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Abstract: This paper investigates the role of chaotic analysis and deep learning models in combustion
instability predictions. To detect the precursors of impending thermoacoustic instability (TAI) in a
swirled combustor with various fuel injection strategies, a data-driven framework is proposed in this
study. Based on chaotic analysis, a recurrence matrix derived from combustion system is used in deep
learning models, which are able to detect precursors of TAI. More specifically, the ResNet-18 network
model is trained to predict the proximity of unstable operation conditions when the combustion
system is still stable. The proposed framework achieved state-of-the-art 91.06% accuracy in prediction
performance. The framework has potential for practical applications to avoid an unstable operation
domain in active combustion control systems and, thus, can offer on-line information on the margin
of the combustion instability.

Keywords: combustion instability; thermoacoustic instability; chaotic analysis; deep learning;
instability precursors

1. Introduction

Large-amplitude pressure oscillations are generally undesirable in a variety of indus-
trial settings, such as furnaces [1], gas turbines [2] and rocket engines [3], with the exception
of thermoacoustic prime movers [4] or cooling systems [5]. Heat-to-sound conversion [6]
is increasingly attracting many researchers and engineers’ attention due to its potential
application in the energy industries, for example, as a prime mover, in refrigerators [7] and
in mixture separation. Based on the energy conversion mechanism from heat to sound,
many heat sources can be utilized or recycled, such as solar energy and industrial waste
heat [8]. In both of the involved devices, the onset of thermoacoustic instability is of great
significance. The consequences of unstable oscillations include low efficiency in indus-
trial furnaces, high pollutant emissions in gas turbines and catastrophic failure in rocket
engines [9]. Thermoacoustic instability (TAI) is characterized by the fact that the main
frequencies of pressure oscillations are linked to the acoustic mode of the combustion cham-
ber [10]. At this point, limit cycles are formed by periodic pressure oscillations with the
main frequencies. To mitigate thermoacoustic oscillations, the prediction of TAI is crucial
to further the active control of combustion. This study investigates the use of deep leaning
tools and chaotic analysis in TAI prediction. This work is motivated by two aspects. On
the one hand, chaotic methods are effective in analyzing the nonlinear dynamic structure
of combustion systems. On the other hand, deep learning techniques can provide a great
advantage in analyzing experimental datasets. A prediction framework, focused on the
MIRADAS combustor at IMFT [11], is thus proposed for the prognosis of instability. Based
on recorded datasets, it predicts the proximity of the TAI when stable operation conditions

Aerospace 2024, 11, 455. https://doi.org/10.3390/aerospace11060455 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace11060455
https://doi.org/10.3390/aerospace11060455
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://doi.org/10.3390/aerospace11060455
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace11060455?type=check_update&version=1


Aerospace 2024, 11, 455 2 of 24

become other conditions. It can not only provide real-time warning signals, but can also
clarify the TAI boundary of the combustion system.

Chaotic analysis is an effective approach to investigate combustion noise and com-
bustion instability. TAI occurs due to the coupling between the unsteady heat release
and acoustic waves [12], known as Rayleigh’s criterion [13]. When unsteady heat release
and pressure oscillations are occurring, energy is transferred to acoustic field, leading to
large-amplitude periodic pressure oscillations that can damage the combustor structure. At
this point, the large-amplitude periodic pressure oscillations indicate that the combustion
system has attained a limit cycle. Reference [14] shows that the combustion noise stage is
deterministic–chaotic, and the process of operating conditions approaching combustion
instability must be accompanied by a gradual loss of chaos. According to chaotic dynamics
theory, the transition from non-periodic combustion noise to periodic thermoacoustic oscil-
lations, e.g., the limit cycle, is referred to as Hopf bifurcation [15]. If the initial perturbation
is within the range of the limit cycle in phase space, the system will always evolve to the
limit cycle stage through Hopf bifurcation, which is called triggering in the thermoacoustic
community. The chaotic characteristics of the combustion system indicate that the very
small perturbations at the initial stage will eventually lead to disparate behavior, making it
challenging to deterministically predict combustion instability.

The high-complexity nonlinear and high-dimensional chaotic characteristics of com-
bustion systems have inspired a lot of research on flame dynamics [16–19], combustion
chaos [20–23] and intermittencies [24–30]. The flames’ dynamics exhibit bifurcation behav-
iors [18] or multi-bifurcation behaviors [19] depending on the geometric parameters and
combustion systems. However, eliminating flame bifurcation in comprehensive combustors
is still challenging due to the high-complexity nonlinearity. Thermoacoustic instability is
considered high-dimensional chaos [20] and multifractality has been observed in combus-
tion noise [21]. Additionally, the occurrence of TAI can be divided into three stages: the
stable combustion noise stage, the intermittency stage, composed of large-amplitude fluctu-
ations and small non-periodic oscillations [25], and the unstable periodic oscillation stage
(limit cycle) [28]. Chaotic analysis has been used to examine pressure oscillations in terms
of dominant frequency, attractors in phase space and recurrence plots, revealing their dif-
ferences at different stages [29]. These studies emphasize the potential of chaotic methods
to investigate combustion systems. Chaotic methods, such as phase space reconstruction,
recurrence analysis and nonlinear time series analysis, are extensively used to investigate
precursors of combustion instability. For instance, Nair developed a reduced-order model to
capture the onset of TAI [31]. Sujith conducted a comprehensive survey on the application
of dynamic theories in TAI and blowout, including phase space reconstruction, recurrence
plots, complex networks and fractals [32]. The complex network method was employed to
detect the onset of TAI and flame blowout by Murugesan [33] and Gotoda [34], respectively.
These studies highlight the benefits of chaotic analysis methods in the precursor detection
of combustion instability. In addition, wavelet and recurrence analyses have also been
shown to capture the onset of combustion instability [35]. However, as Ref. [32] pointed
out, the nonlinear methods used in these works are scattered, lacking the potential for a
unified framework. The warning signals of combustion instability provided by most of
these methods lack a unified threshold and depend on the operating conditions, propellant
combinations and combustion chamber geometries. For on-line combustion prediction, a
more accurate prediction model and a unified framework are required.

Recently, machine learning methods have been employed to predict the combustion
instability, including Support Vector Machine [36,37] and Hidden Markov Model [38,39].
However, the prediction performances are limited by the shortcomings of conventional
machine learning methods, where the manually designed features are subjective. The
major concern is that these manual features may not be able to detect the precursors of
TAI. More advanced feature-generating techniques are included in deep learning methods,
providing great advantages in training a prediction model effectively. The development
of deep learning models contributes to their application in the combustion instability
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community, including in convolutional recurrent neural networks [40], convolutional
neural networks [41], autoencoders [42,43] and long short-term memory networks [44].
Cellier employed a convolutional recurrent neural network to predict TAI in a swirled
combustor based on three channels of recorded signals [40]. The prediction system achieved
87.7% accuracy on the test data. A convolutional neural network and an autoencoder are
introduced to the monitor combustion state [41,42] but are unable to predict the impending
TAI. Zengyi Lyu used a stacked long short-term memory network to predict acoustic
pressure in an annular combustor [44].

To generate and utilize reasonable features for TAI prediction, we proposed a novel pre-
treatment strategy that is able to associate chaotic dynamical analysis with deep learning
methods to investigate combustion instability, which proved to be a useful method in an
experimental-scale combustor [45]. Based on phase space reconstruction [46] and Taken’s
delay embedding theorem [47], acoustic pressure signals, for example, are transformed into
recurrence matrices, which will be further trained in deep learning models, i.e., ResNet
networks [48]. Further, the Convolutional Block Attention Module (CBAM) attention
mechanism is incorporated into ResNet [49]. It is often combined with a backbone network
to improve the performance. This unified framework is abbreviated as RRC (Recurrence-
ResNet-CBAM) and is verified through a dataset obtained from the MIRADAS combustor.
Consistent with Ref. [40], the objective of this study is to predict the proximity of combustion
instability when operation conditions are changed based on time series datasets of acoustic
pressure, velocity and heat release rate signals recorded in MIRADAS. There are two main
challenges in the prediction task: one is detecting instability precursors when the system
is close to a unstable region; the other one is ensuring that the RRC framework is able to
work in the multi-fuel/multi-injection combustor. Combinations of different fuels and
injection configurations greatly enhance the diversity of the combustor datasets. Therefore,
the prediction model requires an excellent generalization capability to robustly predict TAI.

The remainder of the study is organized as follows. First, the experimental setup
and datasets are presented in Section 2.1. A novel pre-treatment technique is proposed in
Section 2.2, which integrates chaotic analysis and deep learning. Based on the pre-treatment,
a unified prediction framework is proposed in Section 2.3, which is able to work with
different combustion systems. In terms of deep learning models, the learning strategy and
parameters are given in Section 2.4. To evaluate the prediction performance, some common
evaluation tools are introduced in Section 2.5. The prediction results and performance
evaluations are presented in Section 3. Based on the optimal trained framework, on-line
prediction simulations are implemented in Section 4, with potential for application in the
active control of combustion instability. Finally, we summarize this work in the last section
and present some future research directions to improve the current work.

2. Materials and Methods
2.1. Data Acquisition and Labeling

The datasets were recorded in a lean premixed combustor at the IMFT, referred to
as MIRADAS [11,40], which is controlled by two operational conditions: bulk velocity
Usw and equivalence ratio ϕ. The total mass flow is controlled by the bulk velocity. The
datasets and labeling strategy are consistent with Ref. [40], so the prediction performances
are compared fairly. The experimental setup is presented in Figure 1 and more detailed
information of the geometry is provided in Ref. [11].

The main mixture of fuel and air is injected at the bottom plenum of the combustor,
and then passes through a convergent nozzle and a swirler oriented 15◦ off the swirler axis.
The cross-section of the bottom plenum has a diameter of 65 mm. The honeycomb is located
between bottom plenum and the convergent nozzle is the honeycomb, which is fitted to
break turbulent structures resulting from the injection process. The piloting fuel passes
through the injection tube in the center of the combustor. The flame is confined within a
cylindrical quartz combustion chamber with a length of 297 mm and a diameter of 46 mm.
In MIRADAS, methane (CH4) and hydrogen (H2) are involved in different configurations.
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A total of 366 experiments were performed with seven different injection configurations,
providing sufficient data to train the deep learning model. Additionally, combinations of
different propellants and injection strategies make it possible to survey the performance
of prediction model comprehensively, referred to as the generalization capability. In each
injection configuration, experiments were recorded by changing the operational conditions
step by step.
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Figure 1. Architecture of MIRADAS experimental setup [11].

Three types of combustion diagnostics were employed in the experiments, as shown
in Figure 2. A microphone (Brüel and Kjær-TYPE 4954, Brüel & Kjær Sound & Vibration
Measurement, Egham, Surrey, United Kingdom) was used to measure the acoustic pressure
p, coupled with a constant-temperature hot-wire (Dantec 55P16 miniature hot wire probe
and a Dantec 54T42 MiniCTA) to measure the acoustic velocity v. The heat release rate h is
recorded by a photo multiplier (THORLABS FB430-10).

A total of 366 experiments were conducted on the MIRADAS combustor. They were
classified into two groups based on the Root Mean Square (RMS) of the pressure measure-
ments. More specifically, 179 experiments were categorized as instability samples (beyond
the empirical limit of 250 Pa), while the rest of the 187 groups were stable. Instability
maps (Usw, ϕ) can depict the relationship between combustion instability and operation
conditions, as shown in Figure 2a. Bulk velocity Usw was regulated between 14 m/s and
40 m/s with a step of 2 m/s, while the equivalence ratio was regulated between 0.70 and
0.85 with a step of 0.05. In the instability maps, instability experiments are labeled as solid
circles and the diameters of the circles are proportional to the RMS values. The rest regions
indicate stable runs. As presented in Figure 2a, it is difficult to monotonically distinguish
stable and instable runs.



Aerospace 2024, 11, 455 5 of 24

Aerospace 2024, 11, x FOR PEER REVIEW 4 of 24 
 

 

 

Figure 1. Architecture of MIRADAS experimental setup [11]. 

The main mixture of fuel and air is injected at the boĴom plenum of the combustor, 
and then passes through a convergent nozzle and a swirler oriented 15° off the swirler 
axis. The cross-section of the boĴom plenum has a diameter of 65 mm. The honeycomb is 
located between boĴom plenum and the convergent nozzle is the honeycomb, which is 
fiĴed to break turbulent structures resulting from the injection process. The piloting fuel 
passes through the injection tube in the center of the combustor. The flame is confined 
within a cylindrical quarĵ combustion chamber with a length of 297 mm and a diameter 
of 46 mm. In MIRADAS, methane (CH4) and hydrogen (H2) are involved in different 
configurations. A total of 366 experiments were performed with seven different injection 
configurations, providing sufficient data to train the deep learning model. Additionally, 
combinations of different propellants and injection strategies make it possible to survey 
the performance of prediction model comprehensively, referred to as the generalization 
capability. In each injection configuration, experiments were recorded by changing the 
operational conditions step by step. 

Three types of combustion diagnostics were employed in the experiments, as shown 
in Figure 2. A microphone (Brüel and Kjær-TYPE 4954, Brüel & Kjær Sound & Vibration 
Measurement, Egham, Surrey, United Kingdom) was used to measure the acoustic 
pressure p, coupled with a constant-temperature hot-wire (Dantec 55P16 miniature hot 
wire probe and a Dantec 54T42 MiniCTA) to measure the acoustic velocity v. The heat 
release rate h is recorded by a photo multiplier (THORLABS FB430-10). 

 
(a) 

  

 

 
  

Aerospace 2024, 11, x FOR PEER REVIEW 5 of 24 

(b) 

Figure 2. Instability maps (a) and typical instability vectors (b) for operation points (a) [40]. (a) In-
stability map regarding the bulk velocity and equivalence ratio of a certain injection configuration. 
The diameters of solid circles are proportional to the RMS of the acoustic pressure level in dB. (b) 
Instability vector in terms of four directions (Up, Right, Down and Left). 

A total of 366 experiments were conducted on the MIRADAS combustor. They were 
classified into two groups based on the Root Mean Square (RMS) of the pressure meas-
urements. More specifically, 179 experiments were categorized as instability samples 
(beyond the empirical limit of 250 Pa), while the rest of the 187 groups were stable. In-
stability maps (Usw, ϕ) can depict the relationship between combustion instability and 
operation conditions, as shown in Figure 2a. Bulk velocity Usw was regulated between 14 
m/s and 40 m/s with a step of 2 m/s, while the equivalence ratio was regulated between 
0.70 and 0.85 with a step of 0.05. In the instability maps, instability experiments are la-
beled as solid circles and the diameters of the circles are proportional to the RMS values. 
The rest regions indicate stable runs. As presented in Figure 2a, it is difficult to mono-
tonically distinguish stable and instable runs. 

As mentioned before, the objective is to predict the proximity of instability when the 
combustion system is still stable. Thus, only the 187 stable experiments were used in our 
datasets. When the system is running with the corresponding 187 stable operation condi-
tions, we need to predict the danger for each direction where the operation conditions are 
changed. We introduced instability vectors T as data labeling, as shown in Figure 2b. This 
is formed by four digits related to the direction of the operation condition changes (1 de-
notes occurring TAI). The directions of Up and Down denote an increase and decrease in 
the equivalence ratio, respectively. The directions of Left and Right denote a decrease and 
increase in the bulk velocity, respectively. For example, the instability vector of [0 1 0 0] 
means that the TAI will occur when the equivalence ratio is decreased. 

During each experiment, signals were acquired at a sampling frequency of 10 kHz 
for a duration of 10.3 s. To enable the practical on-line prediction of combustion instabil-
ity, the rolling-window approach is preferred. Three-hundred time windows of 0.3 s 
were randomly cropped from the complete 10.3 s signal series and the length of each 
time window was 3000. This process generated a total of 56,100 experimental datasets 
(300 windows times 187 stable experiments), which were subsequently divided into 
three datasets for the deep learning model, i.e., a training dataset, validation dataset and 
testing dataset. For data labeling, the instability vectors of these datasets are given in Ta-
ble 1. In total, 15 types of instability vectors were recorded with the absence of [0 1 1 1]. 

Usually, the training and validation datasets are used to train and monitor the deep 
learning models, with the aim of achieving high accuracy by optimizing the training 
loss. The testing datasets were used to evaluate the generalization capability and to 
compare the performance of different models. Each experiment contained three channels 
of signals: p, v and h. Each channel’s data were normalized by their maximum value to 
improve the robustness of the model. Therefore, 56,100 three-channel datasets were used 
as inputs and the outputs were the corresponding instability vectors. 

Figure 2. Instability maps (a) and typical instability vectors (b) for operation points (a) [40]. (a) In-
stability map regarding the bulk velocity and equivalence ratio of a certain injection configuration.
The diameters of solid circles are proportional to the RMS of the acoustic pressure level in dB.
(b) Instability vector in terms of four directions (Up, Right, Down and Left).

As mentioned before, the objective is to predict the proximity of instability when
the combustion system is still stable. Thus, only the 187 stable experiments were used in
our datasets. When the system is running with the corresponding 187 stable operation
conditions, we need to predict the danger for each direction where the operation conditions
are changed. We introduced instability vectors T as data labeling, as shown in Figure 2b.
This is formed by four digits related to the direction of the operation condition changes
(1 denotes occurring TAI). The directions of Up and Down denote an increase and decrease
in the equivalence ratio, respectively. The directions of Left and Right denote a decrease
and increase in the bulk velocity, respectively. For example, the instability vector of [0 1 0 0]
means that the TAI will occur when the equivalence ratio is decreased.

During each experiment, signals were acquired at a sampling frequency of 10 kHz for
a duration of 10.3 s. To enable the practical on-line prediction of combustion instability,
the rolling-window approach is preferred. Three-hundred time windows of 0.3 s were
randomly cropped from the complete 10.3 s signal series and the length of each time window
was 3000. This process generated a total of 56,100 experimental datasets (300 windows
times 187 stable experiments), which were subsequently divided into three datasets for
the deep learning model, i.e., a training dataset, validation dataset and testing dataset. For
data labeling, the instability vectors of these datasets are given in Table 1. In total, 15 types
of instability vectors were recorded with the absence of [0 1 1 1].
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Table 1. Altogether, 56,100 datasets were divided into training datasets, validation datasets and
testing datasets.

Up Right Down Left Train
(39,600)

Validation
(8100)

Testing
(8400)

0 0 0 0 10,800 2168 2255
0 0 0 1 600 142 146
0 0 1 0 3300 713 733
0 0 1 1 2700 552 574
0 1 0 0 1200 241 250
0 1 0 1 300 52 55
0 1 1 0 300 80 82
1 0 0 0 10,200 2098 2173
1 0 0 1 600 124 127
1 0 1 0 4500 941 972
1 0 1 1 1200 208 215
1 1 0 0 2700 530 560
1 1 0 1 300 59 61
1 1 1 0 600 133 136
1 1 1 1 300 59 61

Usually, the training and validation datasets are used to train and monitor the deep
learning models, with the aim of achieving high accuracy by optimizing the training loss.
The testing datasets were used to evaluate the generalization capability and to compare
the performance of different models. Each experiment contained three channels of signals:
p, v and h. Each channel’s data were normalized by their maximum value to improve the
robustness of the model. Therefore, 56,100 three-channel datasets were used as inputs and
the outputs were the corresponding instability vectors.

2.2. Pre-Treatment (Generation of Recurrence Matrices)

To associate chaotic dynamical analysis with deep learning methods to investigate
combustion instability, a novel pre-treatment approach is proposed in this study. Based on
phase space recognition, the recorded signals were reconstructed into a high-dimensional
space. For each signal channel, recurrence analysis in a high-dimensional space provides a
quantitative way to describe the reconstructed dynamical system in the form of a recurrence
matrix. We note that the recurrence matrix presents a possible form to be used in deep
learning models. Making use of the strong feature extraction and learning ability of deep
learning models, a recurrence matrix reflecting the nonlinear dynamical features plays a
very important role in the pre-treatment process.

To some extent, this pre-treatment can be considered an improved version of the
method of Recurrence Quantification Analysis (RQA), which was adopted to investigate
TAI as well [29,36]. The major concern, as mentioned before, is that the number of manual
indices is too small to characterize the high-dimensional combustion system. This section
briefly describes the generation of the recurrence matrix.

Suppose xj
1, xj

2, · · · , xj
N , j = 1, 2, 3 denote the three channels of measured data, which

are acoustic pressure, velocity and heat release rate, respectively. Then, the time-delay
vector can be reconstructed through time delay τ and embedding dimension m according
to Taken’s delay embedding theorem [47], as follows:

yj(ti) = (xj(ti), xj(ti + τ), · · · , xj(ti + (m − 1)τ)) (1)

where i = 1, 2, · · · , N − (m − 1)τ, j = 1, 2, 3, N is the length of the input data, xj
i is the

measured time series signal and yj
i is the ith reconstructed vector.

The most import process is to determine time delay τ and embedding dimension m.
Two types of numerical methods are able to determine the optimum time delay τ, i.e., the
autocorrelation method and mutual information method [27]. The former can only extract
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a linear correlation from the time series data. Thus, the mutual information method is used
in this study and the mutual information index I(X, Y) is given as follows:

I(X, Y) =
NX

∑
k=1

NY

∑
l=1

PXY(k, l) ln
[

PXY(k, l)
PX(k)PY(l)

]
(2)

where X = xi and Y = xi+τ indicate the original time series and original time series with
a delay τ, respectively; NX and NY are the number of bins of the X and Y histograms,
respectively; PX and PY are the marginal probabilities; PXY is the joint probability.

The mutual information index I(X, Y) is actually the function of time delay τ, indicating
the correlation between the two systems distinguished by the time delay. The relatively
small mutual information index means that the two systems are irrelevant and the optimum
time delay is achieved. The time meshes method is a practical method to calculate the
marginal probabilities and joint probability, as indicated in Ref. [29], based on which mutual
information regarding the time delay is obtained. By gradually increasing the time delay,
Equation (2) can be employed to calculate I(X, Y) until the point of first minimum. At this
point, the corresponding time delay is defined to have the optimum value τ*.

To investigate the high-dimensional chaos in a combustion system, it is crucial to
determine the embedding dimension m of the nonlinear system so that the attractor orbits
will be unfolded exactly and the chaotic characteristics will be exposed. With regard to the
embedding dimension m, two main methods, the so-called false nearest neighbor [50] (FNN)
and Cao’s method [51], are usually employed [29,36]. The latter is developed to improve
the robustness of FNN. As noted by Cao, for realistic time series, FNN will probably lead
to different optimal embedding dimensions. Hence, Cao’s method was adopted in the
present study.

There are adjacent points in low-dimensional phase space, which are actually pro-
jections of nonadjacent points in high-dimensional space, i.e., false neighbors. With the
increase in embedding dimension, chaotic orbits will unfold gradually and false neighbors
will be excluded. In a phase space with m dimension, the ith vector possesses nearest neigh-
bor vector yNN(ti) and the Euclidean distance between them is defined by the following:

Rm(i) =
∥∥∥y(ti)− yNN(ti)

∥∥∥ (3)

An increase in embedding dimension leads to a change in the nearest distance, i.e.,

Rm+1(i) =
∥∥∥ym+1(ti)− ym+1

NN(ti)
∥∥∥ =

√
R2

m(i) + |x(ti + mτ)− xNN(ti + mτ)|2 (4)

The difference between Rm+1 and Rm is associated with an increase in m, with which
the following index is proposed in FNN:

a1(i, m) =
R2

m+1(i)− R2
m(i)

Rm(i)
=

∥∥x(ti + mτ)− xNN(ti + mτ)
∥∥

Rm(i)
(5)

while Cao proposed the following index, with a higher noise resistance performance [46]:

a2(i, m) =

∥∥ym+1(i)− yNN
m+1(i)

∥∥
∥ym(i)− yNN

m (i)∥
(6)

Further, the average performance of all vectors in phase space is:

E(m) =
1

N − mτ

N−mτ

∑
i=1

a2(i, m) (7)

Finally, E(m + 1)/E(m) is used to depict the trend of E(m).
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The best embedding dimension m* will be determined when E(m + 1)/E(m) stops
changing. Once τ* and m* are determined, the phase space will be reconstructed by
Equation (1).

After the reconstruction of phase space, the recurrence matrix is determined by
the following:

R(i, j) = H(
∥∥y(ti)− y(tj)

∥∥− ε), i, j = 1, 2, · · · , N − (m − 1)τ (8)

where ε is the constant threshold, H is the Heaviside function and
∥∥y(ti)− y(tj)

∥∥ is the
Euclidean distance between vectors.

Recurrence matrix Rij describes the relationship between every pair of reconstructed
vectors from a mathematical perspective. When a vector recurs within the constant thresh-
old, Rij is endowed with 1; otherwise, Rij is endowed with 0. The recurrence matrix is
obtained after the calculation of all vectors. Instead of using the statistic indices derived
through the RQA method, this study treats the recurrence matrix as a whole that can
be further analyzed by deep learning models. This ensures that we will not miss the
TAI-relevant features.

2.3. Overview of the Framework of RRC

The results of pre-treatments include three channels of recurrence matrices that can be
naturally fed into deep learning modules. Figure 3 illustrates the overall strategy of the RRC
framework. The inputs of original signals consist of dynamic pressure p, acoustic velocity v
and heat release rate h. The output of RRC is the instability vector T, which determines the
probability of TAI occurring in different directions of operation variables. Each operation
variable has two directions, i.e., increase or decrease. The dimension of the instability vector
includes an increase in equivalence ratio, increase in bulk velocity, decrease in equivalence
ratio and decrease in bulk velocity. For example, an instability vector where all digits are
zero indicates that the combustion system is stable in any direction of operation conditions.
The TAI prediction task is essentially a binary-class, multi-label classification task, where
all samples are divided into instability or stability in each direction and one sample can be
tagged with four labels.
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Figure 3. The framework of the RRC. The input signals are recorded pressure, acoustic velocity
and heat release rate. The output of RRC, i.e., the instability proximity vector, ranges from 0000 to
1111 regarding two operation variables, which covers all instability types, from all-stable to non-stable,
in four directions [45].



Aerospace 2024, 11, 455 9 of 24

The RRC model mainly consists of two stages: Stage 1 involves obtaining the recur-
rence matrix from the original data through phase space reconstruction and a recurrence
analysis, i.e., pre-treatment. Stage 2 involves training the deep learning models and out-
putting the instability vector.

• Stage 1:

Step (a): The recorded signals are obtained using a microphone (Brüel and Kjær-TYPE
4954, Brüel & Kjær Sound & Vibration Measurement, Egham, Surrey, United Kingdom)
to measure the pressure signal, a constant-temperature hot-wire (Dantec 55P16 minia-
ture hot-wire probe and a Dantec 54T42 MiniCTA, Constant Temperature Anemometer
(CTA) technology, DK-2740 Skovlunde, Denmark) to measure the acoustic velocity, and a
photo multiplier (THORLABS FB430-10, Thorlabs, Newton, NJ, USA) to measure the heat
release rate.

Step (b): Takens’ delay embedding theory [47] is used to reconstruct three channels
of normalized signals in phase space based on an appropriate time delay and embedding
dimension. This helps to expose the attractor of the combustion system. In this way, the
original dynamical structure is revealed.

Step (c): After the phase space reconstruction, the recurrence matrix is calculated to
describe the characteristics of the chaotic system.

• Stage 2:

The three channels of recurrence matrices in terms of pressure, velocity and heat
release rate are fed into RRC as the training set. RRC then generates abundant features by
performing convolution operations in different layers and channels. Finally, all the feature
maps will converge into fully connected layers with a suitable activation function, through
which the framework outputs the probability ranging from 0 to 1.

The backbone network is standard ResNet-18 [48] and the CBAM attention mechanism
is combined with this to improve performance [49]. This mechanism consists of a channel
attention module and a spatial attention module. The channel attention module focuses
on discovering important channels, while the spatial attention module is focused on the
important features in each channel. Different features are obtained by adjusting millions of
parameters in RRC, and specific loss functions are used to assess the difference between the
true labels and the outputs of RRC. Then, optimization methods are used to continuously
adjust these parameters until the loss curve converges to a low level. The optimal model is
then selected and frozen to test the generalization capability on a testing dataset. Finally,
the RRC model is employed to predict TAI using a complete piece of 10.3 s data to test its
on-line performance.

2.4. Deep Learning Strategy

Basic deep learning models and corresponding parameters are introduced in this
section. Deep learning methods are very successful in many prediction tasks. However,
adding too many layers to the model can lead to a degradation in its problem and an
increase in training errors. The ResNet neural network is proposed to address this problem,
which uses a shortcut structure to eliminate degradation [48]. The ResNet-18 model is
presented in detail in Figure 4, consisting of eight residual blocks with 16 convolution
layers. The convolution layers are used to extract features from recurrence matrices or
tensors from prior layers, with various sizes of convolution kernels producing different
channels within the layers.

Activation function and classification function: Consistent with most convolutional neu-
ral networks, the rectified linear unit (ReLU) is used as the activation function in layers,
i.e., f (x) = max(0, x). The classification functions of the last layer are four sigmoid
functions outputting probabilities between 0 and 1. The Sigmoid function is defined as
f (x) = 1/(1 + e−x). The outputs of the probabilities are not identical to the real probabili-
ties, which is of the RRC’s decisions. A higher fraction (beyond 0.5) means that that the
combustion system is prone to TAI in this direction.
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Batch normalization: A well-known problem that can hinder the convergence of neural
networks is vanishing/exploding gradients. This is mainly because the distributions of
parameters in the different layers are mutually influenced, and the increase in network
layers aggravates this problem. Ioffe referred to this issue as an internal covariate shift and
proposed that the batch normalization layer could address this by normalizing the layer
inputs [52]. Thus, batch normalization can accelerate the convergence of neural networks.

Loss function: Loss function is used to describe the deviation of the networks’ output
from the true labels. Different from general tasks in the image classification field or
objection recognition field, where multi-class tasks mostly have one label, TAI prediction
is a binary-class, multi-label task. Softmax function and cross-entropy (loss function) are
often employed in the multi-class task, while sigmoid function and the binary cross-entropy
function used in binary classifications are confronted with the severely imbalanced label
problem. The imbalanced label issue in predicting combustion instability tasks is rather
sensitive. On the one hand, instability samples and stability samples are imbalanced; on
the other hand, instability samples may differ a lot in the four directions. Therefore, new
criteria focused on multi-label tasks should be employed.

For general binary classification tasks, binary cross-entropy is commonly used as the
loss function [40]:

LBCE = − 1
NS

NS

∑
i=1

yi log(ŷi) + (1 − ŷ) log(1 − ŷi) (9)
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However, binary cross-entropy struggles to address the imbalanced label issue and
struggles with multi-label tasks. In this regard, circle loss LCL is introduced as another loss
function and is adopted in this study. This was first proposed by Yifan Sun [53], as follows:

LCL = log

[
1 +

L

∑
j=1

exp(γ(sj
n + b))

K

∑
i=1

exp(γ(−si
p))

]
(10)

where L and M are the numbers of negative and positive classes, respectively, γ is a scale
factor and b is a margin factor.

Optimization method: The selection of the optimization method influences the conver-
gence performance of the neural network. Among the various methods used to optimize
training loss, Adam, which is based on adaptive estimates of low-order movements, is
considered one of the most stable and computationally efficient [54].

CBAM: The attention mechanism of CBAM [49] allows the ResNet model to focus on
more important features, i.e., more instability-relevant features. As in other self-attention
mechanisms, the CBAM module does not change the structure of the original neural
network and hence can easily be added to ResNet, without modifying the other parts.
Ref. [55] demonstrated that CBAM improved the performance of ResNet backbone network
more than other self-attention mechanisms. An empirical comparison with other self-
attention mechanisms, including SE [56] and GC [57], will also be presented in this study.

CBAM consists of channel and spatial dimensions, obtained through decomposing
the 3D attention tensor into 1D cannel attention and 2D spatial attention [55]. The channel
attention module is a 1D tensor, while the spatial attention module is 2D tensor. The
structures of the channel attention module and spatial attention module are illustrated in
Figure 1. Assume the input feature map is F, σ denotes the sigmoid function, fch–avg is the
global average operation tensor and fch-max is the global maximum operation tensor. MLP is
the two-layer multi-layered perception, while SACH and SASP denote the channel attention
and spatial attention, respectively; therefore, CBAM can be described by Equation (11). The
process of adding CBAM to ResNet is presented in Figure 3 and more detailed specifications
are referred to in Ref. [49].

SAch(F) = σ
(

MLP( fch−avg) + MLP( fch−max)) ∗ F
SAsp(Fch) = σ(Conv7×7([ fsp−avg, fsp−max])) ∗ Fch
SACBAM(F) = SAsp(SAch(F))

(11)

2.5. Post-Mortem Performance Evaluation Tools

The proposed TAI prediction model, RRC, is essentially a binary classification model
in the mathematics field. To verify the prediction performance, common tools, including
accuracy, the F1-score, ROC curves and the AUC-ROC index, are usually used to evaluate
the prediction performance [36,40].

The most common criterion is accuracy, denoted by acc. The accuracy index, i.e., the
ratio of correct outputs, can be used to discriminate the integral deviation between RRC
outputs (instability vectors T) and true labels (experimental results). The RRC outputs
range from 0 to 1 after the activation of sigmoid functions. Output values below 0.5 will
be classified into stable ones and vice versa. Then, the accuracy criterion is given by
the following:

acc = 1
4NS

NS
∑

i=1

4
∑

j=1
(1 − θ(ŷi

j − yi
j))

θ(x) =
{

1, x > 0.5
0, x < 0.5

(12)

where NS is the total number of samples and θ(x) denotes the indicator function.
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For example, if the output instability vector is T = [0.1, 0.2, 0.6, 0.8] and the true label
is [0 0 1 0], then the accuracy is 75%. Three prediction directions are classified correctly and
only the direction of “Down” is incorrectly predicted as unstable.

Note that the accuracy criterion is unable to distinguish specific incorrect predictions.
To further measure the specific performance of TAI prediction, other indices are introduced.
Precision is defined by the ratio of correctly predicted instable samples to the total number
of the outputs that are predicted as instable. A higher precision value indicates that when
the prediction framework makes a positive decision of combustion instability, combustion
instability is more likely to be present. This is very meaningful when applying prediction
tools in an active control system of combustion instability. Additionally, recall value is
defined by the ratio of instable samples that are correctly predicted as positive. A higher
recall value indicates that fewer combustion instability samples are missed. To examine
both precision and recall, their harmonic mean, F-1 score, is introduced as follows:

precision = TP
TP+FP

recall = TP
TP+FN

F1 − score = 2×precision×recall
precision+recall

(13)

where TP/TN/FP/FN represents True Positive/True Negative/False Positive/False Neg-
ative, respectively (True/False corresponds to correct/incorrect classification and Posi-
tive/Negative corresponds to the output of RRC).

The Receiver Operating Characteristic curve is a robust measurement of the binary
classification model [58]. It measures how many instable samples are classified correctly
at the cost of the incorrect classification of stability samples when varying the threshold.
For instance, if all samples are classified as unstable through RRC (threshold close to 0),
the recall index is 1, meaning that all instability samples are correctly classified, and the
percentage of wrongly classified stable samples will also be 1. In other words, stable
samples are correctly recalled at the great cost of wrongly classifying all stable samples.
Thus, the core idea of ROC curves is that a good binary classification model has a higher rate
of correctly classified instability samples and a smaller rate of wrongly classified stability
samples. The rate of wrongly classified stable samples is defined as the false positive rate
FPR, while the rate of correctly classified instable samples is referred to as the true positive
rate TPR. By adjusting the threshold from 0 to 1, the false positive rate is plotted against
the true positive rate, and this curve is the ROC curve.

Four ROC curves will be obtained in each direction. All curves are bounded by a
square of side 1, linking the point {0, 0} to the point {1, 1}. Point {1, 1} represents the extreme
situation referenced in the last paragraph. The ROC curves of a good classification model
will approach the upper left part as much as possible, and the corresponding area under the
curve (AUC) will approach 1 as well. Generally, a good model is characterized by an AUC
between 0.8 and 1. It is then possible to compare the two binary classifiers by observing
their respective AUC.

3. Results and Evaluations

In the pre-treatment process, the results of phase space reconstruction can be displayed
by the so-called attractors, which can also provide some qualitative insights into the
combustion instability. As shown in Figure 5, attractors are characterized by their different
dynamical structure. To further quantitatively explore nonlinear features related to TAI,
recurrence matrices and recurrence plots were obtained. The recurrence plots in Figure 6
illustrate the recurrence behavior. After the pre-treatment stage, the recurrence matrices of
the datasets are fed into the RRC to extract precursors for TAI prediction.
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Figure 6. Recurrence plots in terms of 15 typical types of dataset (black points indicate recurrence
regarding time ti and time tj, and both axes represent mean time).

The training process is performed on an Nvidia GeForce RTX 3080 GPU using Pytorch
1.80. One of the most critical hyper-parameters used to train the neural network is the
learning rate, which controls the time step size to update the weights by optimizing the
loss function. In other words, the learning rate is associated with convergence performance,
as indicated by:

θ1 = θ1 − α
∂

∂θ1
L(θ1) (14)

where θ1 denotes the weights that need to be optimized, α is the learning rate and L is the
proposed loss function.

To determine the optimal learning rate, a technique called Cyclical Learning Rates
for the training process, proposed by Leslie Smith, is adopted in this section [59]. After
30 epochs, RRC achieves the rather high training and validation accuracy of 99.80% and
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90.21%, respectively. The training loss and validation loss are represented in Figure 7. The
convergence speeds of both training loss and validation loss highlight the benefit of suitable
training parameters. The risk of overfitting could be present beyond 23 epochs due to the
fact that a further decrease in training loss does not improve the validation performance.
At this point, the optimal model is frozen for further testing.
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The testing dataset is used to validate the generalization capability of the prediction
model. The outputs of the trained RRC are compared with the true labels to calculate
whether deep learning is feasible. Although the accuracy index, as a powerful tool, can
measure the integral performance directly, it is occasionally insufficient for validation of the
classification model. It is possible that a model with high accuracy could perfectly predict
the great majority of stability samples in imbalanced datasets while poorly predicting the
rest of the instability samples. Obviously, the minority of samples showing combustion
instability are expected to be predicted correctly. The precision, recall and F1-score indices
are thus introduced to avoid the aforementioned extreme situations.

The ROC curve in each direction is presented in Figure 8. The diagonal line represents
the performance of a random classifier. The ROC curves of good classifiers are close to the
upper left part and their AUC values often range from 0.85 to 1. The AUC values of the
“Up”, “Right” and “Down” directions indicate that these directions are predicted perfectly,
outperforming the state-of-the-art method. The ROC curves of Ref. [45] are provided in the
appendices for comparison.

Comparisons between different models are important when constructing on-line TAI
prediction systems. The compared models are divided into two types. The first type adopts
the pre-treatment strategy and the second type is based on the original time series data. A
comparison of the two types also allows us to examine the benefits of the pre-treatment.
Several models of each type are presented in Table 2 to show the effective mechanisms.

In RRC, CBAM is introduced to enhance the performance of ResNet-18 networks. In
addition, other attention mechanisms are used. Squeeze-and-Excitation (SE) is adopted
with the ResNet-18 backbone, which is focused on channel attention [56]. This model is
referred to as RRS in this section and the only difference between this model and RRC is
the attention mechanism. Another backbone network, the Alex network, is introduced
to substitute the ResNet-18 and the attention mechanism is still CBAM; we refer to this
framework as RAC to examine the effect of the networks [60]. In the third model, referred
to as RVC, the ResNet-18 model is substituted by the VGG network [61]. Note that Alex
and VGG, with different frameworks and parameters, are consistent with ResNet-18 in
terms of inputs and outputs. In the second type, Multi-Layer Perceptron (MLP) and the
long shot-term memory (LSTM) network are the models usually used as a baseline, which
utilize the original time series data as inputs.
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Table 2. Performance evaluation indices with various methods.

Models
Recurrence Matrix-Based Methods Original Time Series Data-Based Methods

RRC RRS RAC RVC CNN-LSTM MLP LSTM

Accuracy 0.9106 0.8633 0.8786 0.8864 0.8770 0.7967 0.88

Precision (Up) 0.8541 0.7629 0.7695 0.8525 0.8007 0.6715 0.8089
Recall (Up) 0.8664 0.8118 0.7971 0.8647 0.7640 0.8260 0.8118

F1-score (Up) 0.8602 0.7866 0.7831 0.8586 0.7819 0.7408 0.8103
AUC (Up) 0.90 0.84 0.84 0.92 0.89 0.73 0.80

Precision (Right) 0.9023 0.8764 0.7761 0.8423 0.8850 0.9600 0.8453
Recall (Right) 0.6827 0.8311 0.6183 0.6678 0.6372 0.0267 0.5311

F1-score (Right) 0.7774 0.8531 0.6883 0.7450 0.7410 0.0519 0.6523
AUC (Right) 0.98 0.98 0.94 0.96 0.95 0.83 0.75

Precision (Down) 0.9579 0.9326 0.9301 0.9422 0.9536 0.9785 0.9492
Recall (Down) 0.9630 0.9277 0.9500 0.9407 0.9387 0.6823 0.9653

F1-score (Down) 0.9560 0.9301 0.9400 0.9415 0.9461 0.8040 0.9572
AUC (Down) 0.99 0.99 0.99 1.0 0.95 0.98 0.97

Precision (Left) 0.7657 0.5151 0.6075 0.4392 0.5672 0.3271 0.5928
Recall (Left) 0.5883 0.4975 0.5366 0.4850 0.7242 0.2183 0.4417

F1-score (Left) 0.6654 0.5061 0.5700 0.4610 0.6362 0.2619 0.5062
AUC (Left) 0.86 0.76 0.80 0.74 0.91 0.64 0.70
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Table 2 presents a comprehensive comparison of the experimental results, includ-
ing general accuracy, precision, recall, F1-score and AUC score, for different models.
Appendix A contains the ROC curves with the AUC scores of the involved models. Overall,
the RRC model outperforms the CNN-LSTM and other models in most indices. The RRC
model achieves the highest accuracy score among all the models. Moreover, the accuracy
scores of the other three recurrence matrix-based models are close to the CNN-LSTM model,
with slight fluctuations, indicating that these models are comparable to the state-of-the-art
model, CNN-LSTM. Additionally, the ROC-AUC values of the models are also presented
in Table 2. The RRC model outperforms the CNN-LSTM model in most directions. Though
the AUC scores of the CNN-LSTM model are very good, the RRC model achieves a better
performance in most directions. However, the AUC value of RRC in the Left direction is 5%
smaller than CNN-LSTM. In the other three directions, the AUC values of the CNN-LSTM
model are close to the RRS, RAV and RVC models. Thus, the recurrence matrix-based
methods can achieve results as good as the state-of-the-art method, and the RRC framework
is the best. The performance of the other two primary original data-based methods, namely
MLP and LSTM, fluctuated in terms of precision and recall indices. Overall, RRC outper-
forms the CNN-LSTM model in most directions, as shown in Table 2. The considerable
advantages of the RRC model over the CNN-LSTM model indicate that the RRC model has
high accuracy and robustness. Two main conclusions can be derived: (1) the pre-treatment
strategy proposed in this study is effective, as when all models are used in combination
with pre-treatment, the results are at least comparable with the existing optimal method;
(2) deep learning methods provide a great advantage compared to baseline models.

For feature visualization, we borrowed some ideas regarding feature extraction from
the computer vision field since recurrence matrices can be considered images. In this
way, the process from pre-treatment to RRC output can be visualized. In the initial stage
of the deep learning framework, a few feature maps are generated by sliding multiple
convolutional filters over the input recurrence matrix. More abundant feature maps are
generated by further convolutional operations and, thus, the neural network is character-
ized by multiple layers. Shallow layers characterize the basic features of the input matrices,
including the outline, texture, edges and corners, which are relevant to the local informa-
tion of the recurrence matrix. The local information is referred to as the small receptive
field in the computer vision field. Conversely, deep layers relevant to regions with a large
receptive field can focus on more abstract features, which are hard to understand in the
physical world.

Figure 9 illustrates the process from basic to abstract features using the first and second
samples in the validation datasets as examples. The corresponding instability vectors are
[0 1 1 0] and [1 1 0 0], respectively, which are relevant to the impending instability in some
directions. Thus, some regular structures can be seen in Figure 9a,f. These features in
recurrence plots are typical chaotic dynamical characteristics. Figure 9 describes the effects
of different layers on the generated feature maps. The four main layers comprise the main
structure of the ResNet-18 network and each layer consists of four convolution layers. With
the increase in the depth of the network, the number of channels, i.e., feature maps, will
increase as well. Sixteen channels of the batch normalization layers in each main layer are
presented in Figure 9 for brevity. Basic and abstract features are both important for the
training process. The significance of these features increases with the increase in the depth
of the network and, thus, can play more of a role in feature extraction than the indices in the
RQA method might suggest. Feature maps in shallow layers are fine-grained, while those
in deep layers are coarse-grained. Figure 9b,c are relevant to some fine-grained features,
including texture, edges and corners, while Figure 9d,e consist of abstract features in a
coarse-grained fashion, along with Figure 9i,j.

To further visualize how the networks extract features, the feature maps in main layer
1 of the second sample are compared with the features generated by endowing weights of
the neural network with random values, as shown in Figure 10. Altogether, 64 feature maps
marked with different colors in Figure 10b are generated in the first main layer of ResNet-18.
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It is easy to classify these features due to their clear focus. Specifically, these features are
characterized by their overall structures or local recurrence behaviors. This is achieved
based on the well-trained convolution filters or other parameters in ResNet-18. When the
convolution filters are assigned random values ranging from −1 to 1, the resulting feature
maps become very average and, thus, cannot distinguish various recurrence characteristics.
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Images from (b,c) denote the first sample and images (g–j) denote the second sample. Note that only
parts of channels are presented for brevity. (a) Recurrence plot; (b) batch-normal layer in main layer
1; (c) batch-normal layer in main layer 2; (d) batch-normal layer in main layer 3; (e) batch-normal
layer in main layer 4; (f) recurrence plot; (g) batch-normal layer in main layer 1; (h) batch-normal
layer in main layer 2; (i) batch-normal layer in main layer 3; (j) batch-normal layer in main layer 4.
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For better visualization, four types of feature maps in Figure 10b are marked with
colored boxes. Red boxes are relevant to the overall texture in recurrence plots and blue
boxes denote those with local recurrence behavior regions. Green and purple boxes rep-
resent the transition state from blue to red boxes. Green boxes are more relevant to local
recurrence regions, whereas purple boxes are more focused on overall texture. The feature
channels increase with the increased depth of the network. Thus, more profound features
can be captured.

4. On-Line Prediction System with Rolling Windows

The optimal network trained in the previous section is now frozen to predict com-
bustion instability in a segment of recorded signals. Prediction is the first step in active
combustion control. To achieve this purpose, this section presents on-line simulations for
the application of active control in a combustion system.

In general, an on-line prediction system is obtained by continuously outputting insta-
bility vectors based on the RRC framework in the form of rolling windows, as shown in
Figure 11. The most important parameters in this system are the time delay and length
of the rolling time windows. The delay is associated with the inference time spent calcu-
lating the instability vectors. The shorter the time delay, the more RRC predictions can
be completed. If the process of outputting results is extremely rapid, the delay of rolling
windows will be as short as the sampling frequency of the sensors, i.e., 0.1 ms for 10 kHz.
However, experiments on NVidia 3080 GPU show that the time needed to output a single
instability vector is about 50 ms, which is longer than Ref. [46] (19 ms) as the ResNet-18
neural networks have more parameters. The time delay scale of rolling windows is thus
determined to output predictions with intervals of 500 sampling points, which is essentially
the rolling gap between adjacent windows. Note that the inputs are composed of 0.3 s time
series samples. Therefore, the length of a rolling window is 3000.

Aerospace 2024, 11, x FOR PEER REVIEW 19 of 24 
 

 

calculate the accuracy index to quantitatively verify the results: acc = 99.54%. The very 
high on-line accuracy shows that the RRC framework is robust and precise. The con-
vincing accuracy results demonstrate that the prediction framework is able to capture 
dynamical features in an on-line combustion control system. 

 
Figure 11. Simulation of on-line prediction of TAI through rolling window and RRC. 

 
Figure 12. Continuous predictions and corresponding true labels are compared, where the black 
lines denote the constant true label from experiments while the blue lines are the continuous pre-
dictions determined by RRC. Note that predictions in the third direction (“Down” direction) are 
all at the constant number of 0, as shown by the black line. 

Figure 11. Simulation of on-line prediction of TAI through rolling window and RRC.



Aerospace 2024, 11, 455 19 of 24

After determining the delay and length of rolling windows, the optimal RRC model is
implemented on the complete 10.3 s time series recorded from the operation point referred
to as PC1 in Ref. [40], with 30 m/s of bulk velocity and a 0.70 equivalence ratio, where
the instability vector is T = [1 1 0 0]. It should be noted that continuous time series data
from PC1 fed into RRC have never been used to train the neural network. If the RRC
framework is accurate and robust, it can predict instability vectors correctly. With regard to
the four directions, the continuous results of instability vectors are represented in Figure 12.
The threshold is still regulated as 0.5 and the overall results are consistent with the true
instability vector. In the Up direction, all predictions are correct, with the outputs showing
gentle fluctuations of around 1.0. Similar to the Up direction, predictions in the Down
and Left directions are all correct as well. However, there are short periods in the Right
directions with incorrect predictions. This is caused by the intermittent nature of the
recorded signals when the system approaches instability with a higher bulk velocity. We
simply calculate the accuracy index to quantitatively verify the results: acc = 99.54%. The
very high on-line accuracy shows that the RRC framework is robust and precise. The
convincing accuracy results demonstrate that the prediction framework is able to capture
dynamical features in an on-line combustion control system.
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5. Conclusions

In summary, this paper proposes a new framework integrating chaotic methods and
deep learning models to predict combustion instability. To the authors’ knowledge, this is
the first attempt in which recurrence matrices have been used in deep learning models to
predict combustion instability. Specifically, acoustic pressure, acoustic flux and heat release
rate fluctuations are addressed in the recurrence matrices in the pre-treatment stage, which
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is the input of the RRC framework. The output of the model indicates the proximity of
unstable operation points in terms of bulk velocity and equivalence ratio.

The promising prediction results achieved by the proposed RRC demonstrate the
ability of deep learning to capture relevant features of impending instability. It can ro-
bustly predict unstable operation points without entering unstable regions, contributing
to monitoring and early warning combustion instability in a combustion control system.
Furthermore, this study introduces feature extraction and visualization techniques to reveal
how deep learning models extract features and analyze the mechanism quantitatively as an
initial step. The comparison results of various models suggest that recurrence matrix-based
models are comparable to the state-of-the-art CNN-LSTM model and the proposed RRC
model outperforms other models, achieving the best results.

There are some ways to improve this study. First, it is hard for data-driven methods
to investigate physical mechanisms. Then, the feasibility of applying this method to other
combustion combustors must be determined to enhance the robustness of the proposed
framework. Validation of the framework on other experiments is thus also necessary.
Furthermore, the calculation complexity of different models should be compared to provide
computation information for combustion control systems in the future. Finally, a better
comprehension of how network models predict the proximity of instability and some more
physical mechanisms is desired to contribute to the theoretical understanding of avoiding
combustion instability.
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Appendix A

ROC curves of the included models, i.e., RAC, RRS and RVC, are presented in
Figure A1.
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