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Abstract: This paper proposes an advanced model predictive control (MPC) scheme for the attitude
tracking of coaxial drones under wind disturbances. Unlike most existing MPC setups, this scheme
embeds steady-input, steady-output, and steady-state conditions into the optimization problem as
decision variables. Consequently, the coaxial drone’s attitude can slide along the state manifold
composed of a series of steady states. This allows it to move toward the optimal reachable equilibrium.
To address disturbances that are difficult to accurately measure, an extended state observer is
employed to estimate the disturbances in the prediction model. This design ensures that the algorithm
maintains recursive stability even in the presence of disturbances. Finally, numerical simulations and
flight tests are provided to confirm the effectiveness of the proposed method through comparison
with other control algorithms.

Keywords: attitude control; model predictive control; disturbance observer

1. Introduction

Unmanned aerial vehicles (UAVs) have been developed at an astonishing pace over
the past 30 years. Common UAV types include fixed-wing and rotary-wing designs.
Among these, the coaxial dual-rotor UAV possesses unique advantages such as compact
structure, strong stability, high payload capacity, and high forward speed. Leveraging
these benefits, coaxial UAVs have the potential to replace humans in performing numerous
hazardous tasks.

Currently, the use of unmanned aerial vehicles (UAVs) is steadily increasing across
various fields. Correspondingly, there has been a growing investment in UAV research,
with particular emphasis on control methods. Multirotor UAVs constitute underactuated
nonlinear systems with coupled states. They have six degrees of freedom (position: x, y,
z; orientation: roll, pitch, yaw), yet their control inputs are typically less than six. Addi-
tionally, despite the existence of generic models for UAVs, when considering specific flight
conditions, numerous complex factors need to be taken into account, such as parameter
uncertainties, external disturbances, and unmodeled dynamics [1]. In recent years, various
control methods have been employed to address the dynamic characteristics of UAVs [2–5].

In [6], robust PID controllers are applied to quadcopter UAVs for trajectory tracking
tasks and minimizing power consumption. Noormohammadi-Asl et al. [7] obtained both
the nominal linear model of the system and the uncertainty model containing the deviation
between the nonlinear system and the nominal model by identifying the system through
frequency response in the case of parameter uncertainty in the system. Then, a linear H
controller was designed to control the attitude of the UAV, which successfully achieved
the goals of attitude tracking, interference suppression, and input saturation. Hossam,
A. et al. [8] proposed a Mu-based quadrotor trajectory tracking control method that can
suppress different types of disturbances and is able to deal with uncertainties of even
infinite dimensions, such as time delay, effectively. The proposed approach covers a weakly
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nonlinear range of operation, which is reasonable for many applications, while maintaining
low computational cost, since the controller is linear and fixed. The controller was tested
via a realistic simulation environment and compared to an LQR controller. According to
the simulations, the proposed controller has superior performance, even in the presence of
time delays and disturbances.

In [9,10], the authors propose a new method for terminal sliding mode control to
achieve time-synchronous convergence of multiple-input-multiple-output (MIMO) systems
under disturbances. In [11], the flight tracking control problem in the UAV altitude and
attitude control system under full state constraints is studied by the output feedback control
scheme. Under the designed flight output feedback tracking controller, the unmanned
helicopter altitude and attitude control system achieves the expected control objectives
within the state limits. In [12], an INDI-based actuator compensation attitude controller is
developed for the helicopter subject to the time delay, position, and rate saturations in actu-
ators. The controller is composed of a rate controller which ensures the rate performance of
the helicopter, an attitude controller which guarantees the attitude tracking performance,
and a collective pitch controller which meets the needs of the vertical changes in the z-axis
direction. The model reduction method is used to design an INDI-based controller for
the rate loop and collective pitch of the main rotor, which improves the robustness to the
time-varying actuator delay.

Traditional control methods have made outstanding achievements in UAV control.
However, there are various constraints in the actual flight system. Therefore, a model pre-
dictive control algorithm that can solve the optimization problem with various constraints
online has attracted the attention of researchers.

Researchers have adopted a large number of model predictive control methods on
UAVs [13–18], combining neural networks and reinforcement learning with model predic-
tive control [19–23]. In these works, the nonlinear MPC algorithm proposed by the authors
reduces computational complexity while ensuring trajectory tracking accuracy [13], and the
authors [17] transform the nonlinear model into a controllable linear system in Brunovsky
Canonical Form through the differential flatness theory. In view of the influence of complex
aerodynamic effects generated by UAVs under high-speed motion, an MPC controller in-
corporated into the Gaussian process was designed to accurately and efficiently control the
aerodynamic effects of the model in real time, which greatly reduced the trajectory tracking
error [20]. In [22], a real-time neural network MPC is proposed, which integrates a large
complex neural network architecture as a framework for dynamic models in the model
predictive control pipeline. Experiments were carried out on a highly agile quadcopter
platform to demonstrate the operational capabilities of the described system.

Previous research has achieved significant success in trajectory tracking. However,
most of these works primarily focused on the dynamics model of the aircraft itself, neglect-
ing potential external disturbance effects. When drones face scenarios with disturbances,
the more complex dynamic effects, if ignored by the controller, can easily lead to tracking
deviations or even loss of control. Addressing the disturbance problem is a crucial step
for drones to transition from indoor experimental environments to real-world outdoor
flight scenarios.

In this paper, we propose a disturbance-affected unmanned aerial vehicle (UAV)
attitude tracking controller based on model predictive control (MPC). Inspired by [24,25],
the proposed controller achieves precise control of nonlinear systems by utilizing a linear
time-varying (LTV) model. The main contributions are as follows:

Firstly, the controller takes into account external disturbances present during actual
drone flight and the linearization errors resulting from the use of linearized models. Treating
these disturbances as a lumped disturbance, we design a linear extended state observer to
accurately estimate the disturbances in the predictive model. In the case of disturbances
being continuously bounded, this observer is able to converge within a finite time and
ensures the continuity of the observer’s output.
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Secondly, compared to traditional LTV-MPC, this controller uses the system’s steady-
state equilibrium point as a decision variable in the cost function, reducing the requirement
for an accurate linearization model and improving the stability of the control algorithm.

The remaining structure of this paper is as follows. In Section 2, we describe the coaxial
UAV attitude dynamics model in detail. In Section 3, we describe the implementation
details of the UAV attitude controller, including the design of the linear extended state
observer and the implementation of advanced MPC. Then, experiment is given to verify
the proposed control scheme in Section 4. And finally, the conclusion is given in Section 5.

2. System Model

In this paper, we study a coaxial drone shown in Figure 1a. Its flight relies on the
upper and lower rotors to provide lift, and the attitude angle of the drone is controlled by
changing the angle between the rotor and the main axis of the aircraft.

Figure 1. (a) Coaxial drone; (b) diagram of coordinate systems on coaxial drone.

The coordinate system and physical quantities of the coaxial drone studied in this
paper are shown in Figure 1b. In the figure, the airframe and airborne coordinate system
are used as the NED coordinate system. (φ, θ, ψ) signifies a set of Euler angles used to
describe the helicopter’s attitude relative to the NED frame. The drone is regarded as a
rigid structure, and the gyroscopic effect caused by the rotation of the motor is ignored.
The attitude model of the UAV using the Newton–Euler method is as follows [11]:

Ω̇ = Wb(Ω)ωb
ω̇b = J−1[Mb − ωb × (Jωb)]

(1)

where Ω̇ =
(

ϕ θ φ
)T , and ϕ, θ, ψ denote the roll angle, pitch angle, and yaw angle

of the UAV, respectively. Wb(Ω) is the angular velocity transformation matrix, which is
shown as follows:

Wb(Ω) =

 1 tan θ sin ϕ tan θ cos ϕ
0 cos ϕ − sin ϕ

0 sin ϕ
cos θ

cos ϕ
cos θ
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In addition, ωb(t) =
(

p(t) q(t) r(t)
)T , and p(t), q(t), and r(t) denote the roll,

pitch, and yaw angular velocities, respectively; J denotes the moment of inertia of the body.
Since the inertia tensor of the non-spindle is extremely small, the non-spindle quantity can
be ignored, so J = diag

{
Ix Iy Iz

}
; Mb = ( Ux Uy Uz )T denotes the control input

torque of the coaxial drone, and “×” is the multiplication cross matrix.
Equation (2) is obtained by expanding the vectors and matrices in Equation (1):

 ϕ̇
θ̇
φ̇

 =

 1 tan θ sin ϕ tan θ cos ϕ
0 cos ϕ − sin ϕ

0 sin ϕ
cos θ

cos ϕ
cos θ

 p(t)
q(t)
r(t)


 ṗ(t)

q̇(t)
ṙ(t)

 =


1
Ix

0 0
0 1

Iy
0

0 0 1
Iz


 Ux

Uy
Uz

−

 p
q
r

×

 Ix 0 0
0 Iy 0
0 0 Iz

 p
q
r

 (2)

We select x = [ϕ, θ, ψ, p, q, r]T as the state vector of the system, u =
[
Ux, Uy, Uz

]T as
the control input of the system, and y = [ϕ, θ, φ]T as the output of the system. The complete
nonlinear model can be obtained by replacing the left side of Equation (2) with x and
expanding the right side as follows:

ẋ =



p + tan θ cos ϕ · r + tan θ sin ϕ · q
cos ϕ · q − sin ϕ · r

sin ϕ
cos θ · q + cos ϕ

cos θ · r
Iy−Iz

Ix
qr + Ux

Ix
Iz−Ix

Iy
pr + Uy

Iy
Ix−Iy

Iz
pq + Uz

Iz


= f (xt, ut) (3)

This nonlinear model f (xt, ut) is an affine form of the state of the system. Since the
MPC algorithm prediction model adopted in this paper needs to adopt the linearization
model of the current point, the Jacobian linearization method is used to convert the nonlin-
ear model of the UAV into the linear time-varying (LTV) state space equation as follows:{

ẋ(t) = A(t0)x(t) + B(t0)u(t) + E(t0)
y(t) = Cx(t)

(4)

where A(t0) := ∂ f
∂x

∣∣∣
x0,u0

, B(t0) := ∂ f
∂u

∣∣∣
x0,u0

is obtained by finding the partial derivatives

of the state and the input by the nonlinear equation at t0; E(t0) denotes the model error
caused by the linearization of nonlinear equations; C =

[
I3 O

]
, where I3 is a 3rd-order

identity matrix and O is a 3rd-order zero matrix.

3. Attitude Control System Design

During UAV missions, the flight environment is often complex and unpredictable
disturbances exist. Neglecting these disturbances can have a significant impact on UAV
control, potentially leading to catastrophic consequences such as UAV crashes. In order to
prevent the occurrence of catastrophic events, this paper uses the method of a linear state
control observer to estimate the overall disturbance and design an MPC controller based
on the equilibrium setpoint to achieve accurate control of the UAV attitude. The block
diagram of the attitude control system consisting of ESO and MPC is shown in Figure 2.
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Figure 2. A schematic of the proposed attitude control system.

3.1. Extended State Observer for Disturbance Estimation

During flight, disturbances cannot be measured directly by sensors. A state observer
can estimate the state variables of a system using the actual inputs and outputs of the
system. The extended state observer (ESO) is the core of the Active Disturbance Rejection
Controller (ADRC), which adds the disturbance of the system to the state vector of the
system to obtain an extended state vector containing the disturbance, and then the state of
the system and the disturbance of the system can be calculated by using the properties of
the state observer.

Consider the existence of a linear bounded external perturbation for the attitude
angular velocity channel. Merge the external disturbances with E(t0) into a lumped
disturbance d(t) =

[
ex ey ez

]T as the expanded state quantity, and then define a new
state vector xobs = [ x d(t) ]T . And let the derivative of d(t) be h; then, the expanded
state space equation is: {

ẋobs = Aobsxobs(t) + Bobsu(t) + Eh
y = Cobsxobs(t)

(5)

where:

Aobs =

 A(t0)6×6
03×3
I3×3

03×6 03×3

, Bobs =

[
B(t0)
03×3

]
, E =

[
06×6
I3×3

]
, Cobs = [ C 03×3 ]

Based on system (5), a Luenberger linear state observer is designed. The state vector
of the observer is x̂obs. The estimated expressions for the state and output of the observer
are as follows: { ˙̂xobs = Aobs x̂obs + Bobsu + L(y − ŷ)

ŷ = Cobs x̂
(6)

Equation (5) is subtracted from Equation (6) to obtain:

ė = (Aobs − LCobs)e − Eh (7)

where e = xobs − x̂obs.
By making all the eigenroots of (Aobs − LCobs) fall to the left half of the complex plane

through the pole configuration, the error e will converge to 0 with time, that is, the designed
observer can quickly estimate all the state quantities of the system. After the feedback gain
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matrix L is inversely solved by the configured poles, the extended state space expression
can be written as:  ˙̂xobs = (Aobs − LCobs)x̂obs + [Bobs

...L]
[

u
y

]
ŷ = I9 x̂obs

(8)

where x̂obs = [ x̂ d̂(t) ]T , d̂(t) denotes the perturbation value estimated by the observer,
and M is the ninth-order identity matrix.

Remark 1. In this paper, the disturbance estimation method is used as a linear extended state
observer. Although the UAV flight environment is complex and the disturbances are frequent and
difficult to estimate, in the case of low-speed flight, most of the disturbances that can affect UAV
flight are mostly wind disturbances. We can consider that d(t) is bounded, i.e., there exists a known
real number D ∈ R+, such that |d(t)| ≤ D . Therefore, we believe that the observer we designed
has the conditions for convergence in such a perturbation environment.

3.2. Advanced MPC Framework

Model predictive control is a form of control in which the current control action is
obtained by solving, at each sampling instant, a finite horizon open-loop optimal control
problem, using the current state of the plant as the initial state; the optimization yields an
optimal control sequence and the first control in this sequence is applied to the plant [26].
For the LTV model of a coaxial UAV with disturbance, an MPC based on a steady-state
setpoint is designed in this paper. In order to meet the needs of the optimization problem in
the fast-solving algorithm, the zero-order holding method is used to rewrite the continuous
time–state space equation of the above model (5) into a discrete time–state space equation:{

x(k + 1) = Akx(k) + Bku(k) + Bdd(k)
y(k) = Ckx(k)

(9)

The solution of the optimal problem of the proposed algorithm produces the best
nominal state and input, steady-state input, output, and state, and the proposed cost
function is as follows, which is a combination of the error between the nominal state and
the steady-state input, the input and the steady-state input, and the steady-state output
and the reference:

J = min
x̄(t),ū(t)

xs(t),us(t)
ys(t)

N−1

∑
k=0

∥xk(t)− xs(t)∥2
Q + ∥uk(t)− us(t)∥2

R + ∥ys(t)− yr∥2
S (10a)

s.t. xk+1(t) = Axt xk(t) + Buk(t) + Bdd(k) (10b)

x0(t) = xt, xN(t) = xs(t) (10c)

(xs(t), us(t)) ∈ Zs
Lin(xt) (10d)

ys(t) = Cxt x
s(t) + Dus(t). (10e)

where xk(t) represents the value of the state predicted by the system at the kth step at
time t; uk(t) denotes the value of the control input predicted by the system at time t at
the kth step. (xs(t), us(t), ys(t)) is the sequence of equilibrium points selected at time t; N
denotes the predicted step size; Q, R, S are positively definite weight matrices. Zs

Lin(xt) is
a steady-state set of systems.

Compared with the common MPC algorithm, this algorithm solves the optimal prob-
lem based on the linearization model of each current moment and adds (xs(t), us(t), ys(t))
as the optimal value to the cost function of the optimal problem. Since (xs(t), us(t), ys(t))
are uniquely determined by constraint (10e), we can select an artificially set steady-state
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point (xs(t), us(t), ys(t)) near the reference value yr to meet the equilibrium condition and
optimize the distance from the steady-state point to the reference trajectory online. At
the same time, the goal of system optimization is also changed from the distance to the
reference trajectory to the distance to the equilibrium point. In addition, due to the existence
of constraint (10c), the system can reach the equilibrium point after N prediction steps,
which has the same effect as the terminal penalty in the traditional MPC, and it can also be
changed to add an item to the optimized cost function ∥xN(t)− xs(t)∥2

p.
Since the weight matrices Q, R, and S are all positively definite, Problem (10) becomes

a convex QP [27]. Based on the properties of convex QP, we know that the objective
function has a unique optimal solution (xk(t), uk(t), xs(t), us(t), ys(t)). Problem (10) is a
convex quadratic problem, so the algorithm can always find the optimal value quickly,
while solving the nonlinear MPC of the non-convex problem is relatively difficult and time-
consuming. In addition, although they all rely on linearized iterative prediction models
at setpoints, traditional LTV-MPC has additional boundary requirements for linearization
errors. The artificial steady-state setpoint algorithm satisfies the stability condition that the
initial state of the system is close to the steady-state manifold, even if the initial state of
the system is far away from the setpoint; as long as the initial state is close to the steady-
state manifold, the algorithm can still remain stable. When the initial state is far from the
setpoint, the stability of LTVMPC may not be satisfied. In order for the LTVMPC controller
to remain stable and ensure that the linearization error is within the allowable boundary,
the sampling time needs to be reduced.

The following proves that the algorithm has recursive stability, and the Lyapunov
function candidate is selected as:

V(xt) = J∗N(xt)− J∗Lin(xt) (11)

where J∗N(xt) is the case where the optimal value of the cost function J of the algorithm is
obtained; J∗Lin(xt) denotes a solution to obtain the optimal value for ∥ys(t)− yr∥2

S.
The system represented by Equation (5) is second-order differentiable. The matrix

Axt , Bxt , Cxt corresponding to the state space equation satisfies the control ability condition.
And for a steady-state output ys(t), there is a unique steady-state (xs(t), us(t)) correspond-
ing to ys(t); xs(t) = xsr

Lin(xt) when J∗Lin(xt) obtains the optimal value.

V(xt) =
N−1
∑

k=0
∥xk(t)− xs(t)∥2

Q + ∥uk(t)− us(t)∥2
R + ∥ys(t)− yr∥2

S − J∗Lin(xt)

≤
N−1
∑

k=0
∥x̄k(t)− xs(t)∥2

Q + ∥ūk(t)− us(t)∥2
R

≤ λmax(Q, R)
N−1
∑

k=0

(
∥x̄k(t)− xs(t)∥2

2 + ∥ūk(t)− us(t)∥2
2

) (12)

Since the system is controllable, according to the standard theorem of linear system
theory, there is a constant Γ > 0 for all x̃ ∈ R⋉, (xs, us) ∈ Zs

Lin(x̃), and all initial-state x0 to
xs, and it satisfies:

n−1

∑
k=0

∥x̂k − xs∥2 + ∥ûk − us∥2 ≤ Γ∥xs − x0∥2. (13)

So,
V(xt) ≤ λmax(Q, R)Γ2

∥∥xt − xsr
Lin(xt)

∥∥2
2

=b
∥∥xt − xsr

Lin(xt)
∥∥2

2

(14)

Theorem 1. There exist Vmax, Jmax
Lin > 0 such that if V ≤ Vmax J∗Lin(xt) ≤ Jmax

Lin , J∗Lin(xt+n) ≤
Jmax
Lin , there exists a constant 0 ≤ cV ≤ 1 such that (for more information on the proof process, please

refer to [24])
V(xt+n) ≤ cVV(xt). (15)
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According to (14), we have:

V(xt) ≤ b1
∥∥xt − xsr

Lin(xt)
∥∥2

2
V(xt+n) ≤ b2

∥∥xt+n − xsr
Lin(xt+n)

∥∥2
2

(16)

According to (15) and (16), we can obtain that for any moment t there is always:

∥xt+n − xsr
Lin(xt+n)∥2

2 ≤ b1

b2
cV∥xt − xsr

Lin(xt)∥2
2 (17)

Equation (17) shows that the state of the system from time t can converge towards
the optimal achievable steady xsr(xt) range exponent after n steps, and the output yt
also converges towards the optimal achievable output ysr(xt) exponential. Therefore, the
designed MPC algorithm is exponentially stable in a closed loop.

4. Simulation Results
4.1. Numerical Simulation

In this section, in order to verify the effectiveness of the proposed controller, the atti-
tude control system of the coaxial dual-rotor UAV is simulated in the MATLAB/Simulink
environment. The coaxial drone model parameters are shown in Table 1:

Table 1. Coaxial drone parameters.

Variable Name Variable Symbol Variable Symbol

Inertia matrix J diag{0.0768, 0.0775, 0.0361}
Drone quality m 2.84 kg

Gravitational acceleration g 9.8 m/s2

For the extended state observer, its pole is configured at V = (−40,−32 + 20i,−32 −
20i,−24 + 18i,−24 − 18i,−16 + 12i,−16 − 12i,−5 + 6i,−5 − 6i). For the controller, the
forecasting horizon is N = 4 and the weight matrix is Q = diag(100 100 100 10 10 10),
R = diag

(
0.2 0.2 0.02

)
, S = diag

(
1000 1000 1000

)
.

The external disturbance is:

d(t) =
[

4 sin(t) 4 4
]T

The expected attitude angle of the drone is:

yd = [ 0.5 0.2 0.4 ]T

Based on the above parameters, the UAV attitude control system was simulated in
the MATLAB/Simulink environment. For comparison, we also applied some controller
schemes, each with the same design parameters as above:

(1) The proposed MPC is the controller using the scheme proposed in Section 3.2 and
adopting the expanded state observer proposed in Section 3.1 to estimate the disturbance
d(k) for the prediction Equations (10b) (green line in figure);

(2) The model-based MPC uses the scheme proposed in [24,25]. The scheme does not
consider the disturbances in its predictive models (purple line in figure);

(3) The ESO-LTV-MPC is an MPC scheme using an LTV prediction model obtained by
linearizing the nonlinear dynamics at time t along the candidate solution and adopting the
expanded state observer proposed in Section 3.1 to estimate the disturbance d(k) (red line
in figure);

(4) The SMC is the sliding mode control (yellow line in figure).
Figures 3–5, respectively, show the variation curves of the UAV’s roll, pitch, and yaw

angles. Figure 3a presents the tracking curve of the roll angle, while Figure 3b illustrates
the error tracking curve. The Proposed MPC controller demonstrates an adjustment time
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of approximately 1 s with negligible overshoot and steady-state error. In comparison, the
ESO-LTVMPC controller exhibits similar overshoot to the Proposed MPC controller but
requires an adjustment time of around 1.2 s. However, it struggles to suppress disturbances
effectively, resulting in a steady-state sinusoidal curve with an amplitude of 0.05.

The SMC controller achieves better steady-state error performance than the Proposed
MPC controller but suffers from higher overshoot and a longer regulation time. The Model-
Based MPC controller, used as a benchmark, lacks an extended state observer to assist
in estimating disturbances, causing its prediction model to deviate significantly from the
actual model. This deviation leads to a steady-state oscillation error with an amplitude of
0.1 rad in the system.

Figure 3c displays the roll angular velocity, and Figure 3d shows the controller input.
Over time, the angular velocity for each controller converges to zero. However, the initial
response inputs for the SMC and Model-Based MPC are more abrupt, reaching nearly
8 N·m. During the adjustment period, the SMC input exhibits jitter, while the inputs of the
other three algorithms remain smoother.

In summary, from the perspective of roll angle tracking performance, the ESO-Proposed
MPC achieves the best results, followed by the SMC, with the ESO-LTVMPC performing
the worst.

Figures 4 and 5 show the tracking curves, error tracking curves, and angular velocity
changes for the pitch angle and yaw angle, respectively. The conclusions are similar to
those for the roll angle. One notable difference is that the Model-Based MPC controller
in Figure 4a exhibits a steady-state error of 0.05 rad due to persistent disturbances. In
Figure 5a, the Model-Based MPC controller has a steady-state error of 0.1 rad, while the
SMC controller shows a steady-state error of more than 0.8 rad. Despite this, the steady-state
error remains relatively small.

0 5 10 15

Time (s)

(a)

0

0.1

0.2

0.3
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Figure 3. The roll channel variable under different controllers: (a) the roll angle; (b) the tracking error
of the roll; (c) the attitude velocity of the roll channel; (d) the input of the roll channel.
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Figure 4. The pitch channel variable under different controllers: (a) the pitch angle; (b) the tracking
error of the pitch; (c) the attitude velocity of the pitch channel; (d) the input of the pitch channel.
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Figure 5. The yaw channel variable under different controllers: (a) the yaw angle; (b) the tracking
error of the yaw; (c) the attitude velocity of the yaw channel; (d) the input of the yaw channel.

In general, the extended state observer provides an estimate of the external error,
enabling the proposed algorithm to resist external disturbances and achieve optimal perfor-
mance. The Proposed MPC exhibits the shortest regulation time, minimal overshoot, and a
negligible steady-state error. While achieving superior tracking of angle changes, the input
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of the Proposed MPC is smoother than that of the SMC. Among these control algorithms,
the Proposed MPC demonstrates the best overall control performance.

Robustness and recursive stability are also essential considerations for the algorithm.
This paper will use a simple simulation experiment to illustrate another advantage of the
Proposed MPC controller over the LTVMPC.

Using the same UAV parameters and controller design parameters, both the Proposed
MPC controller and the ESO-LTVMPC controller are tasked with tracking the desired
attitude angle in the absence of external disturbances and model parameter uncertainty,
with a system sampling frequency of 0.05 s:

yd = [ 0.5 0.2 0.4 ]T

The initial state of the UAV is:

x0 =
[

−0.15 −0.05 0 0 0 0
]T

The simulation results are shown in Figures 6–8. Figure 6 illustrates the attitude
angle tracking curve of the UAV after a change in the initial state. The data indicate
that the system can still stably track the reference attitude angle under the control of the
Proposed MPC controller, whereas the system attitude angle diverges under the control of
the LTVMPC controller. Figures 7 and 8 show the velocity and input curves. Under the
Proposed MPC controller, the velocity and input gradually converge to zero, while under
the LTVMPC controller, the curves oscillate between the upper and lower limits.

This instability with the LTVMPC controller is due to an increased output change
in the initial state, causing the frequency of the system’s linearization updates to lag
behind the changes in the control output. As a result, the linearization error exceeds the
allowable bounds of the LTVMPC control algorithm, leading to instability. To re-stabilize
the algorithm, it would be necessary to shorten the sampling time for system linearization
(i.e., increase the sampling frequency) or modify the algorithm’s terminal constraints.

In contrast, with the Proposed MPC controller, although the initial state is farther from
the reference setpoint, it remains within the vicinity of the controlled system’s steady-state
manifold, thereby maintaining recursive stability.
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Figure 6. The attitude angle tracking curve of the UAV after changing different initial states: (a) roll;
(b) pitch; (c) yaw.
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Figure 7. The velocity curve of the UAV after changing different initial states: (a) p; (b) q; (c) r.
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Figure 8. The input curve of the UAV after changing different initial states: (a) Ux; (b) Uy; (c) Uz.

4.2. Flight Experiment

To evaluate the performance of the algorithm, we conducted flight experiments. The
experiment used a self-developed flight controller. It uses STM32F765 (STMicroelectronics,
Geneva, Switzerland) as the main control chip and is equipped with three-axis accelerome-
ter and gyroscope MPU6000 (InvenSense, San Jose, CA, USA), accelerometer ICM-20602
(InvenSense, San Jose, CA, USA), and barometer MS5611 (MEAS Switzerland Sarl, Murten,
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Switzerland). Through the extended Kalman filter algorithm, the real-time attitude and the
heading angle are provided as state feedback information for the control system.

In the experiment, we tested the controller’s performance by continuously changing
the desired roll angle. To simulate continuous bounded disturbances, we used an electric
fan to blow air in the direction of the drone’s roll angle. The experimental results are shown
as follows. As shown in the figure, the drone achieved hover at approximately 2 s and
completed the experiment with a landing at around 12 s. The actual flight’s roll angle
control performance is depicted in Figure 9a. The rate of roll angle is demonstrated in
Figure 9b. The PWM output values for the roll channel are shown in Figure 9c. When
roll angle is 0, the PWM value should be in the middle value 1540. It is observed that the
roll rate quickly changes in response to the variations in the reference roll angle under the
controller’s regulation. Therefore, as shown in Figure 9a, we can see that the drone exhibits
good angle tracking performance.
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Figure 9. The actual state change of the drone roll angle channel: (a) the roll; (b) the rate for the roll
channel; (c) the PWM output values for the roll channel. Green dotted lines are the actual angle, rate
and pwm output. The blue dotted lines are the expectations.

Finally, the control method proposed in this paper proves the effectiveness of the
coaxial UAV attitude system. The diagram clearly shows that the control strategy has
better robustness than the traditional control method and can adapt to more complex
external environments.

5. Conclusions

This paper constructs an attitude control system for a coaxial helicopter under distur-
bances. The proposed control system is designed based on the linearized nominal model
of the coaxial helicopter. The new controller uses artificially set equilibrium points as
tracking targets, with the system’s equilibrium as decision variables in the cost function,
ensuring recursive stability of the system under continuous disturbance. An extended state
observer is designed to estimate the unmeasurable disturbances in the predictive model.
Finally, simulation experiments and flight experiments verify that the proposed method
can smoothly track the reference attitude under disturbances without deviation.
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