
Citation: Mao, H.; Lin, X.; Li, Z.;

Shen, X.; Zhao, W. Anti-Icing System

Performance Prediction Using POD

and PSO-BP Neural Networks.

Aerospace 2024, 11, 430. https://

doi.org/10.3390/aerospace11060430

Academic Editor: Konstantinos

Kontis

Received: 12 March 2024

Revised: 22 May 2024

Accepted: 23 May 2024

Published: 26 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Anti-Icing System Performance Prediction Using POD and
PSO-BP Neural Networks
Handong Mao 1 , Xiaodan Lin 1,*, Zhimao Li 1, Xiaobin Shen 2 and Wenzhao Zhao 2

1 Environmental Control and Oxygen System Department, COMAC Shanghai Aircraft Design and Research
Institute, Shanghai 201210, China; maohandong@comac.cc (H.M.); lizhimao@comac.cc (Z.L.)

2 Laboratory of Fundamental Science on Ergonomics and Environmental Control, School of Aeronautic Science
and Engineering, Beihang University, Beijing 100191, China; shenxiaobin@buaa.edu.cn (X.S.);
zhaowenzhao@buaa.edu.cn (W.Z.)

* Correspondence: linxiaodan@comac.cc; Tel.: +86-132-5080-8073

Abstract: The anti-icing system is important for ice protection and flight safety. Rapid prediction of the
anti-icing system’s performance is critical to reducing the design time and increasing efficiency. The
paper proposes a method to quickly predict the anti-icing performance of the hot air anti-icing system.
The method is based on Proper Orthogonal Decomposition (POD) and Back Propagation (BP) neural
networks improved with the Particle Swarm Optimization (PSO) algorithm to construct the PSO-BP
neural network. POD is utilized for data compression and feature extraction for the skin temperature
and runback water obtained by numerical calculation. A lower-dimensional approximation is derived
from the projection subspace, which consists of a set of basis modes. The PSO-BP neural network
establishes the mapping relationship between the flight condition parameters (including flight height,
atmospheric temperature, flight speed, median volume diameter, and liquid water content) and the
characteristic coefficients. The results show that the average absolute errors of prediction with the
PSO-BP neural network model on skin temperature and runback water thickness are 3.87 K and
0.93 µm, respectively. The method can provide an effective tool for iteratively optimizing hot air
anti-icing system design.

Keywords: anti-icing system; BP neural network; PSO optimization algorithm; POD; skin temperature;
runback water

1. Introduction

Aircraft icing occurs when supercooled droplets that may be present in clouds at
air temperatures below freezing are caught on the windward surfaces of components
during flight, such as the wings and engine inlet. Ice accumulation has great damage to
the aerodynamic characteristics of aircraft, resulting in reduced lift by 30% and increased
drag by 40% [1–3], and even causing flight accidents [4]. Therefore, anti-icing systems or
de-icing systems are essential for protecting aircraft from ice accumulation for a safe flight.
The hot air anti-icing system is widely used in the aircraft industry [5,6], where hot bleed
airflow induced by the engine is discharged from the holes of the piccolo tube installed
at the wing leading edge to heat the skin surface. However, it will result in increasing
engine fuel consumption, reducing engine thrust, and wasting large amounts of energy. It
is necessary to carry out iterative optimization of the hot air anti-icing system design to
enhance the design efficiency and minimize energy consumption.

Advanced numerical simulation of thermal anti-icing systems has been highly antici-
pated as a supplementary design and certification tool, in addition to anti-icing experiments
and flight tests [7–9]. Modeling and numerical simulation for hot air anti-icing system
design is a complex problem involving multiphase flow, conjugate heat, and mass transfer
with phase change [10]. The calculation of the flow field and temperature field with high
accuracy requires a significant amount of computational time, which increases as the grid
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number increases. Aircraft icing conditions vary vastly for anti-icing system design. The
factors mentioned above result in a significant increase in computing time for anti-icing
system performance. Therefore, it is essential to establish an effective method to obtain
skin temperature and the runback water distribution of other icing conditions from the
existing computational or experimental data quickly.

Recently, artificial neural networks (ANNs) have greatly advanced research in extract-
ing data features with strong adaptivity, learning ability, and fault tolerance [11]. It can
accurately approximate the complex nonlinear function mapping relationships between
data and learn the essential characteristics of data from a limited sample set. ANN has been
widely used in air temperature prediction as part of weather prediction [12,13], sea surface
temperature prediction [14–16], and water temperature prediction [17]. Meanwhile, the
prediction of asphalt pavement water film thickness with ANN [18] and the thickness of
liquid films on corrugated plate walls with the back propagation (BP) neural network [19]
also demonstrate the power of neural networks. As to aircraft wing anti-icing and de-icing
applications, ANN have been widely used for fast prediction of ice shape [20–23], in-flight
parameters for icing detection [24–26], aircraft icing severity [27], icing probability [28],
skin temperature [29], and runback water flow [30]. Ogretim E. [20] proposed a method
of ice shape fast prediction using a neural network with icing conditions as input and
ice shape parameters as output. The experimental data on ice accretion in the NACA
0012 wing model were used as the training sample sets for the neural network. Chang
et al. [21] presented a new technique that combines wavelet packet transform (WPT) and
ANN to predict ice accretion on the surface of an airfoil. Results showed an advantage of
WPT in performing the analysis of ice accretion information, and the prediction accuracy
was improved as well. Strijhak et al. [23] discussed the procedure and method for the ice
accretion prediction for different airfoils using ANNs, which were based on the results of
the numerical experiments and performed well. Yiqun Dong [24] applied a deep neural net-
work to identify and characterize aircraft icing for in-flight parameter detection. In [27], the
authors introduced a purely data-driven approach to finding the complex pattern between
different flight conditions and aircraft icing severity prediction using machine learning
based on the Extreme Gradient Boosting (XGBoost) algorithm. Abdelghany et al. [29]
presented a novel approach based on machine learning (ML) and the Internet of Things
(IoT) to predict the thermal performance characteristics of a partial span wing anti-icing
system constructed using the NACA 23014 airfoil section. A high-precision computation of
skin temperature and runback water thickness relies on a large grid number. Therefore,
using anti-icing performance datasets with higher dimensionality as the training samples
of the neural network will result in significantly increased computing time.

Proper Orthogonal Decomposition (POD) is a powerful method for order reduction
and data compression. It offers an efficient way to capture the dominant features of a system
with multiple degrees of freedom and represent the desired precision using a relevant set
of modes, thereby reducing the order of the system [31,32]. Skin temperature, runback
water thickness, and other anti-icing performance parameters can be decomposed into the
basis modes that express data characteristics with POD. Then, the linear fitting coefficients
needed to reconstruct the anti-icing performance are obtained using the basis modes [30].
As a result, the high-dimensional datasets with anti-icing performance can be downgraded
to low-dimensional samples of fitting coefficients, leading to a significant reduction in
computing time and data storage space. Habashi et al. [33] established a fast prediction
model of aircraft 3D icing ice shape based on POD, and the results showed that the POD
method can improve prediction accuracy by 600~800 times. SungKi Jung et al. [34] used
POD for dimensionality reduction and integrated it with a neural network to accurately
predict the collection efficiency and ice accretion shapes on an airfoil.

In this paper, a fast prediction model for the performance of a hot air anti-icing sys-
tem based on POD and PSO-BP neural networks that combine BP neural networks with
Particle Swarm Optimization (PSO) is proposed. The anti-icing performance, including
skin temperature and runback water thickness, is obtained through numerical simulation
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using FENSAP-ICE as the original datasets. The high-dimensional icing performance data
are then order-reduced by POD to attain the basis modes and characteristic coefficients.
Finally, the PSO-BP neural network is used to establish the mapping relationship between
the flight condition parameters, including flight height, atmospheric temperature, flight
speed, median volume diameter (MVD), and liquid water content (LWC), and the charac-
teristic coefficient above, which realizes a fast prediction of the hot air anti-icing system
performance under various flight icing conditions.

2. Methodology
2.1. Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition method allows a series of basis modes to
be obtained based on the observed complex physical field. For a sample of the target
information field U =

{
U1, . . . , Ui, . . . , UM

}
, Ui represents a set of data for the information

field. The sample U is a snapshot matrix of order N × M, where N represents the dimension
of the data sample Ui, i.e., the number of the grid nodes in Computational Fluid Dynamics
(CFD). The essence of the POD algorithm is to find a set of optimal orthogonal basis ψ such
that the information field of a sample can be represented by its linear representation as
follows [32]:

Ui =
M

∑
j=1

αi
j · ψj, (1)

where αi
j is the orthogonal basis coefficient, and ψj is the orthogonal basis. All ψj form an

optimal orthogonal basis matrix, and the optimal orthogonal basis satisfies that the average
value of the projections of all samples on the optimal basis is maximized. Since the optimal
orthogonal basis matrix ψ is of the same order as the sample matrix U, it can be expressed
as follows:

ψ = U · V, (2)

where the matrix V is the matrix consisting of the eigenvectors of the matrix C, and it
satisfies the following:

C · V = Λ · V. (3)

Λ is the eigenvalue of the matrix C that can be computed from the sample matrix as
follows:

Cij =
1
M

N

∑
k=1

Ui
kUj

k. (4)

Then the sample matrix can be expressed as a linear superposition of the basis modes.
The eigenvalue reflects the proportion of energy in the corresponding basis mode in the
sample [31]. Sorting the eigenvectors of matrix C in descending order of the corresponding
eigenvalues, the energy of the flow field in the direction of the jth optimal orthogonal basis
as a proportion of the total energy is as follows:

En/Etotal =
n

∑
j=1

λj/
N

∑
j=1

λj, (5)

where λj stands for the corresponding eigenvalue of the jth basis mode. It can realize the
sample dimensionality reduction by ignoring some basis modes with smaller energy and
selecting the reserved basis modes according to the energy proportion.

2.2. PSO-BP Neural Network
2.2.1. BP Neural Network

The BP neural network is a multilayer forward neural network trained with the error
backpropagation algorithm [35], which consists of an input layer, hidden layers, and an
output layer connected sequentially. A typical BP neural network is shown in Figure 1. x1,
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x2, . . ., xm are the inputs of the neural network; υhi denotes the connection weight between
the input layer and the hidden layer; a1, a2, . . ., ag, . . ., aq are the inputs of the neurons in
the hidden layer; b1, b2, . . ., bg, . . ., bq are the outputs of the neurons in the hidden layer;
wkh is the connection weight between the hidden layer and the output layer; β1, . . ., βn are
the inputs of the neurons in the output layer; and y1, . . ., yn are the outputs of the neural
network.
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The training process of a BP neural network includes forward propagation of the work
signal and back propagation of errors. The main steps are described as follows:

Step 1: Initially, the connection weights and thresholds of the BP neural network are
randomly initialized in the range (0, 1).

Step 2: Input the training datasets X and compute the input ah and the output bh of
each neuron in the hidden layer, as well as the input βk and output yk of each neuron in the
output layer.

ah =
m
∑

i=1
vhixi

bh = f (ah − γh), h = 1, 2, . . . , g, . . . , q
(6)

βk =
q
∑

h=1
wkhbh

yk = f (βk − θk), k = 1, 2, . . . , n
(7)

where γh is the threshold of the hth neuron in the hidden layer; q represents the number
of neurons in the hidden layer; θk is the threshold of the kth neuron in the output layer; n
stands for the number of neurons in the output layer; and f is the activation function.

Step 3: Calculate the mean square error e of a neural network. If the mean square error
e is less than or equal to the target computational accuracy of the neural network ε, the
neural network training will be completed; conversely, training needs to continue.

e =
1
n

n

∑
k=1

(yk − ŷk)
2 (8)

Step 4: The error signal is back propagated. The connection weights and thresholds of
the output layer are adjusted according to the output error signal e.

∂e
∂wkh

=
∂e

∂yk

∂yk
∂βk

∂βk
∂wkh

= yk(1 − yk)(ŷk − yk)bh (9)

∂e
∂δk

=
∂e

∂yk

∂yk
∂δk

= −yk(1 − yk)(ŷk − yk) (10)
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wkh = wkh + ∆wkh = wkh − η
∂e

∂wkh
(11)

θk = θk + ∆θk = θk − η
∂e
∂θk

(12)

∆θk shows the variation of the connection weights between the kth neuron in the
output layer and the hth neuron in the hidden layer.

Step 5: Similar to adjusting the connection weights and thresholds of the output layer,
the error signal is back-propagated. The connection weights and thresholds of the hidden
layer are adjusted based on the output error signal e.

∂e
∂vhi

=
∂e

∂yk

∂yk
∂βk

∂βk
∂bh

∂bh
∂ah

∂ah
∂vhi

= yk(1 − yk)(ŷk − yk)bh(1 − bh)xi

n

∑
k=1

wkh (13)

∂e
∂γh

=
∂e

∂yk

∂yk
∂βk

∂βk
∂bh

∂bh
∂γh

= −yk(1 − yk)(ŷk − yk)bh(1 − bh)
n

∑
k=1

wkh (14)

vhi = vhi − η
∂e

∂vhi
(15)

γh = γh − η
∂e

∂γh
(16)

Step 6: Finally, update the connection weights and thresholds of the neural network
and repeat steps 2 to 5 until the accuracy requirement is satisfied.

2.2.2. PSO Optimization Algorithm

The PSO algorithm was first introduced by Eberhart and Kennedy and used for the
optimization of continuous nonlinear functions [36]. The PSO algorithm is a population-
based random optimization technique that simulates the process of bird and fish feeding in
nature and searches for the global optimal solution to the problem through the collaboration
of the population. The particles in the PSO algorithm have only two attributes, including
velocity and position. Each particle searches for the optimal solution independently in the
search space, which is recorded as the current individual optimal position ppbest. The value
of the optimization objective function is set to f p. The particle shares its individual extreme
value with the other particles in the whole particle swarm. The optimal individual extreme
value is taken as the current global optimal position of the whole particle swarm pgbest. The
value of the optimization objective function is denoted as f g. All particles in the particle
swarm dynamically adjust their velocities and positions according to the current individual
extreme values and the current global optimal solution shared by the whole swarm [37].
The particles update their positions and velocities according to the following equation:

vid(k + 1) = wvid(k) + c1r1

(
ppbest,id(k)− xid(k)

)
+ c2r2

(
pgbest,d(k)− xid(k)

)
and (17)

xid(k + 1) = xid(k) + vid(k + 1), (18)

where i means the particle serial number; d is the particle dimension number; k is the
number of iterations; w is the inertia weight; c1 is the individual learning factor, and c2 is
the population learning factor; and r1 and r2 are the random numbers in the range (0, 1),
which are used to increase the randomness of the search. vid(k) denotes the velocity vector
of the dth dimension for the particle i during the kth iteration process. xid(k) presents
the position vector of the dth dimension for the particle i during the kth iteration process.
Moreover, ppbest,id is the individual optimal solution of the dth dimension for the particle i
during the kth iteration process, and pgbest,d is the population optimal solution of the dth
dimension for the population during the kth iteration process.
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2.2.3. PSO-BP Neural Network Construction

The biggest challenges for designing and training neural networks are the selection
and determination of various hyperparameters, including the number of hidden layers,
the number of neurons in each layer, the activation function, the training algorithm, the
number of iterations, and the methods to prevent overfitting. In order to obtain the
optimal hyperparameters of the PSO-BP neural network model conveniently and realize
the adaptive adjustment and optimization of the network structure, the neuron number
in the hidden layer, the iterations, the dropout regularization rate, and the training batch
size of the BP neural network are optimized with the PSO algorithm in this paper. The
construction process of the PSO-BP neural network is shown in Figure 2. The PSO-BP
neural network is constructed based on the Google artificial intelligence system TensorFlow
(version 2.10.0) in Python (version 3.9.16).
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3. Prediction of Anti-Icing Performance with the PSO-BP Neural Network
3.1. Dataset Preparation
3.1.1. Model and Cases for Anti-Icing Simulation

The parameters affecting the simulation results of the hot air anti-icing system can
be categorized into external icing conditions and internal hot air anti-icing parameters.
Flight tests have shown that aircraft icing conditions depend on several factors, including
meteorological parameters like atmospheric temperature, cloud extent, MVD, and LWC;
the flight status of the aircraft, such as flight height, flight speed, angle of attack, etc.; and
the factors that determine the heat transfer characteristics of the flow in the hot air anti-icing
cavity are mainly the flow, pressure, temperature of the bleed air jetted from the piccolo
tube, and so on. The flight condition parameters of flight height, atmospheric temperature,
and flight speed, represented by the Mach number later, MVD, and LWC, are taken as the
input parameters of the fast prediction model, as shown in Figure 3. The angle of attack
and the flow, pressure, and temperature of the bleed air jetted from the piccolo tube are
the parameters directly related to flight speed and flight height according to the actual
situation, which can be determined by interpolation calculation. The output parameters of
the PSO-BP neural network include skin temperature and runback water distribution.
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In the study, a part of the wing skin for a hot air anti-icing system is selected as
the target research object, which is shown in Figure 3. The length of the wing chord
and spanwise are 1.08 m and 0.08 m, and the thickness of the wing skin is 1.8 mm. The
meshing result of the target wing skin (solid domain) turns out to be 82,831 grid nodes.
The reliability of the meshing result for CFD simulation has been verified by previous
engineering projects. The target skin surface has 2580 grid nodes, i.e., the dimension p of
a single simulation sample is 2580. The model of the hot air anti-icing system for CFD
simulation is calibrated with the test data. Some of the test cases are displayed in Table 1.
The numerical simulation is conducted under the same conditions as the test cases with
FENSAP-ICE (version 19.2). FENSAP-ICE is used to simulate the anti-icing performance of
a hot air anti-icing system, which is a commercial CFD software for icing and anti-icing
calculation [38]. The difference between the simulation results and test data for surface
temperature along the wing chordwise direction is illustrated in Figure 4. The values
along the x-axis direction in Figure 4 indicate the distance between the target point and
the stationary point, and the point where x = 0 means the stationary point position. The
position where x > 0 is located on the upper surface of the airfoil, and the points with x < 0
lie on the lower surface. The results show that the difference between the CFD simulation
data and the test data for the upper surface temperature is within 10 K, and the comparison
results for the lower surface temperature are within 15 K. The maximum of the average
temperature for all four cases in the direction of wing span is counted to be 9.98 K, which
meets the CFD calculation accuracy requirements for engineering applications.

Table 1. Cases for anti-icing simulation model calibration.

Case Flight
Height (ft) T (◦C) March

Number MVD (µm) LWC (g/m3)

1 10,473 −6.9 0.44 13.9 0.288
2 10,773 −7.5 0.42 15.6 0.375
3 11,000 −8.1 0.41 16.8 0.400
4 13,115 −10.8 0.45 15.0 0.298
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Homogeneous sampling is conducted within the parameter space of flight conditions,
which is determined by the intersection of the limiting icing envelope, the relationship
between icing meteorological conditions, and the flight envelope. To obtain a more rep-
resentative dataset, appropriate encryption is applied when sampling the limiting icing
envelope and the flight envelope. Then, 1434 uniformly distributed samples are obtained
for model training and testing, and details of some cases are shown in Table 2.

Table 2. Flight icing conditions for some cases.

Case Flight Height (ft) T (◦C) March Number MVD (µm) LWC (g/m3)

1 0 0 0.18 15 0.80
...

...
...

...
...

...
100 0 −15 0.25 30 0.17

...
...

...
...

...
...

500 15,000 −30 0.60 20 0.14
...

...
...

...
...

...
1434 31,000 −40 0.82 50 0.05

The case sequence number increases from 1 to 1434 in increments of 1. The symbol of “
...” means the conditions for

some cases are omitted and not shown here.

3.1.2. Dataset Preparation with FENSAP-ICE

FENSAP-ICE is the second generation of icing and anti-icing analysis software, which
applies modular thinking to separate and combine various steps of icing and anti-icing
simulation to obtain different target results. Firstly, the external air flow field and inter-
nal flow field in the anti-icing cavity can be computed with the FENSAP-ICE module
named FENSAP. The classical compressible Navier–Stokes equations are employed as the
governing equation, which can be written in the following integral and conservative forms:

∂

∂t

∫
Ω

→
WadΩ +

∫
∂Ω

(
→
F a,c −

→
F a,v)dS = 0. (19)

Then the droplet impingement properties are analyzed by the FENSAP-ICE module
named DROP3D. The governing equations of the droplet impingement are based on
the Eulerian model proposed by Bourgault [39]. This is essentially a two-fluid model
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consisting of a set of Navier–Stokes equations augmented by droplet-related continuity and
momentum equations. The local collection efficiency β and the mass flow rate of impact
water

.
mw can then be calculated as follows:

β = −α
→
u d ·

→
n and (20)

.
mw = LWC · U∞β, (21)

where
→
u d stands for the droplet velocity vector; α denotes the volume fraction, i.e., the

proportion of volume occupied by water droplets in the control volume; and U∞ means the
velocity of air flow in the far field. The shallow-water model is used in the FENSAP-ICE
module named ICE3D to simulate surface water flow and heat transfer.

For the simulation calculation of a hot air anti-icing system, the FENSAP-ICE module
named CHT3D is applied and adopts a loosely coupled method to exchange the data of
the external flow field, the water film motion, the solid heat conduction, and the internal
flow field. Then, the distribution of the skin temperature and runback water thickness after
convergence can be obtained. The CHT3D module takes into account the energy balance
relationship in the simulation process of anti-icing, as shown in Equation (22).

.
QV +

.
QF =

.
Qimp +

.
Qrad +

.
Qevap +

.
Qice +

.
Qconv +

.
Qcond (22)

This indicates that energy change in the control body is caused by the heat flow of
the impinging water

.
Qimp the radiation heat flow

.
Qrad, the water evaporative heat flow

.
Qevap, the heat flow of the frozen water

.
Qice, the heat flow of runback water

.
Qconv, and

the heat flow of solid wall thermal conductivity
.

Qcond. Equation (22) is expressed in local
differential form as follows:

ρw

[
∂h f cp,w T̃

∂t + div
(

u f h f cp,wT̃
)]

=
[
cp,wT̃d,∞ + ud

2

2

]
× U∞LWCβ+

σε
(
T4

∞ − T4)− [
. . .

(
Levap + Lsub

)
+ cp,wT̃

] .
mevap+(

Lfus − cp,ceeT̃
) .

mice +
.

Qconv +
.

Qcond

(23)

where
.

Qcond is obtained by thermal conductivity calculation; ρ, c f , cs, σ, ε, Levap, Lfus
are the physical parameters of the fluid and solid wall; T∞ and U∞ are the temperature
and velocity of the far-field air flow.

.
mevap is the evaporated water mass flow rate, which is

attained from
.

Qconv.
.

mice is the icing mass flow rate. hf is the water film thickness, and T is
the wall equilibrium temperature. The average time on CFD simulation for a case is about
3.5 h.

3.2. Fast Prediction Model of Hot Air Anti-Icing System Performance Based on POD and PSO-BP
Neural Network

In this paper, a fast prediction model for the performance of a hot air anti-icing system
is established based on the abovementioned POD method and PSO-BP neural network.
The whole process is as follows:

Step 1: Determine the input parameters with a number of m and obtain m-dimensional
vectors of flight condition parameters Vi = [xi1, xi2, . . . , xim], i = 1, 2, . . . , n by data sam-
pling homogeneously in the flight condition parameter space.

Step 2: Obtain the performance of the hot air anti-icing system by the simulation
method in the target cases with the input parameters identified in the first step. If the grid
number of the skin model is p, the skin temperature and runback water distribution samples
of p dimensions with a number of n can be attained and recorded as Ti = [Ti1, Ti2, . . . , Tip]

and Fi = [Fi1, Fi2, . . . , Fip], respectively.
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Step 3: Reduce the dimensionality of the anti-icing performance parameter samples
with the POD method. Then, we can get the first q-order basis modes ψT =

{
ψ1

T , ψ2
T , . . . , ψ

q
T

}
and ψF =

{
ψ1

F, ψ2
F, . . . , ψ

q
F

}
, which can reflect the characteristics of the skin temperature

and runback water thickness distribution, and q-dimensional skin temperature samples
Ti

POD = [TPOD,i1, TPOD,i2, . . . , TPOD,iq] and runback water thickness samples
Fi

POD = [FPOD,i1, FPOD,i2, . . . , FPOD,iq] of characteristic coefficients with a number of n.
Step 4: The PSO-BP neural network is utilized to separately establish the mapping

relationship for Vi and Ti
POD, as well as Vi and Fi

POD, respectively. The PSO-BP neural
network models are established for each dimension of the characteristic coefficients. The
skin temperature prediction models and runback water thickness prediction models can
both be built with a number of q.

Step 5: After the training of the PSO-BP neural network models is completed, the
flight condition parameters to be predicted VPredict can be fed into each PSO-BP neural
network model. Then, we can achieve the characteristic coefficients of the skin temperature
distribution TPredict

POD and the runback water thickness FPredict
POD . Then, the inverse POD method

can be used to obtain the skin temperature and runback water thickness, which allows for
fast prediction of the anti-icing performance of the hot air anti-icing system.

In the study, the dimension of the skin temperature and runback water distribution
samples p is 2580, and the number of datasets n is 1434. The number of input parameters m
is set to 5, which is the number of neurons in the input layer. The number of neurons in the
output layer corresponds to the order of basis modes q after the POD process, which turns
out to be 10. The optimal values of hyperparameters in the multilayer neural network are
shown in Table 3.

Table 3. The optimal values of hyperparameters for the PSO-BP neural network.

Hyperparameter Eigenvalues λj

Number of the hidden layers 4
Number of neurons in the input layer 5

Number of neurons in the first hidden layer 30
Number of neurons in the second hidden layer 64
Number of neurons in the third hidden layer 64

Number of neurons in the fourth hidden layer 30
Number of neurons in the output layer 10

Activation function ReLU
Loss function MSE

Optimization algorithm Adam Optimizer
Learning rate 0.0001

3.3. Error Analysis

In order to effectively evaluate the fitting effect of POD and the prediction effect of the
PSO-BP neural network model, the mean absolute error (MAE) is used as the evaluation
indices. The smaller the MAE is, the more accurate the model is. In this paper, the skin
temperature and runback water thickness are the output values that we focus on. Therefore,
the MAE of skin temperature and runback water thickness for a single sample are denoted
as MAET and MAEF as follows:

MAET =
∑

p
i=1

∣∣Ti − T̂l
∣∣

p

MAEF =
∑

p
i=1

∣∣∣ fi − f̂l

∣∣∣
p

(24)

where Ti and fi are the skin temperature and runback water thickness obtained by numerical
simulation at the ith grid point. T̂l and f̂l are the skin temperature and runback water
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thickness attained from the POD fitting results or PSO-BP neural network prediction at the
ith grid point, respectively. p means the dimension of the single sample.

The error of the POD fitting model and the PSO-BP neural network prediction model
is defined as the average error of all samples and calculated as follows:

ErrorT =
∑n

j=1 MAET,j

n

ErrorF =
∑n

j=1 MAEF,j

n

, (25)

where ErrorT and ErrorF are the fitting error or prediction error of the skin temperature and
runback water thickness for all samples, respectively. MAET,j and MAEF,j are the fitting
error or prediction error of the skin temperature and runback water thickness for the jth
sample. n means the number of all samples.

4. Results and Discussion
4.1. POD Fitting Results

The basis modes, eigenvalues, and occupied energy of the skin temperature distribu-
tion and the runback water thickness distribution are obtained by downscaling the sample
data using the aforementioned POD method. The results are displayed in Tables 4 and 5.
The variance contribution of a basis mode reflects the degree of the basis mode containing
the sample characteristics. The cumulative variance contribution of the first 10 basis modes
in the skin temperature datasets reaches 99.26%, while the cumulative variance contribution
of the first 10 basis modes in the runback water thickness datasets is calculated to be 99.08%.
The MAE of the skin temperature (MAET,POD) and runback water thickness MAEF,POD
with the POD fitting method are illustrated in Figures 5 and 6. As the characteristics of the
skin temperature distribution on the anti-icing surface are more easily captured, the average
absolute error ErrorT,POD and average relative error between the simulation datasets and
the skin temperature data after the POD and inverse POD processes are 1.65 K and 0.36%
when selecting the first 10 basis modes, respectively. The distribution of runback water
on the anti-icing surface is more complex than the temperature distribution. In the case
of higher surface temperatures, the distribution area of runback water is very small or
non-existent, making it more difficult to capture these characteristics. The average absolute
error ErrorF,POD and the average relative error between the simulation datasets and the
runback water thickness data after the POD and inverse POD processes are 0.42 µm and
6.28%, respectively, when selecting the first 10 basis modes.

Table 4. Eigenvalues and occupied energy for POD downscaling of skin temperature.

Order Eigenvalues λj Occupied Energy Ej

1 702,557.5495 0.7182
2 165,618.1213 0.1693
3 33,996.0586 0.0348
4 24,281.4796 0.0248
5 18,064.1157 0.0185
6 11,198.0621 0.0114
7 5171.1998 0.0053
8 4163.1418 0.0042
9 3474.4130 0.0036
10 2385.2014 0.0024
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Table 5. Eigenvalues and occupied energy for POD downscaling of runback water thickness.

Order Eigenvalues λj Occupied Energy Ej

1 157,450.9476 0.8940
2 10,544.6952 0.0599
3 2160.2216 0.0123
4 1523.9089 0.0086
5 1054.4496 0.0060
6 492.1854 0.0028
7 437.2716 0.0025
8 347.1164 0.0020
9 251.6207 0.0014
10 216.2244 0.0012
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The first 10 orders of basis modes are used to fit the distribution of skin temperature
and runback water thickness. The comparison of the POD fitting results with the CFD
simulation results and the prediction errors for two of the training samples are shown in
Figures 7 and 8. It can be seen that the POD fitting results and CFD simulation results are in
good agreement, and the POD fitting results can accurately extract the characteristics of the
skin temperature distribution and the thickness distribution of runback water. Figure 7b
also demonstrates the power of the POD method to predict the runback water distribution
when there is no water film on the skin surface.
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4.2. PSO-BP Neural Network Prediction Results

According to the analysis in Section 4.1, the anti-icing performance of the hot air
anti-icing system can be accurately predicted using the first 10 orders of POD basis modes.
Therefore, PSO-BP neural network models with a number of 10 are established to rapidly
predict the skin temperature and runback water thickness, i.e., setting up Vi and XPOD,i1,
XPOD,i2,. . ., XPOD,i1, respectively. After training the PSO-BP neural network models, the
characteristic coefficients of the skin temperature distribution TPredict

POD and the runback water
thickness FPredict

POD of 100 test samples can be predicted by the corresponding POS-BP models.
The details of part of the 100 test samples for skin temperature prediction and runback
water thickness prediction are displayed in Tables 6 and 7, respectively. The reverse Proper
Orthogonal Decomposition (POD) method is used to predict the skin temperature and
runback water thickness on 2580 grid nodes of the skin surface, enabling rapid prediction
of wing anti-icing performance.

Table 6. Test samples of a fast prediction model for skin temperature distribution.

Case Flight Height (ft) T (◦C) March Number MVD (µm) LWC (g/m3)

1 0 −7.5 0.35 40 0.42
...

...
...

...
...

...
10 4000 −5 0.35 25 1.55
...

...
...

...
...

...
40 19,000 −30 0.50 45 0.16
...

...
...

...
...

...
100 32,000 −30 0.60 35 0.05

The case sequence number increases from 1 to 100 in increments of 1. The symbol of “
...” means the conditions for

some cases are omitted and not shown here.

Table 7. Test samples of a fast prediction model for runback water thickness.

Case Flight Height (ft) T (◦C) March Number MVD (µm) LWC (g/m3)

1 0 0 0.18 40 0.10
...

...
...

...
...

...
30 14,500 −10 0.45 25 0.30
...

...
...

...
...

...
40 19,000 −30 0.50 45 0.16
...

...
...

...
...

...
100 32,000 -30 0.82 35 0.05

The case sequence number increases from 1 to 100 in increments of 1. The symbol of “
...” means the conditions for

some cases are omitted and not shown here.

Figures 9 and 10 demonstrate the mean absolute error MAE of skin temperature
(MAET,PSO-BP) and runback water thickness (MAEF,PSO-BP) obtained by comparing the
PSO-BP neural network model and CFD simulation results for 100 test samples. The
average absolute error ErrorT,PSO-BP of the PSO-BP neural network model in predicting
skin temperature is 3.87 K for all test samples. The average absolute error ErrorF,PSO-BP
of the PSO-BP neural network model to predict runback water thickness is 0.93 µm for
all test samples. The prediction results for the anti-icing performance are of the same
order of magnitude as those of the POD fitting results, indicating that the established fast
prediction PSO-BP model is able to effectively predict the skin temperature and runback
water thickness distribution characteristics on the skin surface of the hot air anti-icing
system.



Aerospace 2024, 11, 430 15 of 19

Aerospace 2024, 11, 430 15 of 20 
 

 

Table 6. Test samples of a fast prediction model for skin temperature distribution. 

Case Flight Height (ft) T (°C) March Number MVD (µm) LWC (g/m3) 
1 0 −7.5 0.35 40 0.42 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

10 4000 −5 0.35 25 1.55 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

40 19,000 −30 0.50 45 0.16 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

100 32,000 −30 0.60 35 0.05 
The case sequence number increases from 1 to 100 in increments of 1. The symbol of “⋮” 
means the conditions for some cases are omitted and not shown here. 

Table 7. Test samples of a fast prediction model for runback water thickness. 

Case Flight Height (ft) T (°C) March Number MVD (µm) LWC (g/m3) 
1 0 0 0.18 40 0.10 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

30 14,500 −10 0.45 25 0.30 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

40 19,000 −30 0.50 45 0.16 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

100 32,000 -30 0.82 35 0.05 
The case sequence number increases from 1 to 100 in increments of 1. The symbol of “⋮” 
means the conditions for some cases are omitted and not shown here. 

Figures 9 and 10 demonstrate the mean absolute error MAE of skin temperature 
(MAET,PSO-BP) and runback water thickness (MAEF,PSO-BP) obtained by comparing the PSO-
BP neural network model and CFD simulation results for 100 test samples. The average 
absolute error ErrorT,PSO-BP of the PSO-BP neural network model in predicting skin temper-
ature is 3.87 K for all test samples. The average absolute error ErrorF,PSO-BP of the PSO-BP 
neural network model to predict runback water thickness is 0.93 µm for all test samples. 
The prediction results for the anti-icing performance are of the same order of magnitude 
as those of the POD fitting results, indicating that the established fast prediction PSO-BP 
model is able to effectively predict the skin temperature and runback water thickness dis-
tribution characteristics on the skin surface of the hot air anti-icing system. 

 
Figure 9. MAE of skin temperature with the PSO-BP neural network. Figure 9. MAE of skin temperature with the PSO-BP neural network.

Aerospace 2024, 11, 430 16 of 20 
 

 

 
Figure 10. MAE of runback water thickness with the PSO-BP neural network. 

Figures 11 and 12 display the prediction results of the PSO-BP neural network model 
and the CFD simulation results for two of the training samples, along with a comparison 
between these two sets of results. By synthetically analyzing the prediction effect of the 
fast prediction model, the established PSO-BP neural network can accurately predict the 
skin temperature and runback water thickness of the hot air anti-icing system. The PSO-
BP neural network model can judge the distribution of runback water on the anti-icing 
surface. When the skin temperature is low and the thickness of the runback water is large, 
the model can accurately capture the distribution characteristics of the runback water. 
When there is only a small amount of runback water on the anti-icing surface or no run-
back water, the distribution characteristics are more difficult to capture. Furthermore, 
there is a possibility of a discrepancy in the prediction of the PSO-BP neural network 
model, which leads to a large prediction error. 

The model training and prediction process is conducted on a computer equipped 
with an Intel(R) Core (TM) i7-9700 3.00 GHz CPU (Intell®, Santa Clara, CA, USA). The 
results indicate that the time required for one model to train is around 10 min. The cost 
time of skin temperature prediction or runback water thickness prediction with the PSO-
BP neural network and the process for output as a text file for a sample is 2.1255 s on 
average. Comparing with the average 3.5 h required for the CFD numerical simulation, 
the PSO-BP neural network significantly improves prediction efficiency and effectively 
resolves the issues of high cost and long duration associated with the CFD numerical sim-
ulation of the hot air anti-icing system. This is achieved by reducing calculation complex-
ity and the consumption of computing resources. 

 
(a) 

Figure 10. MAE of runback water thickness with the PSO-BP neural network.

Figures 11 and 12 display the prediction results of the PSO-BP neural network model
and the CFD simulation results for two of the training samples, along with a comparison
between these two sets of results. By synthetically analyzing the prediction effect of the
fast prediction model, the established PSO-BP neural network can accurately predict the
skin temperature and runback water thickness of the hot air anti-icing system. The PSO-BP
neural network model can judge the distribution of runback water on the anti-icing surface.
When the skin temperature is low and the thickness of the runback water is large, the model
can accurately capture the distribution characteristics of the runback water. When there is
only a small amount of runback water on the anti-icing surface or no runback water, the
distribution characteristics are more difficult to capture. Furthermore, there is a possibility
of a discrepancy in the prediction of the PSO-BP neural network model, which leads to a
large prediction error.
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The model training and prediction process is conducted on a computer equipped with
an Intel(R) Core (TM) i7-9700 3.00 GHz CPU (Intell®, Santa Clara, CA, USA). The results
indicate that the time required for one model to train is around 10 min. The cost time
of skin temperature prediction or runback water thickness prediction with the PSO-BP
neural network and the process for output as a text file for a sample is 2.1255 s on average.
Comparing with the average 3.5 h required for the CFD numerical simulation, the PSO-BP
neural network significantly improves prediction efficiency and effectively resolves the
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issues of high cost and long duration associated with the CFD numerical simulation of
the hot air anti-icing system. This is achieved by reducing calculation complexity and the
consumption of computing resources.

5. Conclusions

In this paper, a fast prediction method for the performance of a hot air anti-icing
system based on the POD method and the PSO-BP neural network is established. The
flight condition parameters, including flight height, atmospheric temperature, flight speed,
MVD, and LWC, are used as input parameters for the fast prediction model. A dataset
with a number of 1434 obtained by FENSP-ICE is applied to train and test the POS-BP
neural network model. The prediction effect for rapidly predicting the skin temperature
and runback water thickness distribution on the anti-icing surface is evaluated for a hot air
anti-icing system. The conclusions are as follows:

• The POD method can accurately extract the skin temperature and runback water distri-
bution characteristics of the anti-icing surface. The average absolute error ErrorT,POD
and ErrorF,POD for the skin temperature and runback water thickness are 1.65 K and
0.42 µm when selecting the first 10 basis modes, respectively. It means that down-
scaling the sample data to obtain the basis modes, eigenvalues, and their occupied
energies makes the fast prediction strategy feasible.

• The prediction results with the PSO-BP neural network show that the established
model can more accurately predict the skin temperature and runback water thickness
distribution characteristics of the hot air anti-icing system. The average absolute
error ErrorT,PSO-BP and ErrorF,PSO-BP of the PSO-BP neural network model to predict
skin temperature and runback water thickness are 3.87 K and 0.93 µm for all 100
test samples. The distribution of runback water thickness becomes more challenging
to capture when there is only a small amount of runback water or none at all on
the anti-icing surface. This leads to a more difficult prediction of the runback water
thickness distribution.

• For cases requiring extensive performance analysis of a hot air anti-icing system, the
model based on the POD method and the PSO-BP neural network can realize fast
and accurate predictions of the performance of the hot air anti-icing system. This
model holds high engineering application value and development potential due to its
computational efficiency and accuracy.

• In the future, different neural networks, such as the convolutional neural network
(CNN), will be implemented to construct the neural network framework for improved
training results. Meanwhile, the wing anti-icing experiment data obtained from flight
tests or wind tunnel tests will be fed into the training models as a more convincing
training and testing dataset with high accuracy.
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Abbreviations

The following abbreviations are used in this manuscript:
ANN artificial neural network
BP back propagation
CFD Computational Fluid Dynamics
CNN convolutional neural network
IoT Internet of Things
LWC liquid water content
MAE mean absolute error
ML machine learning
MVD median volume diameter
POD Proper Orthogonal Decomposition
PSO Particle Swarm Optimization
WPT wavelet packet transform
XGBoost Extreme Gradient Boosting
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