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Abstract: To address the limitations of inadequate real-time performance and robustness encountered
in estimating the pose of non-cooperative spacecraft during on-orbit missions, a novel method of
feature point distribution selection learning is proposed. This approach utilizes a non-coplanar
key point selection network with uncertainty prediction, pioneering in its capability to accurately
estimate the pose of non-cooperative spacecraft, thereby representing a significant advancement
in the field. Initially, the feasibility of designing a non-coplanar key point selection network was
analyzed based on the influence of sensor layout on the pose measurement. Subsequently, the key
point selection network was designed and trained, leveraging images extracted from the spacecraft
detection network. The network detected 11 pre-selected key points with distinctive features and was
able to accurately predict their uncertainties and relative positional relationships. Upon selection of
the key points exhibiting low uncertainty and non-coplanar relative positions, we utilized the EPnP
algorithm to achieve accurate pose estimation of the target spacecraft. Our experimental evaluation
on the SPEED dataset, which comes from the International Satellite Attitude Estimation Competition,
validates the effectiveness of our key point selection network, significantly enhancing estimation
accuracy and timeliness compared to other monocular spacecraft attitude estimation methods. This
advancement provides robust technological support for spacecraft guidance, control, and proximity
operations in orbital service missions.

Keywords: pose estimation; uncertainty prediction; key point detection; non-cooperative spacecrafts;
deep learning

1. Introduction

To address the pressing sustainability crisis in near-Earth space, alleviate congestion
in Earth’s orbit, and extend the operational lifespan of geostationary satellites, the expe-
dited development of safe and autonomous rendezvous and docking capabilities holds
paramount importance [1]. Central to this endeavor is the acquisition of the target space-
craft’s accurate, real-time pose. This enables autonomous servicing spacecraft to generate
both safe and energy-efficient rendezvous and docking trajectories, grounded in real-time
attitude estimations of the target [2]. However, the targets we encounter often consist of
uncooperative entities, such as defunct satellites and debris, which are unable to provide
identifiable markers or active communication links. Consequently, attitude estimation must
solely rely on onboard sensors and computing capabilities. In comparison to active sensors,
like those used for light detection and ranging, vision sensors boast simpler structures,
lower mass, and reduced power requirements, facilitating their widespread utilization [3].
Nevertheless, to achieve autonomous attitude estimation, it is crucial to precisely extract
attitude information from a sequence of images captured by a monocular camera, leverag-
ing efficient and powerful computer vision algorithms. As camera technology continues to
advance, the precision of attitude estimation steadily improves, providing robust technical
support for addressing the sustainability crisis in near-Earth space [4].
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In this paper, we aim to efficiently and swiftly determine the attitude of a non-
cooperative spacecraft from a sequence of 2D images. The principal challenges in this
task arise from the intricate nature of the target’s distance and the surrounding environ-
ment, encompassing scenarios where the target is exceedingly remote, the backgrounds
display a diminished signal-to-noise ratio, or the spacecraft is overshadowed. Initially,
Drom [5] proposed an inverse-projection approach capable of estimating the positional
attitude of a three-dimensional object in space from a single projected image. Subsequently,
a comprehensive attitude analysis solution method was introduced. Following Drom’s
work, Horaud [6] presented a perspective-based four-point solution, while Lepetit [7]
developed a non-iterative solution to the Perspective-n-Point (PnP) problem, leveraging an
enhanced initialized Gaussian–Newton scheme to enhance computational efficiency and
measurement accuracy. However, these model-based methods necessitate a substantial
number of feature matches prior to pose estimation, limiting their real-time application
potential. Alternatively, non-model-based algorithms often rely on target-specific charac-
teristics, utilizing scale-invariant features like corner points to initialize the 3D geometric
configuration of the spacecraft. In addition, many researchers have applied relative attitude
methods to satellite missions. Chiodini, S [8] discussed two approaches to proximity based
on monocular camera systems: the Sharma–Ventura–D’Amico (SVD) method and the
silhouette matching method, which investigated the problem of initializing the relative
attitude between a chaser and a non-cooperative target satellite; B. E. Tweddle [9] solved
the external orientation problem for four-point features using a globally convergent non-
linear iterative algorithm; and S. Sharma [10] synthesized detected features using simple
geometric constraints to greatly reduce the search space for the feature correspondence
problem. These methods seek to establish the optimal correspondence between known
2D images and 3D feature perspectives to obtain the positional attitude. Nevertheless, if
these methods lose sight of target features in certain scenarios, their accuracy suffers a
significant decline.

In recent years, with the rapid development of neural networks, researchers have
proposed numerous innovative learning-based algorithms for the problem of spacecraft
pose estimation from monocular images, aiming to improve the detection accuracy. Among
them, the features detected using CNN networks (the feedforward neural networks contain-
ing convolutional computation with deep structure) exhibit higher accuracy and stability
compared to traditional methods. There are some methods of estimating the relative pose
between two satellites based on non-AI methods. Furthermore, in order to bridge the gap
between on-board computer vision applications and ground-based validation, SLAB (the
Space Rendezvous Laboratory of Stanford University) and ACT (the Advanced Concepts
Team of the European Space Agency) co-organized the International Satellite Attitude
Estimation Competition. Based on the dataset from this competition, Chen [1] and Park [11]
et al. took a similar approach to attitude estimation: they both used 2D pixel coordinates
of key points and a pre-acquired wireframe model of the spacecraft to estimate attitude.
One approach used heatmaps to process the images, while the other used features from
CNN networks for deepening. We also conduct a study on this dataset to improve the pose
estimation accuracy based on the effect of sensor distribution on pose measurement, and
then select non-coplanar feature points for pose estimation. Our main contributions can be
summarized as follows:

1. Utilizing the PnP angular error propagation model alongside the mathematical theory
of sensor mounting configuration optimization, we can effectively analyze and guide
the impact of coplanar and non-coplanar surfaces at crucial points on the accuracy of
pose estimation.

2. In the process of detecting key points, the region encompassing the spacecraft’s loca-
tion is first identified. Subsequently, an uncertainty prediction is conducted for these
key points. Based on theoretical knowledge, key points that exhibit high uncertainty
are eliminated. To enhance accuracy, a non-coplanar feature point selection network
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incorporating uncertainty is proposed. Finally, the bit pose is estimated utilizing the
Efficient Perspective-n-Point (EPnP) algorithm.

3. We fully experimented with the SPEED dataset and compared it with the key point
detection methods in various cases and found that our method can reduce the average
error of the pose estimation by 61.3%.

2. Related Work

Methods for automatically extracting features of the target spacecraft for pose estima-
tion through deep learning can be categorized as follows: two-stage methods, end-to-end
methods, domain-adapted methods, and lightweight methods [12]. Among these methods,
the two-phase approach is more commonly used, which usually utilizes a target detection
network to intercept the region where the spacecraft is located, uses a key point prediction
network to extract the key points in the spacecraft image, and finally solves the positional
relationship using the PnP approach, as shown in Figure 1.
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Algorithms for detecting aircrafts are essential for localizing the critical point on space-
craft. When selecting algorithms, we usually go for single-stage target detection methods
like YOLO (You Only Look Once) rather than two-stage methods like RCNN (Region-based
Convolutional Neural Network), Fast RCNN, FPN (Feature Pyramid Networks), etc. This
is due to the fact that, despite having good detection accuracy, two-stage target detection
algorithms have a slow detection speed that is unable to satisfy real-time demands. The
single-stage target detection algorithm, on the other hand, achieves a good balance between
speed and accuracy by greatly enhancing detection speed while retaining high detection
accuracy. For estimating the attitude of the spacecraft, the detection speed is particularly
crucial. The single-stage target detection algorithm becomes our first option because we do
not require a very high target detection accuracy.

In order to improve the accuracy of the pose estimation, the detection of key points is
crucial. In terms of key point detection methods, pose regression, segmentation driving,
heatmap prediction, and bounding box detection are four commonly used methods. Be-
cause of its ease of use and efficiency, the key point pose regression method is currently
in high demand. For the first time, Chen [1] employed HRNet (High-Resolution Net) to
regress the 2D key points straight to 1*1*2N vectors, giving each key point a region of the
same size. They then solved a nonlinear least squares optimization problem to determine
the relative position. Park [11] proposed a YOLO-v2 network-based MobileNet-v2 network
for positional modeling using the YOLO-v2 architecture; in order to eliminate network
layers from the original Efficient-Nets that do not support hardware deployment, Lotti [13]
et al. proposed an Efficient-Net-Lite-based key point regression model. Furthermore, the
heatmap prediction method demonstrates its own benefits. In order to more intuitively
represent the distribution of key points, it regresses the heatmap, encoding probabilities
based on key point locations. While Huo [14] et al. proposed a lightweight hybrid architec-
ture that combines YOLO with heatmap regression sub-networks for key point prediction,
which further improves the prediction accuracy, Gao’s [15] work skillfully converts the
prediction of direction vectors into the regression of heatmaps, improving the prediction
accuracy. Another interesting method is the bounding box prediction model. Li [2] et al.
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innovatively formulated key point prediction as a problem of key point bounding box
detection, where the location of key points is determined by predicting closed bounding
boxes and their confidence scores. This approach not only improves the detection accuracy
but also provides more reliable data support for the subsequent positional solving.

In addition to two-stage methods, end-to-end methods, domain-adapted methods,
and lightweight methods have their own advantages and disadvantages. The end-to-end
method directly realizes the conversion from the original image to the bit-pose estimation
by constructing a complex network model, which simplifies the processing flow but may
sacrifice a certain degree of accuracy, and generally uses the bit-pose error to compute
the loss function to train the model. Sharma uses CNN to extract the features in the
image and uses the fully connected layer to output the six-dimensional vectors as the
predicted 6D postures without intermediate phases. The domain adaptation approach, on
the other hand, addresses the special nature of spacecraft images by introducing domain
adaptation techniques to improve the generalization ability of the model in different
scenarios. The lightweight approach focuses on reducing the computational and storage
requirements of the model, making it more suitable for resource-constrained on-board
computer vision applications.

3. Method

The overall flow of our method is depicted in Figure 2. Initially, we preprocess
the existing dataset, analyze the sample labels, reconstruct the target in 3D using the
sample data, and subsequently obtain the corresponding training data through projection
processing. Subsequently, for each input image, we devise a target detection network
to train it and derive the spacecraft’s location and region. Then, we input the cropped
spacecraft image into the key point detection network to detect the location of key points.
After screening the uncertainty and key point structure, we determine the pixel coordinates
of the key points to be settled in position. Finally, we perform pose solving using EPnP to
obtain the relative pose parameters and arrive at the pose estimation results.
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3.1. Sensor Layout

Pose estimation of non-cooperative targets lacks explicit labeling information, and
thus, we usually rely on on-board sensors working in concert with computers to achieve
our goals. With the help of neural networks, we are able to detect a series of key points and
then apply the PnP algorithm to accurately compute the positional relationship. Therefore,
the importance of selecting which candidate key points to use as the basis for estimation
cannot be overstated. By filtering out the accurate key points, we can improve the accuracy
and reliability of the pose estimation and lay a solid foundation for subsequent use.

Wu’s team [16] rigorously constructed an error propagation model for the laser light-
house system and innovatively proposed the AP (Angle-Precision) mapping method to



Aerospace 2024, 11, 526 5 of 13

visualize the distribution of the position and attitude measurement accuracy of these sensor-
mounted configurations under different observation viewpoints, aiming at solving the
problem of the distribution of the measurement accuracy under the observation of different
site locations. The team chose square and tetrahedral configurations for simulation analysis
and set the observation distance r to 10 m, and the root mean square of the angular noise is
4.01 × 10−5 rad (0.0023◦). The simulated “observation view angle-measurement accuracy
mapping” of the two configurations is shown in Figure 3, which visualizes the relation-
ship between the attitude, the measurement accuracy of the position, and the observation
view angle.
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The “x, y, z” axes in degrees represent the attitude measurement accuracy variation
intervals of the three axes, which enables the visualization of the attitude measurement
accuracy distribution with the observation viewpoint.

The experimental comparison results indicates that the measurement accuracy of
the laser beacon in the non-coplanar configuration is more uniformly distributed with
the observation viewpoint and is less likely to be drastically fluctuated due to changes
in the observation viewpoint. Therefore, the non-coplanar configuration can effectively
inhibit the dispersion of the measurement error and improve the stability and reliability of
the measurement.

Based on the above theory, we reasonably hypothesize that the configuration of the
key points is similar to that of the sensors, i.e., by adopting a non-coplanar key point
selection method, the effect of the pose estimation will be better and the accuracy will
be higher. In order to verify this inference, we next designed and implemented several
comparative experiments, with a view to further confirming and optimizing our theoretical
model through empirical data.

3.2. Three-Dimensional Reconstruction

In this paper, the world coordinate system refers to the target spacecraft coordinate system.
In the available dataset, each image is labeled in detail with the specific position and

attitude of the spacecraft, while the information of the camera used in the dataset is known,
and using the imaging model of the pinhole camera, as Equation (1) shows, we are able to
project points onto the image plane:

ZC

 u
v
1

 =

1/dx 0 u0
0 1/dy v0
0 0 1

 fx 0 0 0
0 fy 0 0
0 0 1 0

(
R t
0 1

)
Xw
Yw
Zw
1

 (1)

where [Xw, Yw, Zw]
T is the position of the point in the world coordinate system, u and

v represent the pixel coordinates in the image coordinate system, ZC refers to the depth
(distance from the camera) corresponding to the point, R is the pose matrix from the world
coordinate system to the camera system, t is the translation from the world system to the
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camera system, fx and fy are the focal lengths of the two axes of the camera, dx and dy are
the widths of the pixels of the camera in the direction of the two axes, and u0 and v0 are the
offsets of the centers of the pixel planes with respect to the pixel coordinate origin [17].

In order to provide data labels for the subsequent target detection network, as well as
the key point detection network, we selected 11 points with strong visual features as key
points. Using labelImg1.8.0 software, we manually labeled the pixel values of these visible
key points and subsequently solved Equation (2), minimizing the reprojection error of the
key points to find their 3D coordinates [14].

min
X3D

i,j

∑
i,j

∥X2D
i,j − KT∗

j
X3D

i,j ∥
2

2
(2)

where X2D
i,j denotes the 2D coordinates of the j-th key point in the i-th image, X3D

i,j denotes the
corresponding 3D coordinates, T∗

i is the ground truth pose of image i that can be obtained
from the dataset, and KT∗

j
denotes the point-to-image plane projection transformation.

The optimal solution cannot make Equation (2) zero due to the presence of noise.
Therefore, the least squares method is used to obtain the optimal solution. We are able to
construct a system of N linear equations through N graphs to form a super-determined
linear equation, as shown in Equation (3):

As = b (3)

where A is a 2N × 3 matrix and b is a 2N × 1 matrix. s can be obtained as the optimal solution:

s = (Xk, Yk, Zk)
T = (AT A)

−1
ATb (4)

The 3D coordinates of the key points are finally obtained, and from this, a spacecraft
wireframe model can be obtained.

We were able to precisely calculate the 2D coordinates of the 11 important spots on
the picture plane using the previously determined 3D coordinates, the true values of the
quaternion and position supplied by each image in the Speed dataset, and the camera
imaging model. In addition to being effective, this method saves the time and effort needed
to manually identify a large number of photos. By using this method, we can obtain precise
2D coordinate data without having to rely on laborious human processes. In addition,
since we need to determine whether or not it is coplanar, we also need to make coplanar
and non-coplanar determinations for each point, so using the known coplanar and non-
coplanar set of points and the 2D coordinate information mentioned above, the dataset for
the subsequent task is jointly constructed.

3.3. Spacecraft Detection Network

In order to meet the stringent requirements of spacecraft pose estimation, we design
the network for the accuracy and speed of the detection network. Considering the excellent
performance of the yolov8 algorithm in the field of target detection, we decided to design
and train the spacecraft detection network based on this algorithm.

First, we transformed the dataset obtained from the previous session into yolo format
to fit our network training needs. The generation of 2D bounding boxes is particularly
critical in this process. We utilize ground truth attitude information to accurately project
3D key points onto the image to obtain accurate 2D bounding boxes. To ensure that the
spacecraft can be completely enveloped within the bounding box while minimizing the
loss of key points, we enlarged the center frame of the bounding box [18].

Next, we designed the network structure and related parameters. The whole network
structure is divided into three parts: backbone network, neck part, and head part [19]. The
backbone network is responsible for extracting rich feature information from the input
image, which lays a solid foundation for the subsequent detection tasks, while the neck part
performs multi-scale fusion to make full use of the feature information at different scales
and to improve the adaptability of the detection network to different sizes of spacecraft.
Finally, the head part is shown in Figure 4, which is capable of outputting predicted values
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at three different scales, including information such as the location, size, and category of
the bounding box.
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Conv denotes a one-dimensional convolution, where only the width is convolved
and not the height, and Conv2d denotes a two-dimensional convolution, where both the
width and height are convolved. Furthermore, K represents the convolutional kernel size,
s denotes the step size, and p denotes the additional boundary values added around the
input data.

With this design, our spacecraft detection network is not only able to guarantee the
detection accuracy but also meet the real-time requirement of spacecraft position estimation.

3.4. Key Point Detection Network

Considering the different relative distances between the spacecraft and the camera, we
designed three rectangular frames of different sizes for each pixel to accommodate various
detection scenarios. The framework of our final design of the KDN is shown in Figure 5,
including the CSPDarknet backbone network, which combines the CSPNet (Cross-Stage
Partial Network) and Darknet, multi-scale feature fusion, the design of each branch, and
the final detection head [2].
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In the KDN framework, the specific operation of the focus structure is to perform
inter-pixel extraction in the direction of rows and columns in an image to form a new
feature layer. Furthermore, the structure of CSPNet is somewhat similar to Residual, which
is also divided into two parts, left and right, with the main part performing the stacking of
residual blocks, and the other part acting like residual edges, which are connected to the
end of the main part after a small amount of processing. The SiLU activation function is an
improved version of Signoid and ReLU with lower and no upper bounds, smoothness, and
non-monotonicity, which is better than ReLU on deep models.

We choose CSPDarknet as the main network in the network architecture to extract
multi-scale features from the input photos. These features gradually decrease in size and
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increase in the number of channels as the network goes deeper. Convolutional layers
are used to grab important information from the image in order to enhance detection
performance even more. To improve the nonlinear representation of the network [20],
activation functions like SiLU are used in conjunction with convolutional layers that vary
in size and number of convolutional kernels.

Multi-scale feature fusion is a core aspect of our network design. We employ a feature
pyramid network (FPN) to integrate feature information at different scales. Through down-
sampling and up-sampling operations, we create feature maps at different scales and fuse
them together through join operations. This fusion helps the network to fully capture the
contextual information, which improves the accuracy and stability of key point detection.

Based on the feature fusion, we designed several network branches to accomplish
different tasks. One branch is responsible for generating anchor points for determining
possible object or key point locations; another branch is used to determine the uncertainty
of key points to distinguish between high and low uncertainty frames [21]; and yet another
branch is used to determine the relative positional relationship of key points, i.e., whether
they are coplanar or not. These branches work together to achieve accurate detection of the
spacecraft key points. Finally, we input all the features to the detection head for the final
detection of the key points. The detection head outputs the precise position information
of the critical point based on the input features and the outputs of the previous branches.
We designed this network structure to fully utilize multi-scale features and contextual
information to achieve accurate detection of spacecraft key points.

For detection and classification, we minimize the loss function Ldet, which is commonly
used in target detection.

Ldet =
1
N

N
∑

i=1
(Lreg(bi, b̃i) + Lcls(ci, c̃i) + Lcon f (Ci, C̃i))

Lreg(bi, b̃i) = (xi − x̃i)
2 + (yi − ỹi)

2 + (
√

wi −
√

w̃i)
2
+ (

√
hi −

√
h̃i)

2

Lcls(ci, c̃i) = −
K
∑

k=1
[c̃i,k log2(ci,k) + (1 − ci,k) log2(1 − ci,k)]

Lcon f (Ci, C̃i) = −
K
∑

k=1
C̃i,k log2(Ci,k)−

K
∑

k=1
(1 − Ci,k) log2(1 − Ci,k)]

(5)

bi, ci, and Ci represent the box, key point category, and confidence level predicted
by KDN for the i-th image. Moreover, x and y denote the pixel coordinates of the center
point of the prediction frame on the image, and w and h denote the width and height of the
prediction frame. Furthermore, b̃i, c̃i, and C̃i represent the corresponding labels. Lreg(•)
denotes the MSE loss function, Lcls(•) and Lcon f (•) denote the cross-entropy loss function,
and N denotes the number of images in each batch.

Furthermore, for uncertainty prediction, we minimize the following loss function:

Luncertain =
1
N

N

∑
i=1

Luncertain(Ui, Ũi) (6)

where Ui represents predicted uncertainty, i.e., the probability of whether there is a target
for each key point, and Ũi represents the corresponding label. Luncertain can be written
as follows:

Luncertain(Ui, Ũi) =
1
K

K

∑
k=1

[−Ũi,k log2 Ui,k − (1 − Ũi,k) log2(1 − Ui,k)] (7)

where Ui,k represents predicted uncertainty for the k-th key point, and Ũi,k represents
the corresponding label. The uncertainty label for the k-th key point can be calculated
as follows:
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Ũi,k =

 1 Lcls(ci,k ,c̃i,k)
log K > 1

1−IOU(bi,k ,b̃i,k)+
Lcls(ci,k ,c̃i,k)

log K
2 else,

(8)

where IOU(•) is the intersection ratio of the predicted box bi and the ground truth box
b̃i. K is the number of key point classes. The subscript k indicates that the variable is
related to the k-th key point. To guide the KDN to realize the joint prediction of categorical
uncertainty and regression uncertainty, the loss function of our KDN is defined as follows:

L = Ldet + Luncertain (9)

3.5. Pose Estimation

After obtaining the 3D coordinates and corresponding 2D coordinates of the key points,
we utilize the EPnP algorithm to accurately compute the 6D attitude of the spacecraft [20].
To improve the accuracy of the attitude estimation, we first evaluated the uncertainty of
the key points. An uncertainty threshold was set, and for the key points exceeding this
threshold, we eliminated them due to their high uncertainty to ensure the reliability of
the attitude estimation. Subsequently, for the key points detected by thresholding, we
further classified the key point structure. This step aimed to identify the key points that
were most critical for bit-pose settlement and determined their pixel coordinates [21]. In
particular, we conducted comparative experiments between key points of coplanar and
non-coplanar configurations to explore the effect of different configurations on the accuracy
of bit-pose estimation. Eventually, we used all the filtered and classified candidate key
points to identify the 6D position of the spacecraft via the EPnP algorithm.

This method not only improves the accuracy of the pose estimation but also provides
a reliable database for our subsequent analysis and optimization.

4. Experiment
4.1. Datasets and Implementation Details

Vision mission training requires large image datasets, and obtaining accurate attitude
labels is particularly costly for any target spacecraft in different orbits, so synthetic images
are usually rendered using 3D models.

The SPEED dataset, which comes from the International Satellite Attitude Estima-
tion Competition, comprises 300 Tango-modeled real satellite images that were taken
by actual cameras at the Rendezvous and Optical Navigation Testbed (TRON) facility at
the Space Rendezvous Laboratory (SLAB) at Stanford University [22] and 15,000 satel-
lite images from the PRISMA mission that were synthesized using OPENGL rendering.
Satellite photographs are shown in Figure 6. This dataset’s model images have high-
fidelity illumination conditions, a wide range of attitude distributions, and annotations
with camera-corresponding parameters R and T that make it possible to obtain precise
attitude labels.
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We compared our method to that of Park and Chen, who both obtained good results
using a two-stage method to estimate spacecraft position on the SPEED dataset. The
term “two-stage approach” refers to the process of first employing deep convolutional
networks to extract important points from the spacecraft image and then using the PnP
method to solve the position. In general, the use of two-stage approaches for position
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estimation is innovative because it allows for the discovery of important points [3]. Park and
Chen’s methods differ in that they employ distinct techniques for detecting key points and
determining the 2D coordinates of those locations. Park used the YOLO-v2 architecture and
proposed a regression-based method for key point detection based on the position model of
the MobileNet-v2 network [12]; Chen used HRNet to predict heatmaps for each key point
and selected the location with the highest probability to determine the coordinates [11].
In order to compare with their methods, only the bit-position estimation method was
compared, and we adopted the data enhancement method used by Park to maintain the
consistency of the image processing.

During the experiments, we used the Adaptive Momentum Estimation (Adam) opti-
mizer for 500 epochs of training with a learning rate of 0.001, a batch size of 64, a momentum
of 0.8, and a weight decay of 5 × 10−4.

4.2. Evaluation Metrics

In order to quantitatively evaluate our final pose estimation results, we used the eval-
uation metrics provided by ESA to define the estimation errors for translation, orientation,
and 6D pose.

For the i-th image, the translation error, orientation error, and pose estimation error
are calculated as follows:

ET,i =
||xi − x̃i||2
||xi||2

(10)

ER,i = 2arccos(< q̃i, qi >) (11)

Ei = ET,i + ER,i (12)

where xi denotes the predicted translation vector, x̃i denotes the true translation vector,
qi denotes the predicted direction vector, q̃i denotes the true direction vector, ||·|| denotes
the second-paradigm number of the two vectors, ⟨·, ·⟩ calculates the angle between the
two vectors, and the error of the bit-pose estimation can be expressed as the sum of the
translation error and the direction error. For the whole dataset, we can evaluate the pose
estimation results by the six metrics of median and mean of the above errors. For example,
the formula for meanE is

meanE =
1
N

N

∑
i=1

Ei (13)

4.3. Experimental Results and Comparison with Benchmark Experiments
4.3.1. Performance with Synthetic Images

In this section, we utilized 1000 synthetic images for testing. Initially, an uncertainty
test was conducted for the detected key points, followed by the execution of comparative
experiments. From the Table 1, it can be seen that since the loss function and model
construction are mainly driven by the pose data, the accuracy becomes lower for the
average position error, but after adding the uncertainty judgment, the accuracy of most of
the metrics becomes higher, and the effect of the average accuracy of the total error is better
than the algorithm with added uncertainty. Consequently, we conducted experiments to
select coplanar and non-coplanar key points, basing our selection on the key points filtered
through uncertainty screening.

Table 1. Comparison of experiments with and without uncertainty options.

Method medianET medianER medianE meanET meanER meanE

Ours_Uncertainty 0.0042 0.0079 0.0121 0.0159 0.0207 0.0366

Ours_Non 0.0058 0.0118 0.0176 0.0152 0.0254 0.0406
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Different numbers of key points were selected for the experiment and the results
are shown in Table 2. From the table, we can see that by choosing the same number of
key points, the error of the pose estimation is higher for the key points with the coplanar
algorithm than the non-coplanar one; when choosing the same coplanar or non-coplanar
algorithm, the more the number of key points is, the higher the accuracy of the pose
estimation is.

Table 2. Performance of coplanar and non-coplanar algorithms on 1000 synthetic images.

Method medianET medianER medianE meanET meanER meanE

4 points
(coplanarity) 0.0215 0.0631 0.0846 0.0382 0.0681 0.1063

5 points
(coplanarity) 0.0174 0.0458 0.0632 0.0294 0.0635 0.0929

5 points
(non-coplanarity) 0.0056 0.0163 0.0219 0.0203 0.0498 0.0701

7 points
(non-coplanarity) 0.0036 0.0075 0.0111 0.0046 0.0102 0.0148

After careful selection of the key points and rigorous uncertainty screening, we have
arrived at the definitive estimation performance, which is depicted in Figure 7. A com-
parison of our algorithm with other algorithms is shown in Table 3. It can be seen that
our method performs better than Park’s and Chen’s in six indicators, and our method
can reduce the average error of the bit-position estimation by up to 61.3% with fewer
parameters and faster computation.
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Table 3. Comparison of our algorithm with Chen’s and Park’s algorithm on 1000 synthetic images.

Method medianET medianER medianE meanET meanER meanE

Ours 0.0036 0.0075 0.0111 0.0046 0.0102 0.0148

Chen 0.0047 0.0118 0.0172 0.0083 0.0299 0.0383

Park 0.0198 0.0539 0.0783 0.0287 0.0929 0.1216

4.3.2. Performance with Real Images

In this section, we utilized five real images for testing.
The accuracy of our coplanar or non-coplanar algorithms were degraded due to the

large gap between the training and test set domains. Compared with other algorithms,
all three methods tested on synthetic images were not as good as on real images, some
of Chen’s estimation results were worse, and the accuracy of our method was a little bit
higher compared to the other two methods, which can prove that the generalization ability
of our method is better (Tables 4 and 5).
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Table 4. Performance of coplanar and non-coplanar algorithms on 5 real images.

Method medianET medianER medianE meanET meanER meanE

4 points
(coplanarity) 0.0845 0.1259 0.2104 0.2196 0.2593 0.4789

7 points
(coplanarity) 0.0712 0.0572 0.1284 0.0511 0.1645 0.2156

7 points
(non-coplanarity) 0.0563 0.0247 0.0810 0.0345 0.1024 0.1369

11 points
(non-coplanarity) 0.0158 0.0196 0.0354 0.0412 0.0901 0.1313

Table 5. Comparison of our algorithm with Chen’s and Park’s algorithm on 5 synthetic images.

Method medianET medianER medianE meanET meanER meanE

Ours 0.0158 0.0196 0.0354 0.0412 0.0901 0.1313

Chen 0.1253 0.2342 0.3595 0.1793 0.5457 0.7250

Park 0.0842 0.0965 0.1807 0.1135 0.1350 0.2485

5. Conclusions

A non-coplanar feature point selection network with uncertainty, exploiting the effect
of sensor layout on pose measurement, is proposed in this paper, and the idea of integrating
region detection into the spacecraft critical point detection task for estimating the pose of
non-cooperative spacecraft is verified. With the reduction in the network parameters, the
method proposed in this paper achieves a 61.3% reduction in the pose estimation error.
In future work, we will investigate how to adaptively correct or remove the deviating
bit-position quantities with large deviations and adaptively screen the critical points with
high uncertainty instead of setting a given threshold to accommodate the trade-off between
accuracy and efficiency.
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