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Abstract: With the significant expansion of civil aviation, particularly in the low-altitude economy,
there is a significant gap between the escalating demand for airworthiness certification of novel
aircraft designs, such as electric vertical take-off and landing (eVTOL) vehicles, and the inefficiency
of the current safety assessment process. This gap is partially attributed to safety assessors’ limited
exposure to these innovative aircraft models in the safety assessment process, necessitating extensive
efforts in identifying precedents and their handling strategies. Complicating matters further, perti-
nent case studies are scattered across diverse, unstandardized digital formats, obliging assessors to
navigate voluminous electronic records while concurrently establishing links among fragmented in-
formation scattered across multiple files. This study introduces an advanced information integration
methodology, comprising a multi-level path-based architecture and a self-updating algorithm. The
proposed method not only furnishes safety assessors with pertinent knowledge featuring explicative
interconnectedness automatically, but also dynamically enriches this knowledge corpus through
operational usage. Additionally, we devise a suite of evaluative criteria to validate the capacity of our
method in processing and consolidating relevant safety datasets. Experimental analyses affirm the
efficacy of our proposed approach in streamlining and refreshing safety assessment data. The automa-
tion of the retrieval of analogous cases, which relieves the reliance on expert knowledge, enhances
the efficiency of the overall safety appraisal procedure. Consequently, this research contributes a
solution to enhancing the velocity and accuracy of aircraft certification processes.

Keywords: knowledge graph; multi-level; path-based; safety assessment; civil aviation

1. Introduction

Safety assessment is vital in the design phase of civil aviation systems. Its primary
objectives are to prevent accidents, mitigate their severity, and reduce operational risks,
making it a complex and empirically rich endeavor. This assessment process is crucial for
demonstrating compliance with airworthiness regulations. It involves evaluating system
operations under various conditions, identifying potential accidents, assessing their probable
impact, and recommending strategies to eliminate, mitigate, or manage hazards [1–3].

Consider the following scenario: a safety assessor is conducting an aircraft functional
hazard assessment for Model A and is required to complete the item Impact on Aircraft
of the failure condition Uncommanded Ground Deceleration. In order to fulfill the item, the
assessor must refer to documented impacts under the same failure condition for Model
B. In the event that this information is unavailable or that further examples are required,
the assessor may need to consult Model C or even additional models. A lack of relevant
experience can result in work stoppages as assessors must consult historical cases, which
are often stored in disparate electronic files. It is crucial for assessors to identify the inherent
connections among multiple cases, which can diminish the efficiency and quality of the
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safety assessment process [4,5]. In recent years, there has been a substantial surge in the
development of the low-altitude economy, accompanied by the completion of numerous
novel aircraft designs, such as electric vertical take-off and landing (eVTOL) vehicles. A
pivotal impediment to their widespread market adoption lies in the protracted duration of
airworthiness certification processes. This challenge is deeply rooted in the lack of accu-
mulated expertise among safety assessors concerning the peculiarities of these emerging
technologies, necessitating extensive efforts in case study research and the consolidation of
information gleaned therefrom.

Consequently, this study addresses two research questions:
Q1: What methodologies can be employed to enhance the accessibility of data dis-

persed across diverse documentation pertinent to the model undergoing safety assessment,
and how might we effectively establish connections among these disparate data points?

Q2: How can continuously generated data be automatically updated?
This paper endeavors to address the aforementioned research questions through the

following approaches: (1) The construction of a knowledge graph that integrates informa-
tion from electronic documents and extracts coupling relationships, facilitating its use by
safety assessors. (2) The establishment of an updating system capable of automatically
importing new data, making the process imperceptible for users.

Addressing these existing issues, we propose an information integration method
tailored to the safety assessment process on a civil airborne system. More specifically, we
first propose a multi-level, path-based domain knowledge graph for safety assessment
on civil airborne systems (SACAS) tailored to processes combined with safety assessment
cases, in which we employ the multi-level path-based (MLP) architecture to construct it.
The MLP architecture facilitates hierarchical storage of vast data and embeds process paths
into the knowledge graph, making it the optimal solution for constructing knowledge
graphs tailored to processes and cases. Upon the completion of the SACAS construction,
we next introduce an updating and maintaining automatically (UMA) algorithm. The UMA
algorithm sifts through the relevant portions of new cases from input databases and imports
them into SACAS, facilitating interconnection of safety assessment cases. In particular, we
design a Valid or Invalid (VORI) gate to filter valid data by computing semantic similarity.
Figure 1 presents the flowchart of the information integration method.

Figure 1. The flowchart of the information integration method.
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The remainder of this paper is organized as follows. Section 2 briefly introduces related
works of information integration techniques and knowledge graph construction methods.
In this section, we clarify the research objectives and scope of this paper. Section 3 elaborates
on the method of utilizing the MLP architecture to construct SACAS and provides detailed
insights into the MLP architecture. Section 4 introduces the proposed UMA algorithm and
its module functionalities, achieving the automatic updating and maintenance of SACAS.
Section 5 presents the experimental results and analysis. Section 6 provides the conclusion.

2. Related Works

SAE ARP 4761A [3] outlines the safety assessment process applicable to civil aircraft,
systems, and equipment. This standard provides guidelines for several key safety assess-
ment activities, integral to ensuring the airworthiness and safety of new aircraft designs
and modifications to existing designs. The safety assessment process described in SAE
ARP 4761A highlights the universal steps and methodologies used across different air-
craft models, emphasizing the shared characteristics of the safety assessment procedures.
This approach underlines the comparability and transferability of safety assessment data
among different aircraft models, simplifying the evaluation process by focusing on common
procedural elements rather than model-specific peculiarities.

Moreover, SAE ARP 4761 introduces a Model-Based Safety Assessment (MBSA)
method in the appendix, which diverges from the universal safety assessment process
by accounting for the unique system architectures of different aircraft models. Since it
was introduced in SAE ARP 4761, MBSA has attracted considerable academic attention,
reflecting a burgeoning research landscape dedicated to improving and refining these
model-based safety assessment techniques [6–11]. The MBSA method is critical for aircraft
models with distinct system configurations, as it tailors the safety assessment to reflect the
specific interdependencies and architectural nuances of each model, ensuring a thorough
evaluation of potential safety issues specific to each aircraft type.

This study focuses on the generic safety assessment processes outlined in SAE ARP
4761A. The structure of safety assessment data remains consistent across different aircraft
models and their systems and components [3].

Some of the existing safety assessment data are stored as electronic files. It is difficult
for a safety assessor to make full use of past case data in practical use because of the
lack of substantial interactivity of these case data. In addition, assessors need to follow
certain writing conventions in completing the materials. Although the case data stored in
electronic files can provide some reference for them, the process is still time-consuming
and error-prone.

There is currently no common attempt to solve this problem. Therefore, this makes
full use of the correlation between the case data to provide valuable and accurate references
for safety assessors, which reduces their work difficulty and improves their work efficiency.

In general, most information integration techniques are implemented through “central-
ized” storage. This kind of approaches uses databases and local servers to store information.
However, these approaches has obvious drawbacks in terms of data ownership and data
tampering. Xu [12] applied blockchain technology to revolutionize scientific marine data
integration and sharing. By implementing decentralized storage management, he ensures
traceability and data integrity in projects of the National Marine Data Center’s marine
science and technology programs.

Like blockchain technology, a knowledge graph is a decentralized way of storing
knowledge. The implementation and development of this approach also have significant
long-term implications. A knowledge graph is a graph-based semantic network, which
represents relationships between entities as edges in a graph and entities as nodes in a
graph. This structure enables knowledge graphs to effectively capture the correlations and
semantic information between knowledge, providing powerful support for linking and
querying between data [13–15].
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The applications of knowledge graphs cover a wide range of fields, including infor-
mation retrieval [16,17], question and answer [18–20], knowledge reasoning [21–23], and
intelligent recommender systems [24,25]. Knowledge graphs first appeared in 2012, but it
is only in recent years, with the rapid development of technologies such as deep learning
and natural language processing, that knowledge graphs have gradually become one of
the most active areas of research [26–28]. Nowadays, more and more scholars and research
institutes have started to devote themselves to the construction and application of knowl-
edge graphs, which promotes the continuous progress and innovation in this field. Wu [29]
proposed an intelligent genealogy knowledge graph construction method by combining
the AI big model, which realized the knowledge reasoning of the genealogy knowledge
graph. Zha [30] implemented M2ConceptBase using a context-aware multi-modal symbol
grounding approach to align concepts with images and descriptions. This knowledge base
enriched large multi-modal models’ (LMMs) cross-modal alignment, improving concept
understanding and model performance. Jin [31] proposed an opinion summarization
framework based on multi-modal knowledge graphs (MKGOpinSum) to utilize structural
knowledge in multi-modal data for opinion summarization. Jin proposed a novel common-
attention-based multi-modal embedding framework named CamE for the multi-modal
knowledge graph complementation task. The method can capture the textual semantic
relations and improve the completeness of the knowledge graph.

Although existing databases and information management systems are widely used
across various fields, they face specific challenges in safety assessment. These systems
often struggle to flexibly handle highly complex and dynamically changing safety data,
especially when they involve cross-database relational queries and real-time data updates.
Moreover, traditional relational databases have limitations in representing complex relation-
ships and providing support for semantic querying. In contrast, knowledge graphs, with
their unique graphical structure, can more naturally represent the myriad relationships
between entities and support complex queries and analyses, which are crucial for safety
assessment. Hence, we targeted to propose an information integration technique based on
a knowledge graph. It makes use of our proposed MLP architecture and UMA algorithm
to construct a multi-level, path-finding SACAS, and realizes automatic updating and main-
tenance of the knowledge graph. We use Neo4j to construct the SACAS for subsequent
related applications.

In civil airborne system safety assessment, the application of a knowledge graph
provides a more intuitive and efficient data interaction platform for the staff. By con-
structing SACAS, staff can easily access relevant case data and conduct deep mining and
analysis through the correlations in the graph, thus providing an accurate and reliable
reference basis for safety assessment. As a powerful knowledge representation and storage
method, knowledge graphs provide a brand-new solution for civil airborne system safety
assessment. With the deepening of related research and the continuous development of
technology, it is believed that the applications of knowledge graphs in this field will expand,
achieving a more extensive and far-reaching impact in the future.

3. Construction of Safety Assessment on Civil Airborne System Knowledge Graph

The safety assessment on civil airborne system (SACAS) knowledge graph is a multi-
level path-based knowledge graph for workflow-oriented tasks such as safety assessment.
It organizes case data with the relationships between them. This section is mainly about
the construction of SACAS which is divided into two parts. Ontology modeling comes first.
It can clarify the types of entity and relationship. Then, MLP is employed to realize the
multi-level aspect and insert path information into SACAS. For our task, MLP is expected
to ensure process integrity while facilitating connectivity and interaction among diverse
data sources, offering considerable convenience to safety assessment practitioners. For the
method and framework of this paper, the knowledge processing techniques involved in
each stage of safety assessment are similar. Therefore, we take the aircraft functional hazard
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assessment (AFHA) in the safety assessment process as an example for the construction of
SACAS as well as for the subsequent experiments in this paper.

3.1. Ontology Modeling

The construction of a knowledge graph can be categorized into two approaches: top-
down and bottom-up. The former one is usually performed in specialized domains with
well-defined knowledge scopes, while the latter one is used to cover a wide range of general
knowledge. For our process-complete and case-lack task, the top-down approach is more
appropriate. The top-down construction of a knowledge graph involves determining the
entities, relationship types, and architectural structure of the knowledge graph before
populating it with data. Figure 2 illustrates the process of constructing the top-down
knowledge graph.

Figure 2. The process of top-down knowledge graph construction.

The constructed graph transforms textual data into a structured form of triplets for
storage, thereby better representing textual semantics and facilitating data circulation
and correlation.

1. Ontology Modeling: determining entity types, attributes of different entities, relation-
ship types, and corresponding relationships between entity types. This step is essential
for structuring textual data storage based on the results of ontology modeling.
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2. Knowledge Extraction: entity extraction and relationship extraction, aiming to extract
various entities and relationships from textual data. Machine learning techniques are
commonly used for automatic or semi-automatic extraction from datasets.

3. Knowledge Storage: using open-source tools such as Neo4j or OrientDB, enabling
knowledge storage.

SACAS focuses on its architecture to achieve its multi-level and path-based charac-
teristics. Moreover, due to the scarcity of safety assessment cases, automated extraction
methods for obtaining entities and relationships are not currently employed in this research.
The results of the ontology modeling and the architecture of the knowledge graph are the
main points of focus in this section.

3.1.1. Key Issues in Ontology Modelling

Researchers at Stanford University proposed several key issues to consider when
ontology modeling in 2001 [32]. This subsection appropriately integrates and adapts these
issues to the specific context of this study. We determined six key issues to build the
SACAS ontology.

Step I: Clarifying the Domain and Scope of the Ontology

We will clarify the domain and scope of the ontology based on the following questions:
What domain will the ontology cover? What will we use these ontologies for? What
questions will the information in the ontology address? Who will use and maintain
the ontology?

It is clear that the SACAS ontologies will cover the domain of safety assessment of
civil airborne systems. We utilize these ontologies in order to build SACAS to enable the
integration of information for assessment cases. The focus of this paper is on determining
how to achieve information integration of civil airborne system safety assessment cases,
i.e., to construct a multi-level, path-finding SACAS and to achieve automatic updating and
maintenance of the knowledge graph. In future work, we will use the recommendation
technology according to the SACAS and the characteristics of civil airborne system safety
assessment work, which will provide some assistance to the relevant staff for the assessment
work. Database technicians will maintain and use the ontology after new data input.

Step II: Listing Important Terms within the Domain

This step is crucial. Once important terms within the domain are defined, it prevents
confusion with other meanings outside the domain.

This is why the terms are listed in Section 3.1. For example, the word “failure” has
different meanings in different contexts, and it is necessary to define the use of these terms
by isolating the terms within the domain that are prone to ambiguity and determining their
meanings. One such term, failure, is clearly defined by SAE ARP 4754B:

Failure: An occurrence which affects the operation of a component, part or element
such that it can no longer function as intended, (this includes both loss of function and
malfunction) [33].

Step III: Determining Classes and Class Hierarchies

This process involves three methods: top-down, bottom-up, or a combination of both.
Top-down entails first determining the most general classes, then further classifying them.

This will be shown in Section 3.1.3, where the construction of classes is carried out in a
logical order. This ensures the completeness of the classes and improves the efficiency of
ontology modelling. For example, the top-level class could be “primary function”, followed
by “secondary function”, and so forth.

Step IV: Identifying Class Properties

Even after determining the classes, the information provided by these classes is not
enough. It is necessary to determine the internal relationship of these classes, i.e., attributes.
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Attributes are divided into internal attributes of the class, external attributes, and rela-
tionships with other classes. It is worth noting that the next level of class inherits all the
attributes of the previous level of class.

This step is to build a semantic web by linking the classes just established and adding
features to each class to highlight the differentiation. Specific features and the relationship
between classes should be analysed according to the specific content. In Section 3.1.3, we
will undertake a detailed analysis.

Step V: Determining Constraints on Properties

Constraints on the attributes of different classes include the following: for example, an
attribute can only have one value, a class must have a minimum of N attributes, a minimum
or maximum of n common attributes between two classes.

Here, again, the relationship between attributes needs to be analysed on a content-
specific basis. For example, if the attribute of a class is “model”, then the attribute should
have a constraint of “the value of this attribute is unique”.

Step VI: Creating Instances

This step, a significant outcome of ontology modeling, involves entity types. This
process requires:

Step VI.1: Selecting a class;
Step VI.2: Creating a separate instance of that class;
Step VI.3: Filling in the attributes of that instance.

This step is built on the basis of the completion of the first five steps, and is the
most critical step in ontology modelling. In this step, we still have to analyze the specific
situation and construct the appropriate entities and relationship types guided by the class
and inter-class relationships.

By following these six steps, we can complete ontology modeling.

3.1.2. Aircraft Functional Hazard Assessment

Aircraft functional hazard assessment (AFHA) assesses the functional hazards at
the aircraft level. It constitutes the top-level segment of the safety assessment process
on a civil airborne system and stands as its most crucial component. AFHA comprises
four steps [3,34]:

Step 1: Individual Failure States
Step 2: Combined Failure States
Step 3: Composite Failure States
Step 4: Summary of Results

Among these, the assessment of individual failure states is the most crucial step. It
involves analyzing one or more failure states for each function based on the classification
of aircraft-level functions. Once the analysis of failure states for each function is completed,
this step is essentially fulfilled. Figure 3 presents the assessment table of individual failure
conditions for aircraft-level functions:

Blanks (1) to (27) are for the assessment of individual failure conditions.
The analysis of failure conditions for a particular function comprises three components:

detailed function description, addition of failure conditions, and the impact of failure and
safety objectives during different flight phases.

Before constructing the domain knowledge graph, it is crucial to establish some
important terms in the domain. The specific reasons will be elucidated in Section 3.1.1.
Currently, we only list some important terms related to the safety assessment process:
aircraft-level function, failure state, failure impact, flight phase, safety objective, etc.
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Figure 3. The assessment table of individual failure conditions for aircraft-level functions.

3.1.3. Results of Ontology Modeling

We used the open-source tool Protégé for ontology modelling and the results are
shown in Figure 4.

Figure 4. The result of “Class” construction.

From Figure 5, it can be observed that we constructed multi-level classes in a top-
down manner: (1) The top-level class is “Process”, representing the civil aircraft onboard
system safety assessment process, such as AFHA and SFHA. (2) Secondary classes include
Function, Table, and Case. (3) Classes at the third level and below are subordinate to the
content of each secondary class.

Determining entity types, relationship types, and constraints are crucial steps in ontol-
ogy modeling for safety assessment. Initially, we start at the engineering level by extracting
relevant data from expert knowledge and safety assessment databases to identify key enti-
ties and relationships. Entity types such as Process, Level1Function, and Level2Function
are determined based on class categorization; Failure Conditions, Impact of failure, and
Safety Objectives are established according to the standards and practical engineering
requirements in the safety assessment. Relationship types are defined in a path-oriented
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manner, which is also based on process-oriented safety assessment, facilitating practical
engineering applications. Furthermore, multiple constraints are set to ensure the accuracy
and consistency of the knowledge graph. For instance, each Level2Function must be as-
sociated with only one Level1Function, ensuring the completeness and simplicity of the
knowledge graph.

Through these methods, we have precisely modeled the ontology of the safety assess-
ment knowledge graph, providing a solid foundation for subsequent graph construction
and applications. Based on this framework, we added class properties, relationships
between classes, and constraint conditions to complete the ontology modeling. Table 1
presents the results of the ontology modeling.

Table 1 contains various entity types and their relationship types, comprising a total
of 31 entity types and 30 relationship types. These entity and relationship types form
the basis for achieving the multi-level and path-based characteristics of the knowledge
graph. With these entity types and relationship types, we can organize and summarize case
data accordingly and embed attributes into various entity and relationship types, thereby
completing the construction of the SACAS.

Table 1. The results of the ontology modeling.

Entity Type 1 Relationship Entity Type 2

Process process-function1 Level1Function
Level1Function function 1_2 Level2Function
Level2Function function 2_3 Level3Function
Level3Function function-table Table Number
Table Number Step 1 Function Details
Table Number Step 2 Failure Conditions
Table Number Step 3 Impact of failure
Table Number Step 4 Safety Objectives
Table Number Step 4 Validation Methods

Function Details Step 1.1 Limitations of the Function

Function Details Step 1.2 Novelty, Specificity
and Complexity

Failure Conditions Step 2.1 No.
Failure Conditions Step 2.2 Failure Status Title
Failure Conditions Step 2.3 Failure Status Description
Failure Conditions Step 2.4 Stage
Failure Conditions Step 2.5 Remarks
Impact of failure Step 3.1 Impact on Aircraft
Impact of failure Step 3.2 Impact on Crew
Impact of failure Step 3.3 Impact on Passenger
Impact of failure Step 3.4 Impact Classification Levels
Impact of failure Step 3.5 Impact on operations
Impact of failure Step 3.6 Operational Impact Class
Safety Objectives Step 4.1 Safety Objective
Safety Objectives Step 4.2 FDAL Requirements
Safety Objectives Step 4.3 Objective Design
Safety Objectives Step 4.4 FDAL Objective Design
Safety Objectives Step 4.5 Validation Methods

Validation Methods Step 4.5.1 FTA
Validation Methods Step 4.5.2 FMEA
Validation Methods Step 4.5.3 CCA

3.2. MLP Architecture

Current methods for constructing knowledge graphs are primarily automated or
semi-automated, largely relying on natural language processing (NLP) technology. This
technology excels at text tokenization and semantic extraction. However, the safety assess-
ment data in this study includes process-based path information and a multi-level structure,
which significantly differs from typical textual semantic information. Before choosing the
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multi-level path-based (MLP) architecture for building the SACAS, we attempted to use
NLP techniques for automatic extraction and construction, but the results were unsatisfac-
tory. This indicates that such methods are not well-suited for handling the complex data
structures found in safety assessment. Consequently, tailored to the specific characteristics
of safety assessment data and the needs of related work, we have developed a multi-level,
path-based knowledge graph architecture.

The MLP architecture represents the optimal solution for constructing knowledge
graphs tailored to processes and cases. It is designed to address the data hierarchies and
relational complexities encountered in traditional knowledge graphs for safety assessment
applications. The MLP architecture enables data from the process to the engineering level
to be integrated and queried efficiently by explicitly modelling the different levels and
paths of safety assessment data. The architecture diagram of MLP is illustrated in Figure 5.

Figure 5. The architecture diagram of MLP.

The MLP architecture starts from an engineering perspective by constructing a knowl-
edge graph based on the safety assessment process and then enriching the database based
on relevant cases. From Figure 2, the MLP can be divided into the following aspects:

Input Layer: Extracts the assessment process into a process diagram based on evalua-
tion forms and expert knowledge, which serves as input to the transformation layer. Step i
stands for the safety assessment process and each step may contain several substeps. Ri
represents the relationship among steps.

Transformation Layer 1 (including Attribute Attachment Module 1): Converts the
steps and relationships in the process diagram into entities and relationships, respectively.
This is because the next step is to attach different types of attributes to entities and rela-
tionships, respectively. Subsequently, Attribute Attachment Layer 1 adds attributes to the
entities and relationships. For entities, attributes added include the type of assessment pro-
cess (e.g., AFHA, SFHA), function number, and case name (usually named after the aircraft
model, as different models may have different function classifications); for relationships,
attributes added include the path position (e.g., Step 1→Step 2), the type of assessment
process, function number, and case name.
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Path-based Knowledge Graph Output Layer: Utilizes Neo4j to build a path-based
knowledge graph with the entities and relationships output from the transformation
layer. At this point, the path information in the security assessment process has been
canonically stored.

Fusion Layer: Combines the path-based knowledge graph with safety assessment
cases and tables (some functions may lack cases in existing data), forming a tree-like data
structure. However, the tree-like structure is evidently different from a knowledge graph.
This “tree-like” structure serves as an intermediate state of data input into the next layer.
Case data can be likened to plugs being inserted into corresponding sockets (an already
constructed PKG). Without this step, the subsequent layer would be unable to assign
location information to the imported data. In other words, this step is indispensable, as its
omission would lead to difficulties in attaching attributes or result in missing attributes.

Transformation Layer 2 (including Attribute Attachment Module 2): Initially separates
the titles and blanks from the safety assessment cases and tables into entities and converts
the connecting lines into relationships. Then, attributes are added to the entities and
relationships as follows: (1) Titles and blanks from the cases and tables are categorized into
titles and blanks (the “blank” in cases contains values, while the “blank” in tables does not).
Attributes added to titles include the type of assessment process, function number, and
case name; attributes added to blanks include the assessors’ names, titles, length of service,
units, etc., as well as the type of assessment process, function number, and case name.
(2) The connecting lines are categorized into “step-title”, “title1-title2”, and “title-blank”.
Attributes added to the first two categories include the relationship position (related to
which step and level of title), the type of assessment process, function number, and case
name; attributes added to “title-blank” include the relationship position, assessors’ names,
titles, length of service, units, etc., as well as the type of assessment process, function
number, and case name. Additionally, ontology modeling is required to obtain entity types
and relationship types, which is demonstrated in Section 3.1.3.

Output Layer: Combines the entities and relationships output from Attribute Attach-
ment Layer 2 with the path-based knowledge graph and completes the construction of the
multi-level path-based knowledge graph.

4. UMA Algorithm
4.1. Basic Idea

Here, we establish a premise: Each new case to be input into the SACAS graph has
highly consistent safety assessment objects and assessment methods with the existing cases
in the graph. Only under such circumstances can we effectively compare and filter them;
otherwise, it would be meaningless.

Prior to developing our updating and maintaining automatically (UMA) algorithm,
we reviewed existing self-updating methods for knowledge graphs. These typically involve
automatic extraction of new data, followed by comparison, selection, and integration
with existing graphs to ensure updates. However, the unique challenges posed by safety
assessment data, which often includes only partial updates in the form of specific data
points rather than complete cases, preclude the direct application of these existing methods.
Our UMA algorithm, therefore, is specifically designed to handle the incremental and
partial data updates characteristic of safety assessment, ensuring that new information
integrates seamlessly and meaningfully with the existing knowledge graph structure,
delivering an effective reference for safety assessors.

Section 3 introduces the method of construction for the SACAS, successfully achieving
its multi-level and path-based characteristics. When the SACAS is applied to the safety
assessment process, it inevitably generates new cases and data. These additions can enrich
the knowledge graph and assist relevant personnel in conducting safety assessment work
more effectively. However, due to the low efficiency of manual updates and maintenance of
the graph, we propose an algorithm called UMA for automatic updates and maintenance.
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The algorithm consists of two parts: data cleaning and data importing, as shown in Figure 6.
The following will explain each part separately.

As can be seen in Figure 6, the algorithm is divided into two modules: data cleaning
and data import.

The data cleaning module combines and compares the SACAS with the cases to be
imported, and the output is a number of aligned entity pairs. The two entities in each entity
pair are the VALUE from the case and the VALUE’ that the VALUE corresponds to in the
SACAS. Next, the Valid or Invalid (VORI) gate makes a validity judgment of the value to
be input based on the information of the entity pair. The VORI gate calculates the semantic
similarity of the two entities in the entity pair. Values above the VORI threshold are output
as entity pairs; values below the VORI threshold are individually output to the next step
with a value of 0 on the one hand, and on the other hand the original value of the value is
output to the missing data error reporting section.

Figure 6. The workflow of the UMA algorithm.

The data import module is divided into two parts: automatic knowledge graph
construction and missing data error reporting. The automatic construction part will split
the entity pairs output from the VORI gate, and import the values into the knowledge
graph according to their position in the knowledge graph to complete the automatic
construction of the knowledge graph. Then the missing data error reporting section prints
the output from the VORI gate and receives the correction data from the maintainer.
After the maintainer determines that the corrected data is correct, the data undergoes the
same automatic construction operation as in the previous step. In this way, a case can be
accurately and completely entered into the SACAS.

4.2. Data Cleaning

To utilize the newly obtained data for updating the knowledge graph, we must address
two questions:

1. How to acquire new data?
With the SACAS already constructed and integrated into the safety assessment process,
the new cases and data generated during safety assessment work possess attributes.
Two points need to be clarified here: (1) Safety assessment forms must exist within the
SACAS; (2) the new cases and data generated during safety assessment work refer to
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“blanks”. Therefore, we can obtain a set of blanks with attributes and their positions in
the form or graph without the need for any specific method.

2. How to ensure the validity of the new data?
Safety assessment work is highly rigorous. Therefore, when determining the va-
lidity of new data, we still need to consider two points: (1) The relevance of the
data, i.e., whether the new data are from safety assessment work (as there may be
invalid data such as 123456, abcdef, etc.); (2) the accuracy and reliability of the data,
i.e., whether the assessment of a certain function or component is correct, which re-
quires professional safety assessment personnel to verify, but is not within the scope
of this study.

4.2.1. Data Extraction

After completing the safety assessment work, we obtain a set of triples consisting
of “title-blank”. This set includes the source of the cases (such as personnel information,
aircraft model, etc.) as well as attributes of entities and relationships. In other words,
each entity and relationship here can correspond to the existing SACAS. At this point, we
have completed the data acquisition process. The MLP architecture mentioned in Section 3
makes it more convenient for us to obtain and input data. This step combines and compares
the SACAS with the cases to be input. The algorithm obtains the process, function number
and the entity pair consisting of both title and value in the case (Table). Then process,
function, number and title information is used to find out value’ at the same position as
value in the SACAS. Finally, the output will be the entity pair of value and value’ (which
has the relationship of value or rather value’ with title). In short, here, the case data is
transformed into a number of entity pairs for effective data filtering by the VORI gate and
automatic construction of the knowledge graph later.

4.2.2. Valid or Invalid Gate

The Valid or Invalid (VORI) gate makes a validity judgment of the value to be input
based on the information of the entity pair. The VORI gate calculates the semantic similarity
of the two entities in the entity pair. Algorithm 1 describes the specific steps of the VORI
gate. The VORI gate receives a number of entity pairs. The entity pair consists of the value
in the case, the value’ that corresponds to it in the SACAS, and the relationship between
value’ in the knowledge graph and the corresponding title. The VORI gate first calculates
between each entity pair (value and value’) the the semantic similarity between each entity
pair (value and value’). If the similarity is higher than the VORI threshold, the VORI gate
outputs the entity pair; if it is lower than the VORI threshold, the VORI gate inputs the
entity pair into the missing data error reporting module and assigns a value of 0 to the
value in the entity pair and inputs it into the next step.

When new case data is acquired, the UMA framework will examine each “value”
in the case individually. Based on the attributes and relationships of this “value”, the
framework can accurately identify the corresponding “value2” in the existing SACAS
graph. The semantic similarity between them is calculated to determine their relevance,
thereby determining the validity of the input.

The “values” in the case have many data types, some of which we cannot determine
the validity or correctness by calculating the semantic similarity. For example, the “Impact
Classification Levels” are classified as “1” (Catastrophic), “2” (Dangerous), “3” (catas-
trophic), “2” (dangerous), “3” (major), “4” (minor) and “5” (no impact on safety). The
validity of inputs in this category has to be judged by professionals based on the specific
content, so we will not discuss it. We will only discuss inputs whose data type is text.
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Algorithm 1: VORI gate
Input: entity pair P;
Output: output pair P, output pair P0, missing entity pair P′

1: for each P = (V, V′)
2: V = value
3: V′ = value′

4: score = calculate similarity(V,V′);
5: if score >= VORIthreshold then
6: output P to auto-construction module;
7: else
8: P′ = (V, V′);
9: output P′ to missing data error reporting module;
10: V′= 0;
11: P0 = (V, 0)
12: output P0 to auto-construction module;
13: end if
14: end for

Since the values of the entities in SACAS are formatted, we can compute the semantic
similarity between two entities based on the Vector Space Model (VSM). VSM has a very
wide range of applications for tasks such as information retrieval oriented. Under VSM, the
value of each entity is viewed as consisting of a number of mutually independent words,
so the value can instead be represented as a vector. This simplifies the complex semantic
relationships within the values and also makes the similarity of the values computable.
Since the values in the case are paradigmatic and relatively structured, here, we use
Jaccard similarity to compute the semantic similarity of the entity pairs. We use the N-
Gram model to cut the values of each entity. For example, if the value of an entity is
V0 = {w1, w2, . . . , wn}, wi(i = 1, 2, . . . , n) are the words that make up the value. We cut
the V0 with the 2-gram model and the result we obtain is (w1, w2), (w2, w3), . . . , (wn−1, wn).
Based on this, we can calculate the semantic similarity of the entity pairs. The calculation
formula is as follows:

similarityn(V, V′) =
|V ∩ V′|n
|V ∪ V′|n

, (1)

where n is the N in the N-Gram model, i.e., the length of the cut segments. V ∩ V′ is the
number of the same segments in the cut segments of V and V′, and V ∪ V′ is the total
number of all different cut segments of V and V′.

The entity pairs obtained from the combination of the case and the SACAS atlas are
passed through the VORI gate, which will perform similarity calculations on the entity
pairs, resulting in two directions of output: (1) valid data will be passed through the VORI
gate in the form of entity pairs and outputted to the atlas building module; and (2) invalid
data will not be passed through the VORI gate. The VORI gate will convert the value to
0 and output it in combination with the original entity pairs to the building module. At
the same time, the VORI gate will output the invalid value as another output to the error
reporting module. After further review by the safety assessment staff, the data for the new
case is determined to be valid. At this point, data cleansing for the new case is complete.

4.3. Data Import
4.3.1. Automatic Construction of Knowledge Graph

When we have completed the cleaning of our input case data, we have obtained
a set of data that has been filtered and organised. This means that we have eliminated
duplicate entries, misinformation, and inconsistencies from the data, allowing us to ensure
the quality of our data. The data is validated and can be confidently processed and analysed
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subsequently. Once we have completed data cleansing, the next critical step is to transform
this validated case data into the form of a knowledge graph. A knowledge graph is a
data representation method that organizes entities, relationships and attributes to form a
network structure, which can help us better understand the associations and connections
between data.

By characterizing and embedding case data into a knowledge graph, we can better
organize and manage this data, and discover the laws and patterns hidden behind it. The
establishment of a knowledge graph can not only help us better understand the data, but
also provide a richer and deeper information base for subsequent data analysis, mining
and application. In addition, the establishment of knowledge graph also helps to improve
our original database. By transforming the case data into the form of knowledge mapping,
we can integrate it with our existing database, thus enriching and improving the content
of the database. This will make our database more comprehensive, accurate, and of more
applied and practical value.

Transforming case data into a knowledge graph is an important process, which can not
only help us better understand and manage the data, but also provide a more powerful and
flexible basis for our subsequent data analysis and application. Through this process, we
can make better use of our data resources to provide more powerful support for business
decision-making and innovation. In order to transform case data into a knowledge graph,
we need to capture the entity, relationship and attribute information in the data with the
help of algorithms. Entities are the data in the case, such as failure state descriptions,
failure impacts, etc. Relationships are the connections between entities, describing their
interactions or associations, and attributes are the information describing the characteristics
or states of the entities, such as the personal information of the assessor, the type of
assessment process, and the object of the assessment. Algorithm 2 describes how the
cleaned data is imported into the existing SACAS.

Algorithm 2: Automatic construction of knowledge graph
Input: entity pair P;
Output: triplet table T
1: initial T = ∅;
2: for P = (V, V′)
3: find the p and e of V;
4: combine p, e with V′;
5: if a is connected to p by ea then
6: combine a, ea with V′;
7: output (p, e, V′) and (a, ea, V′) to T;
8: else
9: output (p, e, V′) to T;
10: end if
11: end for

4.3.2. Missing Data Error Reporting

In the process of data cleansing, we often encounter data that does not pass validation,
does not meet specifications, or has anomalies. These data may be due to input errors,
system issues, or other reasons. In some cases, we receive data with a value of 0 from the
auto-build module and a corresponding raw value from the VORI gate. In order to improve
the completeness of the input cases and the referentiality of the database, our module needs
to handle these cases and generate the corresponding textual errors so that the user can
detect and correct them in time.

Firstly, we consider how to handle the case of data with a value of 0 from the auto-
build module. This could mean that some data was not recognized or populated correctly
during the auto-build process, or it could be due to missing data or other issues. For such
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cases, the missing data error reporting module needs to detect these 0 values and pass them
to the user along with the corresponding original values.

Secondly, for raw values from VORI gates, we need to make it clear that these data are
not valid. VORI gates are used to validate and review data, and the values that they provide
to this module are validated and confirmed to be considered invalid. However, sometimes,
even if the data comes from the VORI gate, this part of the data may actually be valid
but incorrectly determined by the VORI gate to be invalid due to its structural flexibility
and versatility. Therefore, this module needs to be able to receive these raw values and
pass them on to the user along with another value on the entity pair (the reference value)
if required.

Once this detects the receipt of the input of the 0 value and the corresponding raw
value, the next step is to generate the appropriate text error messages. These error messages
should clearly indicate which data is in question, as well as the possible causes and solutions.
Error messages can include, but are not limited to, the following:

1. The original data value.
2. The location in the SACAS of another value (reference value) on the entity pair.
3. The possible reasons why this may have occurred, e.g., input error, system failure, etc.
4. A suggested solution, such as re-entering the data, checking system settings, etc.

By generating such textual error reports, we can help users to identify and solve data
problems in time, thus improving the integrity of the input cases and the reference of the
database. At the same time, generating error reports also helps to improve the process of
data cleansing and processing, and reduce the occurrence of similar problems.

5. Experimental Results

In this section, we will evaluate the proposed SACAS and the UMA algorithm to
validate their effectiveness. The experiments use several AFHA cases from a specific
aircraft model (due to trade secrets, specific model information will not be disclosed) as the
dataset. The dataset is divided into a training set and a testing set in a 7:3 ratio. The training
set will be used for constructing SACAS, while the testing set, after being processed for
obfuscation, will be utilized to test the UMA algorithm.

All experiments are conducted on a PC with Intel i5-11260H processor running at
2.6 GHz, 16 GB RAM, and NVIDIA GeForce RTX 3050. Neo4j AuraDB was used as the
knowledge graph construction tool. All evaluation and testing programs were compiled
using Python 3.10.

5.1. Datasets

The beginning of Section 3 explains the scope of the dataset for this experiment.
The following section specifically describes the datasets we used to construct SACAS.
The assessment table of AFHA (see Figure 3) is the main part of the datasets for this
experiment. There are a number of attributes (assessment objects, information of safety
assessors, etc.) that are attached to each assessment case. Figure 7 shows the original
datasets for constructing SACAS.

In Figure 7, we can see some values with “NA” that actually have no meaning. Due
to the particularity of some functions or failure conditions in the task, there are some
objectives the assessors do not have to design. As a result, there are these empty values.
The documents we obtain from the case cannot be used directly as a dataset to construct
SACAS. To build a knowledge graph, the dataset should consist of a large number of triples.
The triples can be “entity1-relationship1-attribute1” or “entity1-relationship2-entity2”. Part
of the processed datasets are shown in Table 2.

With this format of datasets, we can easily construct SACAS in few steps. Then, the
dataset is stored in “.csv” file format, and this experiment can use Python to transform the
dataset into a knowledge graph.
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Figure 7. Original datasets for constructing SACAS.

Table 2. Part of the processed datasets.

Triples of SACAS

AFHA, Process_Function1, Provides aerodynamic performance
AFHA, Process_Function1, Provide a survival environment
AFHA, Process_Function1, Control aircraft trajectory
. . .
Provide a survival environment, Function1_2, Provide breathable atmosphere
Provide breathable atmosphere, Function2_3, Prevent toxic gases
Provide breathable atmosphere, Function2_3, Provide oxygen
. . .
Achieve ground deceleration, Function_Table, A.F.3.2.3.FC.1.1
Achieve ground deceleration, Function_Table, A.F.3.2.3.FC.1.2
Achieve ground deceleration, Function_Table, A.F.3.2.3.FC.1.3
Achieve ground deceleration, Function_Table, A.F.3.2.3.FC.2
Achieve ground deceleration, Function_Table, A.F.3.2.3.FC.3.1
Achieve ground deceleration, Function_Table, A.F.3.2.3.FC.3.2
. . .
A.F.3.2.3.FC.1.1, Step1, Function Details
Function Details, Step1_1, Limitations of the function
Limitations of the function, Step1_2, Novelty, Specificity and Complexity
Novelty, Specificity and Complexity, Step2, Failure Conditions
. . .
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5.2. Evaluation Indicators

As introduced in Section 2, we would hardly obtain any instructive conclusions if the
proposed method was applied in other domains, and vice versa. To quantitatively evaluate
the performance for our task, the evaluation indicators should meet but are not limited to
the following aspects:

1. For SACAS

• Knowledge Completeness: Evaluate whether the SACAS contains all the key
information required for the task. This includes information pertaining to various
system components, technical specifications, safety standards, risk analyses, etc.

• Data Accuracy: Evaluate that the information in the SACAS is accurate, including
access to information from reliable data sources, timeliness of data updates, etc.

• Relevance and Linkage: Evaluate the relevance and linkage between different
data entities in the knowledge graph to ensure coherence and completeness of
information, which helps system users to better understand the key relationships
in the safety assessment process.

• Usability and scalability: Evaluate the usability and scalability of the SACAS,
including aspects such as the ability to adapt to different user requirements, and
the ability to quickly integrate new information.

2. For the UMA algorithm

• Rationality: Evaluate the rationality of the UMA algorithm in the process of
safety assessment on civil airborne system data integration, including aspects
such as the algorithm’s computational efficiency, accuracy and scalability.

• Adaptability and flexibility: Evaluate the adaptability and flexibility of the UMA
algorithm in different data integration scenarios, including the ability to handle
different data types, data formats and data sources.

In the evaluation process, a combination of quantitative and qualitative methods are
used to make a comprehensive assessment using actual data and user feedback. The reviews
of experts are combined to ensure the objectivity and accuracy of the assessment results.

5.2.1. Evaluation of SACAS

The primary function of constructing SACAS is to integrate safety assessment data.
The performance of the knowledge graph lies in its relevance to the intended purpose.
Evaluating the quality of SACAS involves assessing whether it: (1) maximizes the cor-
rect utilization of safety assessment data; (2) contains accurate and reliable knowledge
and semantic information; (3) features an architecture that is both streamlined and main-
tainable. In the experiment, we evaluate whether the knowledge graph abides by the
following aspects:

1. Accuracy (ACCKG): it is the degree to which relevant knowledge in the domain is
correctly represented. Accuracy is generally divided into syntactic accuracy, semantic
accuracy and timeliness. Due to the specificity of SACAS and the UMA algorithm’s fil-
tering and screening of input data, we ignore the syntactic accuracy and timeliness. In
our experiments, we designed a quantitative evaluation indicator ACCKG for semantic
accuracy, as shown in Equation (2).

ACCKG =
Sr(valid)

Sr
, (2)

where Sr is the total number of paths contained in the knowledge graph and Sr(valid)
is the total number of valid paths of Sr. A critical task of this study is the construction
of a multi-level, path-based knowledge graph. The role of this metric is to evaluate
the effectiveness of the path information within the knowledge graph.

2. Completeness (Coml): completeness refers to the degree of concentration of rele-
vant information. It includes schema completeness, attribute completeness, overall



Aerospace 2024, 11, 459 19 of 27

completeness and linkability. In general, for a fair comparison, either a knowledge
graph is compared with knowledge graphs in the same domain; or the data of the
knowledge graph is automatically obtained from the dataset, in which the recall of
the extraction method judges the completeness. The first three types of completeness
evaluate whether automatic methods (deep learning, etc.) have extracted information
from the dataset completely. SACAS only uses the automatic method to self-update.
So we calculate linkability as a way to evaluate the completeness of the knowledge
graph. In our experiments, we designed a quantitative evaluation indicator Coml for
linkability, as shown in Equation (3).

Coml =
Ne

Np
, (3)

where Ne and Np are numbers of edges and nodes in a knowledge graph, respectively.
The larger the Coml is, the more linkable the knowledge graph is and the better its
integrity. This demonstrates the connectivity within the knowledge graph. As new
data are imported, the internal connections of the knowledge graph will inevitably
increase, thereby raising the value of this metric. It serves not only to measure the con-
struction quality of the knowledge graph but also to assess the practical effectiveness
of the UMA algorithm.

3. Consistency (ConKG): in ontology modelling, we set some constraint rules between
entities and relationships. For example, a secondary function reduce aircraft kinetic
energy can only correspond to a primary function control aircraft kinetic energy. If this
constraint is violated, some incorrect nodes and edges may appear in the knowledge
graph and lead to errors in the application process. For this reason, we need to
quantize conflicts for each constraint as Equation (4).

ConKG =
1
n

n

∑
i=1

Ri(con f lict)
Ri

, (4)

where Ri represents the number of groups that should adhere to a particular constraint,
Ri(con f lict) denotes the number of groups that have violated this constraint, and n is
the total number of constraints. Here, a group refers to collections of items such as
node-to-node, node-to-edge, or node-to-attribute that should follow certain constraints.
For instance, the node Failure State A should be connected to the node Level3Function B
and the relationship between them should be that Level3Function B points to Failure
State A. We establish a constraint: The Level3Function node, apart from connecting
to the Level2Function node, should only connect to the Failure State node, and the
relationship should be directed from the Level3Function to the Failure State. In this
case, the Level3Function node, the Failure State node, and their relationship should
adhere to this rule, forming a group.

4. Simplicity (SimKG): it indicates whether the knowledge graph can correctly character-
ize the relevant content while avoiding information overload, i.e., the redundancy of
the knowledge. Its essence is the presence of duplicate nodes within the knowledge
graph (whose duplication is not necessary). Equation (5) allows for the calculation of
the simplicity of the knowledge graph:

SimKG = 1 − 1
n

n

∑
i=1

pi − 1
pi

, (5)

where pi is the number of each kind of node and n is number of all different nodes
within the knowledge graph.
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5.2.2. Evaluation of UMA Algorithm

We evaluate the proposed algorithm both qualitatively and quantitatively. Table 3
shows the qualitative evaluation table of the UMA algorithm.

Table 3. The qualitative evaluation table of the UMA algorithm.

Evaluation Indicators Evaluation Content Remarks

Correctness Input (1)
Correctness Desired output (2)
Correctness Derived output (3)
Readability Presence of undefined variables (4)
Readability Conformity to identifier naming conventions (5)
Readability Presence of duplicate or missing statements (6)
Robustness Output with unintended inputs (7)

Blanks (1) to (7) are what we need to fill in when evaluating the UMA with this table.
The qualitative evaluation includes the evaluation of the correctness, readability and

robustness of the algorithm: (1) Correctness refers to the ability of the algorithm to fulfill the
requirements for writing the algorithm. A correct algorithm meets the requirements of the
specific problem, the programme runs correctly, has no syntax errors, and can pass typical
software tests to meet the expected requirement specifications. (2) Readability refers to the
ease with which the algorithm can be read. Algorithms with high readability should follow
the naming rules of identifiers, be concise, easy to understand, and have an appropriate
amount of comment statements, which are easy to read for yourself and others, and easy to
debug and modify in the later stages. (3) Robustness refers to the algorithm’s ability to react
to various inputs and its ability to handle them, which is also known as fault-tolerance.
An algorithm with high robustness should be able to perform its task correctly and output
clear information in a variety of situations.

We perform quantitative evaluation in terms of time complexity and space complexity.
For time complexity, it is often necessary to analyze the number of essential operations in
the algorithm and the frequency with which these operations are performed. The order of
magnitude of time complexity can be determined by calculating the number of times the
key operations in the algorithm are executed. In general, time complexity is calculated by
using the worst-case algorithm, i.e., the measure of time required for the execution of the
algorithm in the most unfavorable case. The quantification of time complexity is denoted
by O, where n denotes the size of the input data. Equation (6) allows one to compute the
worst-case time complexity of the algorithm:

T(n) = O( f (n)), (6)

where T(n) denotes the time complexity of the algorithm and f (n) denotes the function of
input scale n.

For space complexity, the additional memory space required by the algorithm during
execution needs to be analysed. Similarly, the worst-case space complexity of an algo-
rithm is used to evaluate the memory usage of the algorithm. Equation (7) allows for the
calculation of the worst-case space complexity of the algorithm:

S(n) = O( f (n)), (7)

where S(n) denotes the space complexity of the algorithm and f (n) denotes the function of
input scale n.

5.3. Results and Analysis

We evaluate the quality of the SACAS and the UMA algorithm based on the evaluation
indicators presented in Section 5.1.
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5.3.1. Results of the SACAS Construction

In our experiments, we adopt the MLP framework based on safety assessment
data to construct the SACAS, which is an important result with multi-level and path-
based information representation. Table 4 shows the scale of SACAS. Figure 8 shows
part of the construction results of the SACAS, while Figure 9 presents its path-finding
information representation.

Table 4. The scale of SACAS.

label Lv1Func Lv2Func Lv3Func Process Step TableNum Value Total

number 8 12 20 1 125 4 110 280

edge Func1_2 Func2_3 FuncTab P_Func1 Stepm_n Valuep_q Total

number 12 20 20 8 596 110 766

In Table 4, Lv1Func, Lv2Func, Lv3Func refer to Level1Function, Level2Function and
Level3Function, respectively. TableNum refers to TableNumber. Func1_2 and Func2_3 refer
to Function1_2 and Function 2_3, respectively. FuncTab refers to FunctionTable. Stepm_n
refers to all step relations of the ontology modeling results in Table 1. Valuep_q refers to all
the values.

Figure 8. Part of the construction results of the SACAS.

We can see that the MLP architecture facilitates the achievement of multi-level and
path-finding properties. This will visualize semantic information and make the structure of
the data more stereoscopic. Hence, a knowledge graph will be more flexible and convenient
for subsequent application work.
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Figure 9. The path-finding information representation of SACAS.

According to Table 4, the knowledge graph comprises 280 nodes and 766 edges. All
have been verified as correct. Using Equation (2), the ACCKG is calculated to be 100%.
According to Equation (3), the Coml is calculated to be 273.57%. As indicated in Table 4,
there are 58 constraints that must be adhered to during the construction of the graph.
Upon verification, the total number of groups that violated these constraints is 94. Using
Equation (4), the ConKG is calculated to be 0.03%. Upon further verification, there are
180 different kinds of nodes, of which 25 kinds consist of 5 identical nodes each. Using
Equation (5), the SimKG is calculated to be 92.23%.

Table 5 shows the quality evaluation results of the knowledge graph.

Table 5. The quality evaluation results of the knowledge graph.

Evaluation Indicators Value (%)

ACCKG 100
Coml 273.57

ConKG 0.03
SimKG 92.23

The results show that the proposed SACAS is able to accurately and fully utilize
the safety assessment data. From the results, the construction process of this knowledge
graph strictly follows many constraints set during ontology modelling. The architecture
is concise with no repetitive parts. We further analysed the strengths and weaknesses
of the construction process of the SACAS. The results given in Table 5 show that the
application of the MLP framework allows the multi-layered and path-finding properties of
the knowledge graph to be fully represented; however, there are some challenges, such as
the possible complexity in dealing with complex relationships and connections between
entities. Therefore, we can further optimize the algorithms and models to improve the
representation capability and application effect of the knowledge graph.

The results demonstrate that the proposed method achieved satisfactory results and
provides a solid foundation for subsequent safety assessment and application. With the
in-depth research and continuous optimisation of knowledge graph quality assessment, we
believe that SACAS will play an important role in related fields and provide more reliable
support and guidance for solving practical problems.

5.3.2. UMA Performance

In the practical application, we tested the UMA algorithm and observed its perfor-
mance in different scenarios. By collecting and analyzing the experimental data, we were
able to obtain a comprehensive picture of the performance of the UMA algorithm in differ-
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ent tasks, so as to assess its effectiveness and practicality. Table 6 shows the scale of new
SACAS and comparison with SACAS in Section 5.3.1. Table 7 shows the quality assessment
of new data under the UMA algorithm after importing it into the SACAS.

Table 6. The scale of new SACAS and comparison.

Nodes Edges

old SACAS 280 766
imported part 21 215
new SACAS 301 981

Table 7. The quality evaluation results of the new knowledge graph.

Evaluation Indicators Value (%)

ACCKG 100
Coml 325.91

ConKG 0.05
SimKG 91.61

We can see that the UMA algorithm achieves automatic update and maintenance of
the SACAS, and through the two modules of data cleansing and data import, it realizes the
validity judgment and automatic construction of the new case data, so as to provide efficient
and accurate support for the safety assessment work. The automation characteristics of
the UMA algorithm can greatly improve the efficiency of data processing, and at the same
time, ensure the accuracy and completeness of the data, providing a solid foundation for
the safety assessment work.

In the qualitative evaluation, we mainly examined the correctness, readability and
robustness of the UMA algorithm. We analyzed whether the algorithm met expectations
by looking at its outputs and assessing its adaptability and stability to different inputs.
Table 8 shows the results of the qualitative evaluation of the UMA algorithm according to
the evaluation table in Section 5.3.2.

Table 8. The results of the qualitative evaluation of the UMA algorithm.

Evaluation Content Remarks

Input entity pair P
Desired output triplet table T
Derived output triplet table T

Presence of undefined variables none
Conformity to identifier naming conventions no conflict
Presence of duplicate or missing statements none

Output with unintended inputs reporting error

Table 8 shows that the output of the UMA algorithm is in line with expectations and
is able to correctly fulfill the purpose for which we wrote the algorithm. The algorithm
is highly robust and is able to operate robustly in complex and changing environments,
eliminating most invalid or interfering inputs as a way to complete the task. At the same
time, the algorithm is concise and readable. The readability of an algorithm is crucial for
engineering practice, and it directly affects the maintenance and further optimisation of the
algorithm. Our evaluation shows that the content of the UMA algorithm is concise and clear,
easy to understand and modify, which provides a good basis for future improvement work.

For quantitative evaluation, we focus on the time complexity and space complexity of
the UMA algorithm. By testing and counting the running time and memory occupation
of the algorithm on datasets of different sizes, we are able to evaluate the efficiency and
resource utilization of the algorithm. After calculation, Table 9 shows the time and space
complexity of the UMA algorithm (including the two algorithms).
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Table 9. The time and space complexity of the UMA algorithm.

Algorithm Time Complexity Space Complexity

VORI Gate O(n) O(1)
Auto-construction O(n2) O(n)

UMA(Total) O(n2) O(n)

Table 9 shows that UMA algorithm shows excellent performance in terms of time
complexity and space complexity. Assuming the input size is denoted as n, where n
represents the number of nodes or relationships in the knowledge graph. The analysis of
time complexity is based on the assumption that each node in the algorithm is accessed
at least once, since the VORI gate performs a comparison (constant operations) for each
input node, resulting in a worst-case time complexity of O(n). The auto-construction
algorithm, however, needs to compare the position information of the input nodes with the
existing knowledge graph, involving a traversal operation, hence the time complexity is
O(n2). The analysis of space complexity considers the temporary storage of nodes and their
relationships during the algorithm’s execution, which compared to the time complexity
(bilateral data) is a measure of unilateral data. In other words, the algorithm only needs
to store data from one side; thus, the space complexities of the VORI gate and the auto-
construction algorithm are O(1) and O(n), respectively. These analyses assume that the
basic operations of the data structure, such as adding or removing nodes, incur constant
time and space costs. Its execution efficiency is high and resource utilization is reasonable,
which can meet the requirements of practical applications.

The UMA algorithm shows excellent performance and reliability in practical applica-
tions. By comprehensively evaluating it, we gain a deeper understanding of the strengths
and weaknesses of the algorithm and provide guidance and suggestions for its future
improvement and optimisation. The successful application of the UMA algorithm not
only provides an effective solution for the updating and maintenance of SACASs, but also
provides a useful reference for the research and practical work in related fields.

6. Conclusions

With the continuous development of new aircraft, the lack of qualified safety assessors
has seriously limited the market application of these new products. The current safety
assessment on civil airborne system requires sufficient assessors with a wealth of experience
and a wide range of knowledge, which is a wide gap from the current state of affairs in
terms of the quality and quantity of practitioners.

To address these challenges, a comprehensive technological solution is required, com-
prising the following aspects: an information integration technology tailored for the safety
assessment process, a method to address the issue of data sparsity in safety assessment
cases, a recommendation system based on sparse data from safety assessment, and a self-
updating framework for the safety assessment database. This technology, by integrating
and updating safety assessment data, significantly enhances the efficiency and accuracy of
the task, mitigating the impacts of experience deficiency or data sparsity on the assessment.

In this paper, we proposed a knowledge graph-based information integration tech-
nique for safety assessment on civil airborne system. Firstly, we constructed a multi-level
path-based knowledge graph called SACAS for our task with the proposed MLP architec-
ture. We designed a self-updating algorithm for knowledge graphs called UMA, which
can effectively incorporate new knowledge from the usage process into the knowledge
graph. In our experiments, we defined a set of evaluation metrics to evaluate the proposed
methods. The results have shown that SACAS can accurately and adequately utilize safety
assessment data. Its architecture is concise and has no repetitive parts. The application of
MLP architecture enables the multi-layered and path-finding characteristics of the knowl-
edge graph. Meanwhile, the proposed UMA algorithm has high correctness, readability and
robustness, and has shown excellent performance in time complexity and space complexity.
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Our work utilized the correlation of a large amount of case data, thus making the
assessment work simpler, which in turn makes it less demanding on the safety assessors’
experience. Moreover, assessors can learn the relevant knowledge quickly through the
proposed method, thus increasing the efficiency of the whole safety assessment work.

The focus of this study is on the implementation of information integration technology
and the construction of a database self-updating framework, which are the core components
of this technology. Future research will follow this technological roadway, addressing
the data sparsity issue in safety assessments and developing a recommendation system
based on the information integration technology to further enhance the decision-making
capabilities of inexperienced personnel. The potential applications of this technology extend
beyond traditional commercial and cargo aviation to emerging low-altitude domains,
effectively addressing the shortage of safety assessors in these areas and promoting the
development of the low-altitude economy.

While the current study provides valuable insights, it is important to acknowledge
the limitations in conducting quantitative comparisons with other methods within the
scope of this paper. Due to the specific application area, the performance of the method
described herein has not been tested in other scenarios. To enhance the efficiency of safety
assessments for civil aircraft, further in-depth research will focus on the management and
interaction of data in this domain.
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SACAS Safety Assessment on Civil Airborne System
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PSSA Preliminary System Safety Assessment
SSA System Safety Assessment
MLP Multi-Level Path-based
UMA Updating and Maintaining Automatically
VORI Valid or Invalid
MBSA Model-Based Safety Assessment
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