
the relative movement projected on the fixed-interface main mode basis can be solved
using the principle of minimum potential energy. Additionally, boundary displacement
information can even be considered as the corresponding generalized coordinates of the
constraint mode set. Obviously, there is a correlation between the information deduced
from the last coarse-mesh model and the unknown displacement information of the cur-
rent boundary, which can normally be calculated using the edge-based shape function
at the FE level. However, a thin panel spline (TPS) can also satisfy the correlation at the
component level, which is also a widely used method for the information transition of the
fluid–structure interface. The steady vortex lattice method (VLM) was used to perform
aerodynamic modeling so that the proposed method can be studied in a fluid–structure
interaction (FSI) framework.

2.1. Craig-Bampton Substructure Method

The undamped substructure dynamic equation is as follows:

M
..
U + KU = f (1)

where M is the physical mass matrix, K is the physical stiffness matrix, U is the physical
displacement vector, and f is the load vector.

Substructure displacement is divided into two parts: (1) the displacement vector UI of
substructure inner grids, and (2) the displacement vector UJ of substructure boundary grids:[

mII mIJ
mJI mJJ

]{ ..
UI..
UJ

}
+

[
kII kIJ
kJI kJJ

]{
UI
UJ

}
=

{
fI
fJ

}
(2)

According to ref. [13], a complete mode set is composed of a constraint mode set ΦC
and a fixed-interface main mode set ΦM. The former one involves an implicit movement
that transfers the influence of adjacent substructures to the substructure under analysis by
inducing displacement boundary conditions, while the latter one allows us to determine
deformation based on implicit coordinates. Therefore, ΦC is a series of substructure shape
modes of interior freedoms resulting from unit displacement of every single boundary
freedom while all other boundary freedoms are completely constrained. ΦM denotes the
free vibration mass-normalized modes with all boundaries constrained. Both mode sets are
solved using Equation (3). {

mII
..
UI + kIIUI = 0

kIIUI + kIJUJ = 0
(3)
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Accordingly, ΦM is satisfied as follows:

ΦM
TMΦM = I

ΦM
TKΦM = Ω2 (4)

where I is an identity matrix and Ω2 =


λ1

λ2
. . .

λl

, and λi is the ith eigenvalue in

Equation (3).
Eventually, the substructure displacement U is obtained using Equation (5).

U = ΦMqM + ΦCUJ (5)

where qM is the generalized coordinate vector corresponding to the fixed-interface main
mode set ΦM.

2.2. Displacement Mapping under Inconformity Interface

In this section, a static displacement mapping is carried out by integrating the principle
of minimum potential energy and the CB method.

(1) Displacement Recursion

Here, attention is focused on the displacement achievement of the fine-mesh model
using the displacement information of the coarse model. The ith-level substructure is
defined to be finer than (i − 1)th.

It is assumed that the boundary displacement of the ith-level substructure is as follows:

UJ
i = DiUi−1 (6)

where UJ
i is the boundary displacement of the ith-level substructure, Di is the interpolation

matrix, and Ui−1 is the displacement of the (i − 1)th-level substructure.
Substituting Equation (6) into Equation (5), the displacement relationship between the

(i − 1)th- and ith-level substructures can be written as follows:

Ui = ΦM
iqM

i + WiUi−1 (7)

where Wi = ΦC
iDi.

Iterating the recursion of Equation (7) to the first-level substructure, the displacement
relationship between the ith-level and the first-level substructures is determined as follows:

Ui = MC
iMM

iGi (8)

where MC
i =

[
WiMC

i−1 |I
]
, MM

i =

[
MM

i−1

ΦM
i

]
and Gi =

{
Gi−1

qM
i

}
.

MC
i is the constraint mode set projection of all substructure levels at the ith level.

MM
i is a combination of fixed-interface main mode sets at all levels that describe the

inner deformation of the ith-level substructure. Gi is a generalized coordinate vector that
corresponds to the fixed-interface main mode sets of all substructure levels. In particular, the
existence of MC

i is because the constraint mode set is linearly independent, corresponding
to the fixed-interface mode set, but it is not normalized. Equation (8) demonstrates that
higher displacement accuracy can be achieved in fine models via local hierarchy.
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(2) Generalized Coordinate Solution

The potential energy functional of the ith-level substructure in a discrete form is
determined as follows:

Hi =
1
2

[
qM

iT UJ
iT
][ Ω2

i EMC
i

ECM
i ECC

i

]{
qM

i

UJ
i

}
+

[
qM

iT UJ
iT
]{

ΦM
iT

ΦC
iT

}
fi (9)

where ECC
i = ΦC

iTKiΦC
i, Ω2

i = ΦM
iTKiΦM

i, EMC
i = ΦM

iT KiΦC
i = ECM

iT , and fi is the
load vector of the ith-level substructure. ECC

i and Ω2
i denote a generalized stiffness matrix

corresponding to the constraint mode and a generalized stiffness matrix corresponding to
the fixed-interface main mode, respectively. EMC

i is the generalized stiffness matrix of the
constraint mode and the fixed-interface main mode due to the non-orthogonality.

The variation about qM
i in Equation (9) is as follows:

∂Hi

∂qM
i = EMC

iUJ
i + Ω2

i qM
i − ΦM

iTfi (10)

According to the principle of minimal potential energy, the solution in Equation (10)
is equal to zero, and the generalized coordinates corresponding to the ΦM

i value of the
ith-level substructure are determined as follows:

qM
i =

(
Ω2

i

)−1(
ΦM

iT fi − EMC
iUJ

i
)

(11)

Substituting Equation (11) into Equation (8), the generalized coordinate vector Gi can
be expressed as follows:

Gi = Λi
(

FG
i − FGB

i
)

(12)

where Λi and FG
i are the generalized flexibility matrix and the generalized force vector of

all former i substructure levels, respectively.

FGB
i =



1
EMC

2

EMC
3

EMC
4

. . .
EMC

i−1

EMC
i





0
UJ

2

UJ
3

UJ
4

...
UJ

i−1

UJ
i


(13)

where FGB
i denotes the boundary generalized force of all former i substructure levels

projecting on the fixed-interface main mode set of every level substructure. Substituting
Equation (6) into Equation (13), Equation (8) can be written as follows:

Ui = MC
iMM

iΛi
(

FG
i − PMC

iCiXi
)

(14)

where Ci denotes the boundary conformity condition among every level substructure,
called the generalized displacement conformity condition, and Xi−1 denotes a displacement
vector of all former (i − 1)-level substructures.

2.3. Interpolation Theory

The generalized displacement conformity condition in Equation (14) is used to depict
the boundary displacement of this level using the information of the former level, which
comprises a series of shape functions. In higher-order FEM, the displacement of hanging
nodes is described by the integration of nodal-based shape functions and edge-based
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shape functions. However, the shape function sets are based on the element level, which
may result in numerical and efficiency problems [23,24]. Accordingly, the TPS [25] is
utilized to address hanging node information at the component level to avoid defects of
the higher-order FEM.

Assuming n known vectors Vd =
{

v1
d, · · · , vN

d

}
(d = 1, 2 · · · , n) in the N-dimensional

space, these n vectors are related to multiple functions Sd =
{

s1
d, · · · , sM

d

}
(d = 1, 2 · · · , n),

which are vectors in an M-dimensional space. Modeling the infinite plate spline (IPS) for
every component in Sd, the equation can be written as follows:

sh(V) = ch
1 +

N

∑
t=1

ch
t+1vt +

n

∑
p=1

ch
N+1+pr2

p ln
(

r2
p + ε

)
(15)

Thus, the interpolation matrix can be written as follows:

AknownPIn = Sknown (16)

where Aknown=



0 0 · · · 0 1 1 · · · 1
0 0 · · · 0 v1

1 v1
2 · · · v1

n
...

...
...

...
...

...
0 0 · · · 0 vN

1 vN
2 · · · vN

n
1 v1

1 · · · vN
1 e1 b12 · · · b1n

1 v1
2 · · · vN

2 b21 e2 · · · b2n
...

...
...

...
...

...
1 v1

n · · · vN
n bn1 bn2 · · · en


, PIn =



ch
1

ch
2
...

ch
N+1

ch
N+2

ch
N+3

...
ch

N+1+n


, bgd = r2

gd

ln(r2
gd + ε), r2

gd =
N
∑

t=1
(xt

g − xt
d)

2 and ed is a parameter for precisely passing the known

grids. Eventually, the interpolated information is derived using the following equation:

Sunknown = Aunknown(Aknown)
−1Sknown (17)

where Aunknown =
[
1 v1 · · · vN b1 b2 · · · bn

]
, bd = r2

d ln(r2
d + ε), r2

d =
N
∑

t=1
(xt − xt

d)
2.

Therefore, Di in Equation (6) can be written as Ai
unknown

(
Ai−1

known

)−1
.

Regarding the load transfer from aerodynamic forces to the structure, the aerodynamic
force acting on the structure can be determined by integrating the principle of imaginary
work and TPS. Assuming the virtual displacement of the structure model δUST, the virtual
displacement of the aerodynamic model δUAE, the aerodynamic force acting on the aero-
dynamic model FAE, and the equivalent force acting on the structure FST, the relationship
among the four quantities satisfies the following equation:

δUAE
TFAE = δUST

TFST (18)

Substituting Equation (17) into Equation (18), FST is determined as follows:

FST =
(

AAE(AST)
−1

)T
FAE (19)

2.4. Aerodynamic Modeling

In this study, aerodynamic modeling is based on a steady VLM [26]. In the flow
field, the integral of the flow speed along a closed curve is defined as circulation, which is
expressed as follows: ∫

c
q·dl =

∫
c

udx + vdy + wdz (20)
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where q =


u
v
w

 is the flow velocity vector in three dimensions, and c is a closed curve. A

potential function Ψ exists that is independent of the integral path in the irrotational flow
field, and its differential relative to the coordinates is a function of the fluid velocity:

u =
∂Ψ
∂x

v =
∂Ψ
∂y

w =
∂Ψ
∂z

(21)

Moreover, the Laplace function in a low-velocity incompressible flow field can be
written as follows:

∇2Ψ = 0 (22)

Equation (22) satisfies the Neumann boundary, which implies the impenetrable bound-
ary of the object:

(∇Ψ + v)·n = 0 (23)

where v and n are the velocity vector and normal vector of the object’s surface, respectively.
Steady aerodynamic modeling is carried out using a combination of Equations (22)

and (23), which are solved via basic solution superposition, such as the superposition of
the vertex and dipole. Using the VLM, the vertex ring is chosen as the basic solution,
which naturally satisfies the Kelvin condition and flow boundary conditions naturally
and is arranged on aerodynamic elements. To ensure the total circulation Γ constant, the
influence of the flow field is impaired, along with the increase in distance, as described in
Equation (24). { dΓ

dt = 0
lim

|R−R0|→∞
∇Ψ = 0 (24)

The aerodynamic surface is proportioned chordwise and spanwise into elements,
where vertex rings are arranged to solve the aerodynamic loads. A vertex ring is composed
of four intensity-equal end-to-end linear vertexes. The free vertex of the surface, which
is parallel to the flow direction, extrudes from the tail edge, as shown in Figure 1. The
aerodynamic load acts on the midpoint vertex lattice, along with a quarter of the chord line
(denoted as “#”), while the control point, which is determined using Equation (23), is set
on the midpoint vertex lattice, along with three-quarters of the chord line (denoted as “×”).
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3. Structural and Aerodynamic Modeling

In this section, the structural model and load cases are introduced in Sections 3.1 and 3.2,
respectively; then, the proposed method is validated through simulations in Section 3.3.
For comprehensive validation, the working conditions include different load combinations
outside the FSI framework and the loads inside the FSI framework.
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3.1. Structural Model

The proposed method is verified using a three-level panel, with a length of 500 mm,
width of 100 mm, and thickness of 0.8 mm. The material properties are listed in Table 1.
The structure FE model is shown in Figure 2, where the first-level substructure denotes the
entire panel with a constraint boundary on one side. Specifically, the displacement gradient
around the constraint boundary is dramatically altered such that denser local elements
are arranged for interpolation sampling. Second- and third-level substructures are also
demonstrated in Figure 2 as well. The accuracy of the proposed method was compared
with that of two FE models involving global element densities corresponding to the second-
and third-level substructure, presented in Figures 3 and 4.

Table 1. Material properties.

Material Properties Value

Density/(kg/m3) 7.85
Young’s Module (E)/Pa 2.10 × 108

Shear Module (G)/Pa 8.08 × 107

Poisson’s Ratio (υ) 0.3
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3.2. Load Cases

Within the FSI framework, loads are subject to the angle of attack, airflow speed, the
aerodynamic surface, etc., and these are relatively unilateral in assessments using the struc-
tural mapping method. Therefore, different load cases are taken into consideration outside
and inside the FSI framework to comprehensively verify the structure mapping method.

(1) Load Cases Outside FSI Framework

Outside the FSI framework, three load conditions were taken into consideration, listed
in Table 2: (1) case 1—a single force acting on one node; (2) case 2—equal forces acting on
all nodes; and (3) case 3—proportionally varying forces acting on all nodes, as shown in
Figure 5, respectively. For comparability to the load cases inside the FSI framework where
the aerodynamic model is shown as in Figure 6, the original structural model is identical,
as discussed in Section 2.1.

Table 2. Load cases outside FSI framework.

Case Load Type

1 Concentration force in a single node
2 Evenly distributed force in every node
3 Proportionally reduced force in every node
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Figure 6. Aerodynamic model.

(2) Aerodynamic Model Inside the FSI Framework

Using the principles outlined in Section 2.4, an aerodynamic model, shown in Figure 6,
is established for the structural model discussed in Section 2.1. Four elements are arranged
chordwise, and ten elements are arranged spanwise. The aerodynamic loads acting on
the structure in the four cases are listed in Table 3 and the corresponding load model is
demonstrated in Figure 7.

Table 3. Aerodynamic conditions.

Case Flow Speed (m/s) Angle of Attack (◦)

4 0.5 1
5 1 1
6 1 2
7 2 2
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3.3. Calculation Process

To validate the proposed method, a simulation process is introduced in this section for
the structural and aerodynamic models in Section 2.2. The loads acting on the first-level
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substructure, denoted as f1, are displayed in Figures 5 and 7. Modal superposition is used
to calculate the displacement of this level, whose mode set with the original constrained
boundary is written as Φ1. Hence, the static deformation can be written as follows:

U1 = Φ1
(

Φ1T
K1Φ1

)−1
Φ1T

f1 (25)

Employing Equations (14)–(25), the results of second- and third-level substructures
are obtained and compared with the models in Figures 3 and 4, which are solved via
MSC.Nastran SOL 101. The displacement comparison is based on the relative error (Re) to
evaluate the difference in distribution. In addition, the strain energy of the substructure is
determined using Equation (27) to evaluate the entire difference:

Re =

(
Ui

LayerMapping − Ui
FEM

)
Ui

FEM
× 100% (26)

where Ui
LayerMapping is the ith-level substructure displacement solved using the proposed

method, and Ui
FEM is that of MSC.Nastran SOL 101.

Ei
strain =

1
2

(
Ui

)T
KiUi (27)

To assess the stress using the proposed method, a displacement-based stress solution
is generated according to the plane’s stress type in elastic mechanics, as displayed in
Equation (28). Specifically, the discrete displacement Ui

z is utilized in Equation (15) to fit a
surface, with a deflection Ui

z in the z-axis.
σi

x = − Ez
1−υ2

(
∂2Ui

z
∂x2 + υ ∂2Ui

z
∂y2

)
σi

y = − Ez
1−υ2

(
υ ∂2Ui

z
∂x2 + ∂2Ui

z
∂y2

)
τi

xy = − Ez
1+υ

∂2Ui
z

∂x∂y

(28)

where σi
x is the x-axis normal stress, σi

y is the y-axis normal stress, and τi
xy is the shear stress.

To compare the invariant of stress, the von Mises stress is calculated using Equation (29).

σe =

√(
σx + σy

)2 − 3
(

σxσy − τ2
xy

)
(29)

The calculation flowchart is shown in Figure 8.
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4. Results and Discussion

To evaluate the displacement and stress solved using the proposed method, a panel
with three-level substructures was built and analyzed using three cases outside the FSI
framework, as Figure 5 shows, and four cases inside the FSI framework, as Figure 7 shows.
In this section, the results are analyzed from the following aspects: (1) to evaluate necessity,
the internal displacement accuracy of the coarse FE model is studied, providing a reference
for further results; (2) to investigate adaptivity, the displacement accuracies of several
substructures inside the entire model in different positions are compared and discussed;
(3) to determine the effectiveness of the displacement assessment, the internal displacement
accuracy of the local fine-meshed model is discussed; and (4) to determine the effectiveness
of stress assessment, the stress precision of the proposed method is discussed. It is worth
noting that we focus on deformation in the z-axis, which is closely related to the stress, as it
is significant under aerodynamic loads. The displacement difference between the proposed
method and MSC.Nastran is depicted using relative error contours, determined using
Equation (26). In addition, the results of cases 1, 2, 3, and 6 are compared and discussed in
Sections 4.1 and 4.2 because the displacement relative error distributions resemble the four
load cases inside the FSI framework.

4.1. The Displacement Evaluation of The Coarse Model

(1) The Confidence of Original Displacement Boundary

The relative error of deformation in the z-axis between modal superposition and
MSC.Nastran in case 6 is displayed in Figure 9. The contours indicate that the accuracy of
the modal superposition is reliable for further investigations with respect to the displace-
ment boundary condition of the coarse-meshed model.
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(2) The Displacement Distribution Inside the Coarse Model

The deformation relative error between substructures A and B and their counterparts
in Figure 2 for cases 1, 2, and 3 (outside the FSI framework) and case 6 (inside the FSI
framework) is depicted in Figure 10, exhibiting the coarse model’s deformation distribution.
As shown in Figure 10, the displacement distribution is quite simple, which allows us to
obtain reliable strain and stress values due to the bilinear shape function in coarse elements.
Therefore, it is necessary to balance the detailed displacement distribution achievement
and efficiency for reliable strain and stress by locally fine mesh.
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The locally fine-meshed model is a feasible and reliable method to obtain accurate
deformation and strain data by integrating boundary conditions. On the one hand, a
fine-meshed model focused on an area can provide comprehensive information regarding
mass and stiffness, even working together with a low-order shape function, and the
subject orders can be controlled by the selected modals. On the other hand, the boundary
conditions provide information for solving the general coordinates of the selected modals to
approximate the solution space. Based on the substructure method, a multi-level structure
is investigated in Sections 4.2 and 4.3.

4.2. The Effectiveness of Displacement Assessment

(1) The Adaptivity of Different Positions Inside the Structural Model

The distributions of displacement difference between the global fine-mesh model
(substructures A and B in Figure 3 and substructures C and D in Figure 4) and local fine-
mesh and hierarchical models (substructures A, B, C, and D counterparts in Figure 2) are
displayed in Figure 11. The results for all displayed cases indicate that the displacement
relative error of substructure A is less than 8%, occurring near the constraint boundary,
while that of substructure B is between −0.2% and 0.2%. The absolute deformation near the
constraint boundary in substructure A is smaller than that of substructure B, which leads
to a relatively large relative error, although the absolute error is small. Similar conclusions
can be drawn by comparing third-level substructures C and D. Accordingly, the proposed
method’s accuracy is acceptable and independent for different substructure positions.

In addition, as Figure 11 shows, the relative error distribution is consistent with the
displacement distribution for all the typical cases. For cases 2 and 3, the displacement
distribution and relative error distribution are both longitudinally symmetrical, while
the results of cases 1, 4, 5, 6, and 7 exhibit asymmetry. This is because the loads acting
on the structure are symmetric for cases 2 and 3, unlike those in cases 1, 4, 5, 6, and 7.
Since we considered typical load cases, and the results of the displacement’s relative error
distribution are consistent across the different load cases, the adaptivity of the proposed
method in displacement assessments is verified with different load cases.
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(2) The Inner Displacement Precision for Local Fine-meshed Model

As shown in Figure 11, a comparison between second-level substructure A and third-
level substructure C using the same load case indicates that the relative error distribution
of substructure C is in accordance with the counterpart in substructure A. The coincidence
implies that the local spectrum augmentation for substructure A is beneficial and effective
enough for further displacement estimation within it. However, the maximum relative error
and distribution form of substructure C resembles that of substructure A, which is attributed
to the inherited influence of its former level substructure due to the interpolation sampling.

Cross-comparisons among all the investigated cases reveal that the maximum relative
error of the coarse-meshed level model cannot be exaggerated and overamplified when
mapping to the fine-meshed level model. Furthermore, the drastic alteration in the relative
error is within a smaller range, while most ranges are distributed flat and evenly, which is
advantageous for strain assessments. The stable maximum relative error in the structure
boundary and the even distribution of relative errors inside the finer-meshed models imply
the significant effectiveness of the proposed method.

A comparison between substructures B and D confirms the conclusion mentioned
above. It is worth noting that there are barely any significant alterations in the relative
error distribution of substructure D and its counterpart in substructure B, which is different
from those of substructures C and A. This further demonstrates that the error propagation
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results from interpolation sampling at the last level, where the displacement relative error
is small in substructure B.

Comparing Figures 10 and 11, it can be concluded that the local spectrum augmenta-
tion is beneficial for capturing the displacement distribution inside a substructure effec-
tively, which is imperative for the solution’s convergence to the real one. Displacement
assessment is a discrete aspect for evaluating the proposed method with respect to detailed
distribution, while the strain energy that was determined using Equation (27) provides a
global perspective for assessing the mapping’s stability under different load cases.

Figure 12 shows the strain energy of different substructures in all seven cases, both
inside and outside the FSI framework. The consistent strain energy of an identical sub-
structure in the seven cases illustrates that the mapping matrix is only related to the model
position, which is advantageous for mapping storage and transformations in different cases.
Given that the acceptable precision and mapping stability are realized in different positions
and cases for the proposed method, the prominent advantage stands for modular analysis.
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The coarse-meshed model is developed and analyzed once to extract the boundary con-
ditions for the following fine-meshed models despite its simultaneity and region of interest,
which lays a solid foundation for addressing the time-dependent problem. Substructures A,
B, C, and D were studied to validate the proposed method regarding deformation analysis;
the next section focuses on stress assessments.

4.3. The Effectiveness in Strain Assessment

The displacement assessment is discussed and analyzed in Section 4.2, and it is
imperative for strain assessments. In this section, the strain assessments are conducted
for cases outside and inside the FSI framework. For strength assessments, the stress of
the critical position is investigated. Specifically, the stress assessment of substructure F
(Figure 4) is analyzed because the aerodynamic center is located a quarter chordwise, and
the nearby constraint boundary suffers from heavy stress compared with other regions. The
von Mises stresses determined using the proposed method in all seven cases are displayed
in Figure 13 and compared with the results of MSC.Nastran SOL 101 in Figure 14. These
values were obtained using Equations (28) and (29), respectively.
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The stress assessment outside the FSI framework from case 1 to case 3 is displayed
in Figure 13(1) and Figure 14(1), and a satisfactory approximation for all typical load
conditions was obtained. Regarding the stress assessment within the FSI framework, as
shown in Figure 13(2) and Figure 14(2), the maximum stress appears near a one-quarter
chordwise area, which is not only consistent with the engineering application, but the little
distinction also highlights the effectiveness of the proposed method for stress achievement
inside the FSI framework. Although the maximum von Mises region predicted using
the proposed method is slightly larger than that of the MSC.Nastran, more conservative
results regarding critical position estimation were obtained. To summarize, the stress
assessment using the proposed method is reliable, as proved by the analysis of typical
working conditions inside and outside the FSI framework.

5. Conclusions

In this paper, a multisubstructure-based method was proposed, and the displacement
and stress assessment were analyzed for situations both outside and inside the FSI frame-
work by integrating steady VLM. A three-level substructure panel is established to verify
the proposed method, and the following conclusions were drawn:

(1) The proposed method can effectively depict the displacement inside the structure. The
displacement boundary of the fine-meshed model can be determined via a combina-
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tion of TPS and eigenvector augmentation inside the last-level substructure. Moreover,
the displacement inside the model is assessed by integrating the fixed-interface main
mode and the corresponding generalized coordinates based on the principle of mini-
mum potential energy.

(2) The maximum displacement relative error occurs near the constraint boundary, with
small displacement and therefore a large relative error, in contrast to the absolute error.
The reason is that the displacement error is inherited from the last-level substructure
via interpolation sampling. However, this error can be reduced by narrowing the
substructure inside, from the top level to the bottom. A more accurate substructure
displacement boundary can be determined when it is located inside its last-level sub-
structure because the displacement accuracy of the last-level substructure is improved
by adding higher-order shape functions.

(3) The analysis results of different loads and substructure positions highlight the reliabil-
ity of the method, which only considers the mapping range and location such that
the mapping information can be stored and transferred when required. Given the
accuracy and efficiency of the proposed method, this study lays a solid foundation for
addressing the time-dependent problem in the analysis of fluid–structure interactions.
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