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Abstract: This study develops a robust 0–1 linear optimization programming model for airport group
timetable coordination, aiming at assigning each flight at an airport to a unique time slot to avoid
conflicts between multiple flights from different airports at the same shared waypoint in an uncertain
environment. Flight times between airports and shared waypoints are assumed to have an arbitrary
distribution in the interval. Furthermore, some practical constraints, such as the time-varying capacity
of each airport, waypoints affected by factors such as weather and traffic control, and maximum
delay times for each flight, are considered in this study. The objective is to minimize the total delay
time for all flights. The solution is obtained using the RSOME solver. Finally, a real-world case of
the Beijing–Tianjin–Hebei airport group, China, is used to optimize the schedules of four airports
to prove the accuracy and effectiveness of the method developed in this study. The influence of the
budget of uncertainty parameters on model performance is also analyzed.

Keywords: airport group coordinated timetable; robust optimization model; uncertain travel time

1. Introduction

Flight timetables are the core element of the daily operation of airlines, airports, and air
traffic management bureaus. They aim to determine the order in which aircraft depart and
arrive at the airport. They are determined by the flight performance of aircraft, affecting the
level of the safety interval in the process of aircraft taking off and landing on the runway
and of aircraft passing through the waypoint. Obviously, flight timetables determine the
maximum number of aircraft in the air. In an airport group, there are various airports and
shared waypoints, where each airport directly connects to different waypoints according to
the distribution of air traffic flow. If several airports are connected to the same waypoint,
the lack of coordinated flight arrival and departure times in these airports may cause flights
to reach waypoints at the same time, resulting in flight conflicts and delays. Compared
with single-airport timetables (SATs), which depend on their own spatial and temporal
distribution of travel demands and ignore how the flight schedules of nearby airports
affect them, airport group coordinated timetables (AGCTs) aim at assigning all flights of
each airport to time slots by coordinating their arrival and departure times in multiple
airports to avoid conflicts at shared waypoints. Therefore, it is necessary for authorities to
design reasonable AGCTs to find the optimal relationship between network layouts and
the capacity of each airport and waypoint, the space–time distribution of traffic flow, and
the management rules for the airlines and air traffic controllers to improve operational
efficiency and reduce flight delays and carbon emissions.

Flight times between airports and shared waypoints, related to factors such as the flight
performance of aircraft, bad weather, and pilot behavior, are one of the important inputs
for AGCT design. Most studies have focused on AGCTs with certain flight times [1–4]
and neglected the real-life conditions of uncertain flight times [5–7]. Obviously, AGCT
schedules without consideration of uncertain times are difficult to apply in practice. Various
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stochastic models, such as the expected value model [8] and chance constraints [4], have
been used to deal with such uncertainties. However, the drawbacks of these stochastic
models lie in (1) the distribution functions of uncertain parameters, which are difficult to
obtain but are needed; and (2) the fact that the solution of equivalent deterministic forms
does not satisfy all parameter values. Robust optimization theory is used to avoid the above
defects by tackling the worst-case decision variables in the interval of uncertain parameters
to strictly satisfy all constraints [9]. Hence, it is necessary to study robust optimization
models for AGCTs with interval flight times [4,10].

The main goal of this study was to develop a robust optimization model for coordinat-
ing airport group timetables with uncertain flight times. Two tasks guide our study: (1) the
determination of an optimal airport group timetable by simultaneously coordinating the
arrival and departure times of flights in different airports to avoid conflicts between them at
the same shared waypoint and considering some practical constraints such as the capacity
of each airport and waypoint at different time slots as well as maximum delay times; (2) the
creation of a robust optimization model that would assume interval flight times to analyze
the influence of the budget of uncertainty parameters on model performance. Finally, a
real-world case of the Beijing–Tianjin–Hebei airport group, China, is used to illustrate the
accuracy and effectiveness of our methodology.

The structure of this study is as follows: Section 2 summarizes the relevant literature.
Section 3 describes the methodology of the proposed model and its mathematical model.
Section 4 compares the difference in the timetables of four airports in the Beijing–Tianjin–
Hebei airport group before and after optimization and discusses the sensitivity analysis
of different parameters on optimal schedules. Finally, concluding remarks and future
directions are given in Section 5.

2. Related Works

The time slot allocation problem is often viewed as a resource-constrained project
scheduling challenge, as scrutinized by Brucker et al. [11]. In the aviation domain, the
specific aim [12] is to distribute a fixed number of resources (i.e., time slots) over time
for relevant activities (i.e., arrivals/departures) while adhering to various hard and soft
constraints [13,14] such as resource availability, timing, capacity, and continuity. Time
slot allocation can be categorized into two types based on the geographical scope of the
scheduling problem: single-airport models and airport network models. Currently, the
majority of research endeavors are predominantly concentrated on single-airport time slot
allocation. A widely used criterion for assessing the feasibility of flight schedule requests is
the total schedule displacement at a single airport, which reflects the efficiency of schedule
allocation. For example, Zografos et al. [15] proposed an integer linear model aimed at
minimizing total displacement to comply with existing EU/IATA regulations, operational
constraints, and coordination procedures. Subsequent studies have introduced additional
objectives, such as minimizing rejected requests, maximizing airline profitability, enhancing
passenger welfare, and expanding flight slots beyond acceptable time windows [2,16–19].
It is noteworthy that much of the research has focused on single-day operations or entire
seasons at busy airports. Ribeiro et al. [20] extended this to encompass the flight schedule
allocation problem for entire seasons at medium-sized airports. However, solutions that
merely minimize total displacement may not ensure equitable allocation among competing
airline flight schedule requests. Multi-objective models for time slot allocation have been
devised [1,2,21], and recent studies have integrated fairness [22–24] and acceptability
considerations [18,19,25,26] into existing scheduling models. Experimental findings suggest
that sacrificing a small number of flight schedule coordination efficiencies can significantly
enhance other performance metrics while boosting the actual utilization of airport flight
slots. Nevertheless, the existing literature predominantly addresses constraints from the
supply side without explicitly considering airline preferences regarding which requests
to replace and by how much. Katsigiannis et al. [2] introduced the Time Flexibility Index
(TFI) from the airline perspective to express preferences for flight scheduling flexibility,
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thereby facilitating the dynamic allocation of airport apron and terminal resources. This
approach reduces previously considered scheduling quality metrics (improvement ranging
from 5.5% to 24%), minimizes maximum and total displacement, and notably improves
flight schedule request fulfillment and passenger satisfaction. Subsequently, Fairbrother
et al. [27] proposed a two-stage mechanism model for congested airport flight schedule
scheduling that not only addresses efficiency and fairness objectives but also accounts
for airline preferences when allocating total displacement associated with each airline’s
flights. This model enhances airport capacity utilization, refines airport landing and take-off
schedules, and exhibits considerable flexibility.

While the benefits of single-airport time slot allocation are apparent, there are also
several challenges. Specifically, allocating flight slots at a single airport demands meeting
airline requirements while navigating various constraints, presenting significant challenges
for slot coordinators. Additionally, the practical management of time remains subject to
numerous random factors. In addressing the single-airport flight scheduling problem, a
notable feature of airport network collaborative scheduling is the sharing of terminal area
airspace resources, focusing on departure and arrival convergence points. Scholars have
extensively studied flight schedule optimization within airport networks. Castelli et al. [28]
introduced a network-level slot allocation model that considers interdependencies among
different airport schedules, aiming to minimize airline-requested slot displacements caused
by inconsistencies in slot allocations between departure and destination airports. Building
upon this, Pellegrini et al. [29] expanded the model using metaheuristic algorithms like
Iterated Local Search (ILS) and Variable Neighborhood Search (VNS) for resolution. How-
ever, both models oversimplify matters by failing to consider the allocation of requests
across a series of flight slots. Corolli et al. [5] developed stochastic programming models
allocating requests to a series of slots, serving as tools for slot coordinators to balance
schedule/request discrepancies and future delays. It is worth noting that optimization
models for flight scheduling within airport networks struggle with handling large traffic
samples due to capacity constraints and scalability issues. Although Pellegrini et al. [29]
proposed model algorithms, they could not prove the optimality of the returned solutions.
Consequently, a wealth of literature has emerged employing various algorithms to solve
large-scale, intricate instances, including stochastic programming [4] and heuristic algo-
rithms [30]. Experimental findings indicate that optimizing flight schedules within airport
groups effectively alleviates operational safety and efficiency declines caused by large-scale
and overly busy airports. Through unified management and cooperative division of la-
bor among member airports, each airport’s flight schedule resource utility is maximized,
achieving functional complementarity and reducing the number of flight conflicts between
adjacent airports.

Most studies addressing flight schedule optimization have been developed under
deterministic conditions, with relatively few focusing on uncertainties in air traffic flow
management. Those that do primarily address the assignment of ground delays to aircraft
amidst uncertain airport capacities, known as stochastic ground holding problems, span-
ning both single-airport and airport network scenarios [31–33]. Corolli et al. [5] proposed
a scenario-based model for flight schedule allocation within airport networks under un-
certain capacities, utilizing the Sample Average Approximation (SAA) method to manage
uncertainties. Various approaches exist for dealing with uncertainty, including the use
of Markov decision processes [34], chance constraints [4,8], and heuristic algorithms [35].
Subsequently, Gupta and Bertsimas [36] addressed stochastic air traffic flow management
problems, simultaneously considering adaptability and robustness in uncertain airport
arrival and departure capacities due to weather. They noted that robust problems inherit
attractive features from deterministic problems, often at a minimal cost of robustness.
Recently, some scholars have explored robust runway scheduling problems under uncer-
tain conditions [37] and robust optimization models for uncertain airport capacities [9].
However, few studies have employed robust programming to address flight slot allocation
optimization problems for network airports with uncertain flight times [38].



Aerospace 2024, 11, 457 4 of 15

3. Methodology
3.1. Research Framework

An airport group network comprises some airports, shared waypoints, and links
between them. There are sets of arrival and departure flights with their planned take-off
or landing times in an airport, where arrival flights arrive at the airport at their planned
landing time after a short flight from the waypoint, and departure flights fly through the
waypoint for some time and fly for a certain amount of time to the shared waypoint after
departing from the airport at their planned take-off times. The whole day is divided into
288 time slots based on 5-min intervals, i.e., the first and last time slots are 00:00–00:05 and
23:55–24:00. Each airport flight is assigned a unique time slot by considering the planned
time and maximum delay time. Obviously, the lack of coordinated arrival and departure
times of the related flights in these airports must cause them to reach a waypoint at the
same time, resulting in flight conflicts and delays. Furthermore, if the number of flights
in an airport assigned to a time slot is less than the airport capacity, the number of flights
through a waypoint assigned to a time slot is less than the waypoint capacity. In this study,
an uncertain flight time between airports and shared waypoints, affected by bad weather,
etc., is assumed to be an interval variable. The main purpose of this study is to reveal the
optimal coupling relationship between the space–time distribution of flights, the budget of
uncertainty during flight time, the AGCT, and operational efficiency.

Figure 1 illustrates the principles and scope of the proposed methodology. The study
area contains three airports (A1–A3) and two shared waypoints (P1 and P2). The number
on the line between the airport and the waypoint denotes the flight time. In this case, there
are three arrival flights (IF001–IF003) and six departure flights (OF001–OF006) with their
assigned time slots at three airports. For example, IF001 arrives at waypoint P1 at time slot
4 and will land at airport A1 after flying during the 4 time slots. For A3, two flights, IF003
and OF005, are assigned to slot 6. If the airport capacity for this time slot is less than 1, the
schedule is not feasible. The two flights IF002 and OF001 of P1 at time slot 6 experience the
same phenomenon.
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The purpose of a robust 0–1 linear optimization programming model is to assign
all flights of each airport to time slots by coordinating their arrival and departure times
in multiple airports to avoid conflicts between them at the same shared waypoint and
minimize the total delay time of all flights. To ensure that this study could fit well with
real-world situations, we made the following assumptions:

(1) Full flight information for each airport is available in advance.
(2) Time-varying airport capacity is mainly determined by the safety interval between the

aircraft on a runway as well as the number of runways available for aircraft to take
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off or land at different time slots, which is affected by some factors such as weather
and traffic control.

(3) Time-varying waypoint capacity is mainly determined by the horizontal and vertical
separation between flight levels in a waypoint, as well as the number of flight levels,
which is also affected by some factors such as weather and traffic control.

(4) Upper and lower bounds of flight times between airports and shared waypoints could
be obtained from big data.

3.2. Notation

All definitions and notations used hereafter are summarized in Table A1.

3.3. Formulation

In this section, a novel 0–1 linear integer programming model of the AGCT with a
certain flight time is first given as follows:

Min f = ∑∀a∈A ∑∀i∈FOut
a ∪FIn

a ∑∀k∈K hik(k − Ti) (1)

such that
∑∀k∈K hik = 1, ∀i ∈ FOut

a ∪ FIn
a , ∀a ∈ A (2)

0 ≤ hik(k − Ti) ≤ di, ∀i ∈ FOut
a ∪ FIn

a , ∀a ∈ A, ∀k ∈ K (3)

∑∀i∈FOut
a ∪FIn

a
hik ≤ Ck

a , ∀k ∈ K, ∀a ∈ A (4)

∑∀i∈FOut
a ∪FIn

a ∑2
j=0 hik ≤ C15

a , ∀k ∈ K, ∀a ∈ A (5)

∑∀i∈FOut
a ∪FIn

a ∑5
j=0 hik ≤ C30

a , ∀k ∈ K, ∀a ∈ A (6)

∑∀i∈FOut
a ∪FIn

a ∑11
j=0 hik ≤ C60

a , ∀k ∈ K, ∀a ∈ A (7)

∑∀a∈A

[
∑∀i∈FOut

a,w
hik−Taw + ∑∀i∈FIn

a,w
hik+Taw

]
≤ Qk

w, ∀w ∈ N, ∀k ∈ K (8)

∑∀a∈A

[
∑∀i∈FOut

a,w ∑2
j=0 hik+j−Taw + ∑∀i∈FIn

a,w ∑2
j=0 hik+Taw

]
≤ Q15

w , ∀w ∈ N, ∀k ∈ K (9)

∑∀a∈A

[
∑∀i∈FOut

a,w ∑5
j=0 hik+j−Taw + ∑∀i∈FIn

a,w ∑5
j=0 hik+Taw

]
≤ Q30

w , ∀w ∈ N, ∀k ∈ K (10)

∑∀a∈A

[
∑∀i∈FOut

a,w ∑11
j=0 hik+j−Taw + ∑∀i∈FIn

a,w ∑11
j=0 hik+Taw

]
≤ Q60

w , ∀w ∈ N, ∀k ∈ K (11)

The objective function, represented by Equation (1), is to minimize the total delay time
of all arrival and departure flights for all airports. Equations (2)–(10) are constraints, where
Equation (2) ensures that each flight must be assigned to a slot time; Equation (3) ensures
that the deviation between the planned time slot and the actual one of each flight is within
a certain range; Equation (4) guarantees that the number of arrival and departure flights at
an airport at each time slot cannot exceed its maximum capacity; Equations (5)–(7) ensure
that the number of arrival and departure flights at an airport in any 15 min/30 min/60 min
cannot exceed its maximum capacity; Equation (8) guarantees that the number of arrival
and departure flights at a waypoint in each time slot cannot exceed its maximum capacity;
and Equations (9)–(11) ensure that the number of arrival and departure flights at an airport
in any 15 min/30 min/60 min cannot exceed its maximum capacity.

To deal with an AGCT with uncertain flight time, the affine term
..
Taw + T̂awz depicts

the random flight time between airport a and waypoint w, and the random variable z
is in the range [−1, 1], so flight time has an arbitrary distribution in the interval [

..
Taw −

T̂aw,
..
Taw + T̂aw]. The robust model of the AGCT is given below.

Min
z∈Z

f = ∑∀a∈A ∑∀i∈FOut
a ∪FIn

a ∑∀k∈K hik(k − Ti) (12)
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such that

∑∀a∈A

[
∑∀i∈FOut

a,w
h

ik−[
..
Taw+T̂awz]

+ ∑∀i∈FIn
a,w

h
ik+[

..
Taw+T̂awz]

]
≤ Qk

w, ∀w ∈ N, ∀k ∈ K (13)

∑∀a∈A

[
∑∀i∈FOut

a,w ∑2
j=0 h

ik+j−[
..
Taw+T̂awz]

+ ∑∀i∈FIn
a,w ∑2

j=0 h
ik+j+[

..
Taw+T̂awz]

]
≤ Q15

w , ∀w ∈ N, ∀k ∈ K (14)

∑∀a∈A

[
∑∀i∈FOut

a,w ∑5
j=0 h

ik+j−[
..
Taw+T̂awz]

+ ∑∀i∈FIn
a,w ∑5

j=0 h
ik+j+[

..
Taw+T̂awz]

]
≤ Q30

w , ∀w ∈ N, ∀k ∈ K (15)

∑∀a∈A

[
∑∀i∈FOut

a,w ∑11
j=0 h

ik+j−[
..
Taw+T̂awz]

+ ∑∀i∈FIn
a,w ∑11

j=0 h
ik+j+[

..
Taw+T̂awz]

]
≤ Q60

w , ∀w ∈ N, ∀k ∈ K (16)

The other constraints are the same as above. The uncertainty set Z of the flight time is
described as follows: Z = {z : ∥ z ∥∞ ≤ 1, ∥ z ∥1 ≤ Γ}, where Γ denotes the budget of the
uncertainty parameter.

4. Solution Method

The framework for a data-driven solution for the AGCT is shown in Figure 2. The
interval of the time slot is related to the safety of aircraft operation, which depends on the
relevant standards of the ICAO. The whole day is divided into time slots based on this
interval. According to the trajectories of all arriving and departing aircraft at different
airports in the airport group, the busy waypoints can be identified. In this case, we can
determine the busy waypoints as well as the planned departure/arrival time slot of each
flight. We can also calculate the upper and lower bounds of flight time slots between
airports and busy waypoints. These are the two inputs for the robust model. After we
manually set the budget of the uncertainty parameter, the model can be solved using the
RSOME solver.
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5. Case Study
5.1. Example Description

A realistic airport group network consisting of four airports and four waypoints in the
Beijing–Tianjin–Hebei region, China, shown in Figure 3, is used to verify the feasibility and
accuracy of the proposed model. As shown in Table 1, there are a total of 1291 arrival and
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1240 departure flights at all airports, and 52.6% of these flights pass through these busy
waypoints. The other parameters are set as follows: di = 120 min, C15

a = 3Ck
a , C30

a = 6Ck
a ,

C60
a = 12Ck

a , Qk
w = 4, Q15

w = 3Qk
w, Q30

w = 6Qk
w, Q60

w = 12Qk
w.
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Table 1. Flight information.

Airport Waypoint

Name Number of
Arrival/Departure Flights Ck

a Name Flight
Times (slots)

Number of
Arrival/Departure Flights

ZBAA 799 (444/355) 8

P522 4 118 (95/23)

P86 8 95 (31/64)

VAGBI 7 129 (29/100)

DPX 3 89 (65/24)

ZBAD 1033 (515/518) 6

P522 5 104 (65/39)

P86 8 154 (60/94)

VAGBI 8 120 (53/67)

DPX 4 142 (109/33)

ZBTJ 455 (216/239) 4

P522 2 64 (54/10)

P86 7 48 (13/35)

VAGBI 6 68 (14/54)

DPX 1 47 (37/10)

ZBSJ 244 (116/128) 2

P522 5 54 (45/9)

P86 7 31 (10/21)

VAGBI 6 48 (7/41)

DPX 4 22 (16/6)

5.2. Results

The optimal solution for 2531 flights assigned to their actual time slots with a total
delay of 1305 slots was derived using the RSOME solver. Figure 4 depicts the offset between
planned and actual times for all flights at several airports. Most flights were delayed for less
than half an hour (i.e., six slots), rarely more than an hour (i.e., twelve slots). As shown in
Table 2, we found that (1) the total delay time, average delay time, and number of delayed
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flights of the four airports are ranked as follows: ZBAD is the largest, ZBAA is second,
ZBTJ is third, and ZBSJ is the smallest; (2) except for at ZBAD, there were no flights delayed
for more than half an hour at the airports.
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Table 2. Basic information for the optimal solution.

Airport Total Delay Time
(slots)

Average Delay Time
(slots)

Number of Flights
Not Delayed

Number of Delayed Flights

More than
30 min

More than
60 min

More than
120 min

ZBAA 192 0.24 668 0 0 0

ZBAD 960 0.93 670 33 12 0

ZBTJ 78 0.17 398 0 0 0

ZBSJ 75 0.31 189 0 0 0

Figures 5 and 6 depict the number of flights at different time periods at each waypoint
and airport before and after optimization. The blue and red lines indicate the results
before and after optimization, respectively. Based on these results, we can conclude that
(1) according to the planned arrival or departure times of all flights before optimization,
each airport/waypoint’s flight flow is greater than its capacity in some periods (i.e., the
timetable is not feasible), while the former is less than the latter in other periods (i.e., time
slot resources are wasted); (2) after optimization, the number of flights always at the airport
is smaller than its capacity at different times, while that of the waypoint is also smaller than
its capacity at different times, so the timetable is feasible; (3) for each airport or waypoint,
flight delays during peak hours are longer than those during low peak hours.

5.3. Sensitivity Analysis

Figure 7 shows how the degree of uncertainty for the flight time influences model
performance. When Γ is set as 0, 0.5, 1, and 1.5, the total flight delay times for assigning
all flights to their unique time slots are 1305 slots, 6608 slots, 6608 slots, and 6608 slots,
respectively. The reason for this phenomenon is that the increase in the degree of uncertainty
may lead to a wider feasible time window of flight time and result in a reduction in the
solution space satisfying all relaxation variables, which in turn increases the total flight
delay time. If an increase in Γ, such as from Γ = 0 to 0.5, leads to a better solution in a
reduced solution space, the objective function will increase. If an increase in Γ, such as from
Γ = 0.5 to 1, does not lead to a better solution in the reduced solution space, the objective
function remains unchanged. Although the increase in Γ generates a schedule with more
flight delays, it is robust and more easily applied in practice.
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Figure 8 shows how different capacities of airports affect model performance. Airport
capacity is mainly determined by a safety interval between the aircraft as well as the number
of runways available for aircraft take-off or landing. When it is gradually expanded by 1,
1.1, 1.2, and 1.3 times, the total flight delay times for assigning all flights to their unique
time slots are 1305 slots, 1305 slots, 702 slots, and 632 slots, respectively. The reason for this
phenomenon is that the increase in airport capacity will gradually ease the contradiction
between runway supply and demand, since the number of flights has not changed. If it
reaches a critical value, the total flight delay times will decrease; otherwise, the value will
stay the same.
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Figure 9 indicates how different capacities of waypoints influence the model’s per-
formance. The results presented in Figure 9 are similar to those in Figure 8. When it is
gradually expanded by 1, 1.1, 1.2, and 1.3 times, the total flight delay times for assigning all
flights to their unique time slots are 1305 slots, 1305 slots, 1305 slots, and 1280 slots, respec-
tively. The increase in waypoint capacity allows more flights to pass through the location
at the same time, resulting in a reduction in the total flight delay time. However, when it
is increased to a certain extent, the flight delay may not depend on the limited waypoint
capacity because its capacity is greater than the number of aircraft passing through the
waypoint.
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6. Conclusions

This study introduced a robust optimization model for airport group coordinated
timetables with interval flight times to coordinate the arrival and departure times of flights
at different airports and avoid conflicts between them at the same shared waypoint. This
was carried out in order to determine the optimal relationship between the spatial and
temporal distributions of flight travel demand, the budget of the uncertainty parameter,
and the total delay time of all flights. Practical constraints such as the capacity of each
airport and waypoint at different time slots and the maximum delay time for each flight
were also considered in the proposed model. The RSOME solver was used to solve our
model. Finally, a practical test in a real-world case of the Beijing–Tianjin–Hebei airport
group, China, was conducted to prove the accuracy and effectiveness of this study’s model.

The main findings include the following points:

(1) In the original flight planning data, the number of flights at each airport or waypoint
for some of the time slots is greater than its capacity, making the current timetable
unworkable. Once the current timetable has been optimized, it will satisfy some
practical constraints, such as the capacity of each airport and waypoint at different
time slots and the maximum delay time for each flight. Hence, this study can be used
as a tool for authorities to yield valid arrival and departure times of flights at different
airports in an airport group to improve operational efficiency.

(2) When flight flow is greater than the airport or waypoint capacity, the reduced capacity
of the airport or waypoint at different time slots increases the total delay time of
all flights by requiring each flight to relax its maximum delay time limit to obtain a
feasible timetable.

(3) As the budget of uncertainty in flight time gradually increases, each flight with a
wider feasible time window of flight time may lead to a reduction in the solution space
for assigning all flights to their unique time slots to satisfy all relaxation variables,
resulting in increased total flight delay times. Although a schedule with a larger
budget of uncertainty in flight time leads to more flight delays, it is robust and easily
applied in practice.

However, the shortcomings of our model lie in two aspects: (1) it is necessary to
balance multiple competing objectives, such as airline and airport fairness and flight
delays, to find the best schedule; and (2) some realistic constraints, such as the priority
of flights, transfers between flights, and workload of air traffic controllers, are neglected.
Extending this study to a multi-objective one with more realistic constraints is the aim of
our future research.
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Appendix A

Table A1. Mathematical symbols used in the AGCT model.

Sets:

A Set of airports
K Set of time slots
N Set of waypoints

FOut
a Set of departure flights at airport a; ∀a ∈ A
FIn

a Set of arrival flights at airport a; ∀a ∈ A
FOut

a,w Set of departure flights at airport a passing though waypoint w; ∀a ∈ A, ∀w ∈ N
FIn

a,w Set of arrival flights at airport a passing though waypoint w; ∀a ∈ A, ∀w ∈ N

Indices:

k Time slot
i Flight
a Airport
w Waypoint

Parameters:

Ti Planned time slot of flight i; ∀i ∈ FOut
a ∪ FIn

a , ∀a ∈ A
di Maximization deviation in time slot of flight i; ∀i ∈ FOut

a ∪ FIn
a , ∀a ∈ A

Ck
a Capacity of airport a at time slot k; ∀a ∈ A, ∀k ∈ K

C15
a Capacity of airport a during 15 min; ∀a ∈ A

C30
a Capacity of airport a during 30 min; ∀a ∈ A

C60
a Capacity of airport a during 60 min; ∀a ∈ A

Qk
w Capacity of waypoint w at time slot k; ∀w ∈ N, ∀k ∈ K

Q15
w Capacity of waypoint w during 15 min; ∀w ∈ N

Q30
w Capacity of waypoint w during 30 min; ∀w ∈ N

Q60
w Capacity of waypoint w during 60 min; ∀w ∈ N

Taw Flight time between airport a and waypoint w; ∀w ∈ N, ∀a ∈ A
..
Taw Average flight time between airport a and waypoint w; ∀w ∈ N, ∀a ∈ A
T̂aw Deviation of flight time between airport a and waypoint w; ∀w ∈ N, ∀a ∈ A

z Random variable
Z Uncertainty set
Γ Budget of uncertainty in flight time

Decision variables:

hik Whether the flight i is assigned to time slot k; ∀i ∈ FOut
a ∪ FIn

a , ∀a ∈ A, ∀k ∈ K
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