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Abstract: Airport networks are interconnected through flight routes, with delays at upstream airports
leading to delays at downstream airports, thus causing delay propagation. Exploring the mechanisms
of delay propagation in airport networks provides scientific insights for managing and controlling
delays in aviation systems. Existing methods, such as Granger causality tests and transfer entropy,
must be revised to address the nonlinear causal relationships of delays in airport networks. So, this
paper proposes a causality mining method for delay propagation in airport networks based on partial
correlation-based multivariate conditional independence (PCMCI). This method comprehensively
considers all airports and causality mining in two stages. The first stage uses conditional indepen-
dence tests to obtain the parent node set of the target airport, which includes both true and false
causal relationships. The second stage employs instantaneous conditional independence tests to
eliminate false causal relationships and obtain test statistics representing the strength of causality.
Based on historical delay data from US airports over a year, the experimental results show that
multiple factors cause delay propagation in airport networks rather than a single causal relationship.
The scope of delay propagation is limited, mainly affecting a few airports closely connected to it.
Delays at airports with small flight volumes are more likely to propagate. Few airport pairs in the
network mutually propagate delays and, often, delays at airports affected by a particular airport’s
delay also exhibit causal relationships with each other. This method provides a new perspective for
deepening the understanding of delay propagation mechanisms in airport networks.

Keywords: airport network; delay propagation causal relationship; PCMCI algorithm; conditional
independent testing

1. Introduction

The rapid development of the civil aviation industry has posed more scheduling
and operational challenges for airlines and airports, resulting in increasingly severe flight
delays. The problem of flight delays has become a global challenge. Flight delays have
a multifaceted impact on the entire civil aviation industry, including economic, passenger,
and safety aspects. Economically, flight delays hurt airlines and related businesses, as
airlines need to pay additional costs for delayed and canceled flights. From the passenger’s
perspective, flight delays affect the travel and plans of passengers. Passengers may need to
change their itineraries, cancel reservations, or delay their travel plans, which can cause
them to lose time and money, and experience mental stress. From a safety perspective,
if airlines neglect maintenance and inspections due to delays and try to catch up with
schedules, this may lead to mechanical failures and safety issues. To effectively address the
problem of flight delays, researchers have conducted extensive studies on flight delays [1–3],
including estimating delay probability distributions [4–6], predicting delays [7–10], and
optimizing flight schedules [11–14]. However, flight delays are a complex problem, and
flight delays may vary in different regions and periods. Therefore, studying flight delays
has always been of great significance and a challenge.
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Flight delays can have multiple causes, including weather, airport operations, airline
operations, mechanical failures, and staff shortages. Flight delays are prone to causing
delay propagation because flights are usually scheduled according to a timetable, and
air routes connect airports. The operation of flights is interrelated, and the delay of one
flight may affect the regular operation of other flights. Subsequent flights may be delayed
or canceled, and this chain reaction may trigger delays across the entire airport network.
Therefore, studying the mechanisms and patterns of flight delay propagation can help
to better understand the nature and impacts of flight delays, significantly reducing and
improving flight operation efficiency.

Researchers have extensively researched delay propagation, including modeling delay
propagation, reducing delay propagation, and investigating causal relationships in delay
propagation through complex network analysis [15–17]. Most researchers have constructed
agent-based data-driven models to simulate the process of delay propagation. The TREE
project (data-driven modeling of reactive delay diffusion trees within the European Civil
Aviation Conference (ECAC) region) aims to characterize and predict the propagation of
reactive delays in the European network. Ciruelos et al. [18] developed an agent-based
data-driven model that simulates the propagation of reactive delays in the ECAC region
by simulating the connectivity between aircraft, passenger connections, crew rotations,
and airport congestion. Fleurquin et al. [19] developed an agent-based data-driven model
based on aircraft to simulate the propagation of delays in the US air transportation system
network. The model simulates three sub-processes: aircraft flights, connectivity between
passengers and crew, and airport congestion. The latter two processes are independent and
can be adjusted as needed to understand their role in delay propagation. The simulations
have shown that the connectivity between passengers and crew is the most effective single
mechanism leading to network congestion.

Based on these findings, Fleurquin et al. [20] extended the application of the model to
understand the system’s response to large-scale disturbances, such as the impact of severe
weather on delay propagation. They provided tools for assessing strategies to handle
these disruptions. Later, Campanelli et al. [15] compared the delay propagation caused
by scheduling failures or disruptions in the US and European air traffic networks. They
developed two agent-based models, one based on first-come-first-serve principles for the
US and one based on ATFM (Air Traffic Flow Management) slot prioritization for Europe.
The comparison revealed that flight management based on first-come-first-serve principles
leads to more significant delays. Baspinar et al. [21] constructed two different data-driven
epidemic models to approximate the delay propagation process and understand the propa-
gation behavior of delays at various levels in the network. One model is based on flights,
focusing on each flight, while the other model is based on airports, allowing for collective
behavior definition and considering interactions between flights.

Liu et al. [22] argued that arrival flight delays can propagate to departure flights,
causing delay propagation at hub airports. Quantitatively simulating the amount of
departure delay propagation is equivalent to the difference between the delays of the
preceding arrival flights and the absorption of turnaround time delays. The absorption of
turnaround time delays is the difference between the planned and accurate turnaround
times. Therefore, delay propagation is reduced when the actual turnaround time is less
than or equal to the planned turnaround time. In contrast, delay propagation is exacerbated
when the exact turnaround time exceeds the planned turnaround time. However, the actual
turnaround time is more significant in practice than the planned one. Pyrgiotis et al. [23]
constructed an approximate network delay model having two parts. The first part is
a stochastic dynamic queuing model that calculates delays at each airport, and the second
part is a delay propagation algorithm that considers the connectivity between flights and
propagates delays to downstream airports. The delay propagation algorithm focuses
on four aspects: determining whether delays propagate downstream, calculating delay
propagation between consecutive flights operated by the same aircraft, updating the flight
schedules for all airports in the local delay update model obtained from the stochastic
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dynamic queuing model, including arrival and departure times, and updating the demand
rate per hour for each airport. Wu et al. [24] added a link transmission model between the
queuing model and the delay propagation algorithm to calculate delays in various sectors
and convert all airborne delays into ground delays. They developed a model suitable for
airport–airspace network delay analysis.

Researchers have studied the delay propagation causality in airport network systems
in recent years to deepen their understanding of the mechanisms involved [25]. They repre-
sent airports as nodes and flights as edges, constructing complex networks to represent
the aviation network. When delay propagation is detected, arcs connect the nodes [26].
Wu et al. [27] overcame the limitations of the Delay Propagation Tree (DPT) model by
introducing Bayesian networks into the DPT framework, creating the DPT-BN model. In
this model, each node represents a flight, and each arc represents the connection between
two nodes in the flight network. Therefore, the collective set of nodes represents a flight
network where each flight connects to other flights through arcs representing the con-
nections of aircraft, crew, and passengers. Li Juan [28] employed the Convergent Cross
Mapping (CCM) method to uncover causal relationships in airport delay propagation.
Using historical operational data from airports, Li constructed a delay time series and
established a spatial state model to analyze the causal relationships among variables in
a nonlinear system. Dai et al. [29] modeled the delay propagation process as a complex
undirected dynamic network. Each node has an equal weight, and the weight of each
connection is assigned based on the strength of the connection, which can be described
as the sum of shared resources. If two flights share three resources, such as the departure
time, runway, and taxiway, the connection strength should be stronger than that for flights
sharing two or more resources. These models capture the propagation process and the
factors influencing the clustering of delays.

However, delay propagation networks are directed graphs, and undirected graphs
cannot represent the causal relationships of delay propagation. Zanin et al. [30] recon-
structed a complex network representing delay propagation by constructing a delay time
series and using the Granger causality test to study whether there is delay propagation
between each pair of airports. Then, standard network metrics, including connection
density, transitivity, assortativity, efficiency, diameter, and information content, were used
to investigate specific delay characteristics and the presence of significant airports causing
severe delay propagation. However, the traditional Granger causality test method cannot
address nonlinear causal relationships. Jia et al. [31] proposed an improved nonlinear
Granger causality approach to construct a delay propagation network among airports to
tackle this issue. Du et al. [32] analyzed the complexity of delay propagation networks
using degree, reciprocity parameter, clustering coefficient, maximum connected clusters,
and community type. Zhang et al. [33] examined the interdependence of delay time series
between each pair of airports using the transfer entropy measure. They quantified the
impact of delay propagation between airports using propagation indicators. Sun et al. [34]
addressed the critical issues of spatiotemporal dependence and propagation relationships.
They utilized the Second-Order Modified Transfer Entropy (SMTE) principle to construct
a causal relationship knowledge rule-expanded graph convolutional network to guide the
construction of the airport delay propagation network.

The approaches above, whether using Granger causality or transfer entropy, are pri-
marily limited to bivariate analysis, which can lead to spurious correlations and cannot
explain indirect connections or common driving factors. Additionally, transfer entropy can-
not handle non-stationary time series, resulting in fragile causal network estimations and
causal effects. Introducing multiple variables can address this issue. However, introducing
too many variables increases dimensionality and decreases dependent variables’ effect size
(such as partial correlation coefficients). These factors lead to reduced detection power
and a reduced ability to correctly detect causal relationships. They can also lead to false
positive causal relationships by mistakenly treating correlations as causal relationships.
Current machine learning algorithms do not provide any safeguards to prevent mistaking
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correlations for causal relationships, and the consequences of mistaking correlations for
causal relationships can be severe.

This paper studies the complex nonlinear delay propagation relationship of airport
network systems based on the framework of graphical causal models. From the perspective
of causal relationships in airport delay time series, the problem of delay propagation is
considered. At the same time, multiple airports are considered, and delay time series
with solid autocorrelation characteristics are processed. Large delay time series datasets
of airports with linear, nonlinear, and time-delay dependencies are expanded to explore
causal relationships based on lag time. Using the PCMCI algorithm, which considers both
“error-detected causal relationships” and “undetected causal relationships”, the model has
more robust detection capabilities. Then, based on causal relationships, a directed network
for delay propagation is constructed to analyze the characteristics of delay propagation
and quantitatively describe the degree and scope of delay impact between airports. Using
complex network theory, the delay propagation in airport networks from the perspectives
of in-degree and out-degree is further described.

The organization of this paper is as follows: Section 2 introduces the PCMCI algorithm
for mining causal relationships in delay propagation and the construction of the delay
propagation-directed network. Section 3 focuses on the US airport network system as the
research subject and analyzes the mechanisms of delay propagation within the airport
network through experiments. Section 4 provides a summary of the paper and offers
prospects for research.

2. Problem Formulation

A causal relationship is an objective correlation between “cause” events and “effect”
events, and “cause” events are the reasons that lead to “effect” events. The causal relation-
ship mining of airport network delay propagation is undertaken to reveal the interaction of
airport flight delays, thereby identifying some key airports that cause delays and propa-
gating them to the next airport. So, if a delay occurs at one airport, leading to a delay at
another, there is a causal relationship between the two airports.

Identifying the causal relationship of delays in airport networks is challenging in
scientific research. In actual operation, many reasons cause airport flight delays and col-
lecting delayed data makes it difficult to obtain complete and adequate data. However,
considering the emergence of these factors, they are ultimately feedback on the delay
value of the airport. Therefore, by mining causal relationships through the time series of
airport flight delays, we can capture the characteristics of airport flight delay propagation.
Assuming there are N airports in the airport network, A = {ai}i=1:N represents a set of
airports, where ai represents the delay time series of airports i, to discover causal rela-
tionships between time series in the airport set A. A directed causal graph is constructed
to effectively represent the causal relationship between airports, as shown in Figure 1,
with vertices representing the time series of airport delays and directed edges indicat-
ing the existence of causal relationships. Therefore, if there is a real causal relationship
i→ j between airports, there is an edge pointing towards j. The set W =

{
wij
}

i,j=1:N represents
the weight of the edges, where wij represents the weight of the edges eij, i.e., the degree of
delay impact of airport i on airport j.
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Figure 1. Schematic diagram of causal relationship network for airport delay propagation.

3. Methodology

Figure 2 shows the diagram of causal relationship mining for airport delay propagation.
Firstly, the delay time series is constructed based on the airport’s historical operational data.
Then, the PCMCI algorithm is established, which includes two stages. In the first stage,
a connectivity graph connects all pairs of time series nodes with directed edges. Then,
the PC1 algorithm minimizes excess variables in the condition set as much as possible to
obtain an initial set of parent nodes. This set not only contains actual parent nodes but
also false parent nodes. The PC1 algorithm is based on the PC-stable algorithm for Markov
blanket discovery. The parent node represents the “cause” airport that caused the delay at
the target airport. In the second stage, the father variable set obtained in the first stage is
tested using MCI (momentary conditional independence) to remove false causal relation-
ships among highly interdependent time series variables and get an accurate time series
causal diagram.
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Additionally, we use obtained test statistics to represent the strength of observed
causal relationships. The larger the specific value of the test statistic, the stronger the causal
relationship between variables. Finally, a directed graph of the causal relationship of airport
network delay propagation is constructed based on the causal relationship.

3.1. Delay Time Series

This article utilizes delay time series to represent the punctuality performance of airports,
focusing on daily time series as it provides the finest temporal resolution within flight datasets.
Researchers typically divide time intervals into 15 min and 60 min increments [23,30]. For
airport i, this paper uses a time step of 15 min to divide a day into 96 time intervals to
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construct its delay time series Xi, Xi =
(
x1

i , x2
i , · · · x96

i
)
, x1

i represents the average delay for
the first time interval and is defined as:

x1
i =

di(t) + ci(t) ∗m
si(t)

, t ∈ {1, 2, · · · 96} (1)

In this case, di(t) represents the total delay of departing flights at airport i during
the time interval (t, t + 1), ci(t) represents the number of flights canceled during the time
interval (t, t + 1), and si(t) represents the total number of scheduled departing flights
during the time interval (t, t + 1). Traditional methods do not take into account flight
cancellations. However, in extreme situations, not considering flight cancellations may lead
to deviations in airport operations. Cancellations should be regarded as delay indicators for
evaluating the performance of the aviation transport system [35]. According to regulations
from the Federal Aviation Administration (FAA), the Civil Aviation Administration of
China (CAAC), and the European Aviation Safety Agency (EASA), the variable m can
represent the equivalent delay time for cancellations (m = 180 min).

3.2. PCMCI Algorithm

Constrained-based methods are a class of approaches that identify causal relationships
by testing the conditional independence between variables. Constrained-based time series
methods are typically an extended version of non-time series causal graph discovery algo-
rithms. The time precedence constraint reduces the search space of causal structures [36].
The PC (Peter–Clark) algorithm belongs to the widely used class of constrained-based
methods in non-time series algorithms, and it has a time series version called PCMCI [37].
The core module of constrained-based methods is the test of conditional independence,
which is essential for effectively handling various scenarios and types of data. Its advantage
lies in its general applicability, but its drawback is the strong assumption of faithfulness
and the potential requirement of a large sample size for reliable conditional independence
testing. In this experiment, a large amount of historical operational data from multiple
airports was available, which allowed this study to overcome some of the limitations asso-
ciated with conditional independence testing. By utilizing these data, the study can more
accurately assess the conditional independence between airports and conduct a causal
relationship analysis.

PCMCI is a causal graph analysis method specifically designed for time series variables.
It effectively handles high-dimensional datasets with linear and nonlinear relationships
and time-delay correlations [37]. Compared to traditional regression-based causal discov-
ery methods, PCMCI can adjust for irrelevant variables, resulting in increased statistical
measures of correlation between two variables with a genuine causal relationship, which
improves the algorithm’s ability to identify causal relationships.

Considering a system with N time series {X1, X2, · · · , XN} of length T, where
Xj =

{
x1

j , · · · , xT
j

}
, the set of parent variables for any variable Xj at time t is defined as:

P(xt
j) =

{
xt−τ

i

∣∣i ∈ {1, · · · , N}, τ ∈ {1, · · · , τmax}
}

(2)

where τmax represents the maximum delay time. Figure 3 illustrates the parent variables
for four time series, with a maximum delay time of τmax = 4. Each variable has a set of
16 parent variables (shown in gray boxes).

The PCMCI algorithm obtains causal relationships of airport network delay propaga-
tion through two stages:

Stage 1: For any variable xt
j ∈
{

xt
1, xt

2, · · · , xt
N
}

, the conditional PC1 algorithm selects
the set of parent variables P(xt

j), filtered to obtain the more robust correlated parent

variables P(xt
j). The PC1 algorithm is a Markov blanket discovery algorithm based on

the PC-stable algorithm. It iteratively removes irrelevant conditions for each variable
among the N variables through independent conditional independence tests. The PC1

algorithm follows the following approach: For any variable X j
t, the parent variable set
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is initially initialized as P(xt
j) =

{
xt−τ

i

∣∣i ∈ {1, · · · , N}, τ ∈ {1, · · · , τmax}
}

. In the first
iteration (p = 0), an unconditional independence test is used to remove variables from
P(xt

j) that do not satisfy the following null hypothesis: if the null hypothesis xt−τ
i ⊥xt

j is
not rejected at the significance level α, where ⊥ represents (conditional) independence,
in each subsequent iteration p→ p + 1 , the parent variables from the previous iteration
are sorted based on the test statistics, and a conditional independence test xt−τ

i ⊥(xt
i

∣∣S) is
performed, where S is the top p parent variables with the most significant test statistics
P(xt

j)\
{

xt−τ
i
}

. After each iteration, the independent parent variables are removed from

P(xt
j), and if there are no more conditions to test, the algorithm converges. For detailed

steps of the PC1 algorithm, please refer to reference [37].
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In the first stage, the Algorithm 1 iteratively removes variables from a set of M variables
unrelated to the target variable based on independent tests of independence. This process
obtains the initial parent nodes for each variable at each time slot, including both genuine
and spurious parent nodes.

Algorithm 1. First stage

Input: A set of time series X = {X1, X2, · · · , XM}, the target airport delay time series Xj

Output: The parent set P
(

Xt
j

)
of the target airport delay time series Xj

Parameters: Delay lag duration εmax, significance level α, conditional independence test function
F, length of the conditioning set |Z| = 1.
Function F(X, Y, Z) % Conditional independence test function
Null hypothesis X⊥Y|Z
Return p-value and test statistic χ

Step 1: Initialize the parent set P
(

Xt
j

)
=
{

Xt−ε
1 , Xt−ε

2 , · · ·Xt−ε
M
}

as ε ∈ {1, 2, · · · , εmax} initialize,

Xt−ε
i → Xt

j test statistic for χmin = ∞, and set the number of parent nodes of the target variable
to L = 0, ε = 0. When L = 0, it is an unconditional independence test.
Step 2: For each parent node in the parent set, obtain the p-value and test statistic χ based on the
conditional independence test function. If χ is less than χmin, make χmin = χ. If the p-value is
more significant than the significance level α , remove Xt−ε

i from the parent set Xt
j . Note that

removal should be done after all tests are completed.
Step 3 : Set L = L + 1, and sort the parent nodes based on the test statistic χ in descending order.

Step 4 : The null hypothesis now becomes Xt−ε
i ⊥Xt

j

∣∣∣Z , where Z is the variable with the most

significant test statistic and belongs to P(Xt
j )\X

t−ε
i .

Step 5 : Repeat Steps 2 to 4 until L = Lmax. All variables independent of the targetvariable have

been removed from the parent set, obtaining the parent set P
(

Xt
j

)
of the target airport delay

time series Xj.
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The delay lag duration εmax indicates that the delay of airport j in the t time slot is
primarily influenced by the delay of airport i in the t− εmax time slot, and there is limited
significance in considering time slots further back.

Stage 2: The second stage involves testing the parent variable set obtained in the
first stage using momentary conditional independence (MCI) to remove spurious causal
relationships among time series variables that exhibit high mutual dependence, resulting
in the identification of the actual causal graph for the time series. To perform conditional
independence tests on the causal pair Xi

t−τ → X j
t , the conditioning set Z for the MCI

algorithm is defined as P(xt
j)\
{

xt−τ
i
}

, P(xt−τ
i ), which is obtained by removing

{
xt−τ

j

}
and the parent variable set xt−τ

j from the parent variable set of xt
j . Thus, the conditional

independence test in the second stage is as follows:

MCI : xt−τ
i ⊥

(
X j

t

∣∣∣P(xt
j)\
{

xt−τ
i
}

, P(xt−τ
i )

)
(3)

The MCI algorithm effectively suppresses spurious causal relationships caused by
autocorrelation in limited samples by adding the parent variable set P(xt−τ

i ) of xt−τ
i to the

conditioning set. It has been proven to have more considerable statistical power than the
complete conditional independence algorithm and has a significantly smaller conditional
dimension. The specific Algorithm 2 is as follows:

Algorithm 2. Second stage

Input : the parent node set P
(

Xt
j

)
obtained in the first stage.

Output: p-value and test statistic χ.
Parameters: delay lag εmax, h (the number of parent nodes for the dependent variable).
For all causal relationships Xt−ε

i → Xt
j , perform momentary conditional independence tests. If

the p-value is more significant than the significance level α, remove Xt−ε
i from the parent node set

of Xt
j Return the p-value and test statistic χ.

The proposed airport network delay propagation causal relationship mining method
based on PCMCI has the following characteristics:

1. It can effectively distinguish between correlation and causation. When mining the
causal relationships in delay propagation, it is essential to note that correlation does
not imply causation. Correlation refers to the relationship between two variables,
where when one variable changes, the other variable also changes accordingly. The
correlation between two variables does not necessarily mean that one variable is the
reason for the other. For example, measuring the annual income and happiness of
30 people, it was found that people with higher annual incomes are happier. How-
ever, since factors that may affect happiness beyond yearly income (such as age and
personality) have yet to be excluded or controlled for, it is not possible to believe that
there is a causal relationship between annual income and happiness. If controlling for
other factors such as age and personality that affect happiness, only yearly income
is the dependent variable, and it is found that people with higher annual income are
happier, then it can be explained that people feel so glad because they have higher
incomes. Causal relationships involve causal chains and time order, where one event
or variable occurs before another, and there is sufficient evidence to suggest that
the former is the cause of the latter. By combining partial correlation coefficients
and conditional independence tests, the PCMCI algorithm can distinguish between
correlation and causation. If two variables exhibit strong correlations but are deter-
mined to be conditionally independent in the conditional independence test, it can be
inferred that their relationship is correlational rather than causal. Conversely, suppose
two variables show significant conditional dependence. In that case, they are deter-
mined to be not conditionally independent in the conditional independence test; it
can be inferred that there is a causal relationship between them.
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2. It effectively distinguishes between direct and indirect causal relationships. From the
perspective of air traffic managers, using direct causal relationships to guide traffic
control is more intuitive and easier to implement than indirect causal relationships.
Therefore, this paper primarily focuses on the direct causal relationships in airport
delay propagation without considering the indirect effects of delay propagation on
subsequent airports. Figure 4 shows the direct and indirect causal relationships of
airport delay propagation. Direct causal relationships refer to the situation where
the delay at Airport A is a direct cause, and the delay at Airport B is a direct result,
without interference or influence from other airports. Indirect causal relationships
refer to the situation where the delay at Airport A causes the delay at Airport C,
ultimately leading to the delay at Airport B. The PCMCI algorithm can consider the
relationships between multiple variables simultaneously, that is, considering the delay
time series of all airports simultaneously. It better distinguishes between direct and
indirect causal relationships, overcoming the limitation of the Granger causality test
that only considers two variables and characterizes the deeper nonlinear relationships
among airports.

3. It can quantify the impact of the “cause” airport on the “effect” airport. The PCMCI
algorithm calculates test statistics through the momentary conditional independence
tests in the second stage, representing the strength of the causal relationships. We can
quantitatively describe the extent and scope of delay propagation between airports by
analyzing the edge weights in the directed causal network. This helps to understand
the intensity of delay propagation between different airports and to identify critical
airports and propagation paths.
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4. Case Study

This section analyzes the causal relationship network of delay propagation in US
airports using the proposed model in this paper. Firstly, the data are described, including
preprocessing. Experiments were conducted, and the parameters involved in the model are
discussed here. Finally, the performance of the causal relationship network was analyzed,
and the topological properties were examined using complex network metrics.

4.1. Data and Preprocessing

This study employed a case analysis utilizing flight historical operational data from
339 airports in the United States, as illustrated in Figure 5, spanning from 25 March 2018, to
30 March 2019. The data were obtained from the Bureau of Transportation Statistics “https:
//www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236” (accessed on 2 March 2023).
Each data entry includes attributes such as the operating day, departure airport, arrival
airport, scheduled departure time, actual departure time, scheduled arrival time, actual
arrival time, and whether the flight was canceled. Based on the planned and exact departure

https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236
https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236
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times, flights that departed earlier than expected have a delay time of 0. In contrast, flights
with delays exceeding 180 min have a delay time of 180 min. Flights that were canceled
at each airport were removed from the dataset, as canceled flights only result in wasted
resources for the associated airports and do not contribute to delay propagation in the
airport network. When the time interval was 60 min, each day was divided into 24 periods.
The average departure delay for each airport during each period was calculated over
371 days. We used this information to construct a delay time series of length 371 × 24 for
each airport, representing the delay characteristics of the airport. These delay time series
for each airport were used as input data to train the predictive model.
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4.2. Model Parameters

The parameters involved in the causal relationship mining method in this paper
mainly include the delay lag duration εmax in the first stage, the significance level α, and
the maximum length of the dependent variable’s parent nodes h in the second stage.

The delay lag duration εmax indicates that the delay at airport j in the t time slot is
influenced by the delay at airport i in the t− εmax time slot. Beyond a specific time slot, the
delay has little impact. Typically, a delay at one airport causes delays at another airport after
a lag of 2–3 h. A more significant value of εmax leads to more identified causal relationships.
This paper selects εmax as 6 h to capture all the actual causal relationships.

α should not be considered solely as the significance level in the first stage, as iterative
hypothesis testing does not allow for precise assessment of uncertainty at this stage. In this
context, α plays a role as a regularization parameter, as it enables the adaptive convergence
of the tests. This ensures that the first stage obtains authentic causal relationships while
keeping the number of causal relationships low, reducing the estimation dimension in the
second stage and improving efficiency.

Figure 6 depicts a line graph showing the variation in the number of causal relation-
ships obtained in the first stage as α changes. These causal relationships include both
true causal relationships and spurious ones. The graph shows that when α is set to 1,
all initial parent nodes are retained, and none of the dependent variables are removed.
Therefore, in the case of 339 airports, there are a total of 339 × 339 causal relationship
pairs. Before reducing α to 0.7, the number of causal relationship pairs decreases rapidly.
After reaching 0.7, further reduction in α leads to a slower decline in the number of causal
relationship pairs. We can observe that setting α too small may result in removing authentic
causal relationships. Conversely, setting α too large may result in a significant presence of
spurious causal relationships, leading to increased runtime in the second testing stage and
decreased efficiency.
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To eliminate spurious causal relationships and improve the computational efficiency
in the second stage, limiting the number of parent nodes h for the dependent variables
is crucial. Figure 7a presents a bar graph showing the variation in the number of true
causal relationship pairs with changes in α and h values. When h = 1, the number of
true causal relationship pairs is equal to the potential causal relationship pairs shown in
Figure 6. For any given h value, the number of true causal relationship pairs decreases as
the α value increases. Authentic causal relationships are validated based on instantaneous
conditional independence tests using the causal relationship pairs obtained from the first
stage. Similarly, for any given α value, the number of valid causal relationship pairs
decreases as the h value increases.
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Figure 7b displays a line graph illustrating the variation in the number of airports
with changes in the α and h values. For any given h value, the number of airports increases
as the α value increases. When α is between 0.6 and 1, or when h is 0 or 1, the number of
airports includes all the airports. When h is 2, the number of airports decreases slowly, but
when h is 3 and 4, the number of airports decreases significantly. Additionally, when h is
0 or 1, the number of airports declines after the α value goes below 0.5. When h is 2, the
number of airports decreases after the α value goes below 0.7. As the h value increases,
the number of airports decreases earlier with changes in the α value, indicating that the



Aerospace 2024, 11, 533 12 of 18

valid causal relationship pairs are more sensitive to the α value. Combining Figure 7a,b,
setting the α value to 0.3 and h value to 3 would obtain a sufficient number of valid causal
relationship pairs and reduce spurious causal relationships caused by solid autocorrelation.
At this point, the number of authentic causal relationships and the number of involved
airports are conducive to making decisions for the airports.

4.3. Performance Analysis

Suppose a delay at one airport leads to a delay at another airport. In that case, the
two airports are connected to establish a network graph of delay causality, allowing for the
analysis of airport delay propagation performance.

Figure 8a is a directed network graph of causal relationships among domestic airports
in the United States, obtained based on the model parameters from the previous section.
It consists of 307 nodes and 1462 edges. Nodes represent domestic airports in the United
States, with larger nodes indicating airports with more severe delays. Directed edges
represent causal relationships between two airports, with the airport experiencing delays
pointing towards the airport it affects. The color of the edges represents the strength of the
causal relationship, with darker shades indicating more robust relationships. The strength
of the causal relationship is measured by the second-stage instantaneous conditional
independence test statistic χ, representing the credibility of the causal relationship between
the two airports. A higher strength indicates a greater credibility of a causal relationship
between the airports. There are 1204 directed edges with a strength between 1.50 and 1.99,
239 directed edges with a strength between 1.99 and 2.58, and 19 directed edges with a
strength between 2.58 and 3.16. The number of directed edges with a strength greater than
1.99 is significantly smaller than those with less than 1.99. This is because delays at one
airport are rarely solely caused by delays at another airport but are somewhat influenced
by various factors such as weather conditions and airlines. Among the 19 edges with the
highest strength, RAP and CHS led to delays at several other airports. The delays at RAP
result in delays at five different airports, while the delays at CHS result in delays at four
other airports. On average, RAP has 14 departing flights per day, and CHS has 67 departing
flights per day, which is much smaller than the average maximum daily departing flight
volume of 1096. This indicates that smaller airports with lower flight volumes are more
likely to affect delays at other airports.
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Figure 8. Causal relationship network diagram of airport delays in the United States: (a) causal
relationship network diagram; (b) strength distribution.

Figure 8b is a bar graph that further breaks down the number of edges corresponding
to different strengths of causal relationships. It counts the number of causal relationship
pairs within each interval of strengths ranging from 1.5 to 3.2, with a step size of 0.1. The
interval with the highest number of edges is between 1.5 and 1.6, with 396 edges. As the
strength increases, the number of causal relationship pairs decreases. The number of edges
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with a strength between 1.9 and 2 is almost equal to those between 2 and 2.1. There is only
one edge with a strength between 3.1 and 3.2.

4.4. Topological Properties

In addition to performance analysis, this section conducts a topological analysis of the
directed graph of causal relationships. This includes analyzing the degree distribution, the
relationship between in-degree and out-degree for each airport, the relationship between
degree and flight volume, the relationship between degree and average delay, and other
complex network metrics.

The degree of a node is an important measure used to characterize the structure of
a complex network, representing the number of edges connected to that node. In the
causal relationship network studied in this paper, a directed graph shows that the degree
includes in-degree and out-degree. This study discusses the distribution of in-degrees and
out-degrees in the network, analyzing how many other airports’ delays affect the delay at a
particular airport (in-degree), as well as how many other airports’ delays are influenced by
the delay at that airport (out-degree).

Figure 9a presents a box plot illustrating the distribution of in-degree, out-degree, and
degree for airports in the network. The degree of an airport is equal to the sum of its in-
degree and out-degree. The average in-degree is equal to the average out-degree, which is
5.66, indicating that, on average, an airport is influenced by delays from approximately six
other airports and also influences delays at approximately six other airports. For in-degree,
the minimum value is 0, indicating that delays at other airports do not cause delays at these
airports but are rather due to internal factors such as weather conditions. Most airports
have in-degree values ranging from 2 to 7, suggesting that although delays at other airports
influence them, they are not affected by many other airports (the number of influencing
airports is not excessively high). The maximum in-degree value for an airport is 28, which
corresponds to Grand Forks International Airport (GFK). This airport has an average daily
departure volume of 6 flights, indicating that smaller airports with lower flight volumes
are more likely to be influenced by delays from multiple other airports. For out-degree, the
minimum value is also 0, indicating that delays at these airports do not impact delays at
other airports. Except for Rapid City Regional Airport (RAP), which has an out-degree
value of 105 and impacts a significant number of airports, 75% of airports have out-degree
values of 7 or below, suggesting that they only affect delays at the airports they are most
closely connected to.
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Figure 9a shows that the maximum in-degree value is 28. To compare the similarities
and differences in the number of airports when the in-degree and out-degree values are
equal, Figure 9b displays a line graph showing the number of airports with degree values
ranging from 1 to 30 within the entire causal relationship network. There are 37 airports
with an in-degree of 1 and 32 airports with an out-degree of 1. However, the number
of airports decreases as the degree value exceeds 20. The number of airports decreases
as the in-degree and out-degree increase. When the in-degree and out-degree have the
same value less than 12, the number of airports with in-degrees is smaller than those with
out-degrees. Mainly, when the in-degree and out-degree values are 4, there is a difference
of 32 airports. When the in-degree and out-degree have the same value greater than 17, the
number of airports is almost the same. This indicates that delays at many other airports do
not significantly influence delays at airports, and they also do not affect a large number of
different airports.

Figure 10 is a scatter plot depicting the relationship between in-degree and out-degree
for each airport in this experiment. The airport with the highest out-degree, identified as
RAP in Experiment 1, does not have the highest in-degree. Conversely, the airport with
the highest in-degree has an out-degree of 0. There are airports with out-degrees greater
than 40 but in-degrees smaller than 10, and airports with in-degrees larger than 15 but very
small out-degrees. Most airports have in-degrees ranging from 0 to 15 and out-degrees
ranging from 0 to 20.
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Figure 10. The relationship between in-degree and out-degree of airports.

Figure 11a displays the relationship between the average daily departure volume and
degree, which represents how many airport delays affect the delays generated by airports
with different flight volumes and how many airports are affected by the delays at these
airports. There are five airports with shallow flight volumes but high out-degrees, and
four with very high flight volumes but low in-degrees. Most airports generally have a
departure volume ranging from 0 to 100, with in-degrees and out-degrees ranging from
0 to 20. These airports are more susceptible to being influenced by delays from other
airports, and they also have the potential to affect delays at different airports. Airports
with a departure volume exceeding 100 tend to have low in-degrees, indicating that they
are less likely to be influenced by other airports and have a solid capacity to absorb delays.
The average out-degree value is approximately 10, indicating that, on average, each airport
is likely to affect ten other airports. From this analysis, it can be observed that the airports
with the smallest flight volumes have the highest out-degrees and in-degrees.
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and average delay.

Figure 11b shows the relationship between the average departure delay at each airport
and its degree value. The relationship between airport delay levels and in-degree values is
similar to that between flight volume and in-degree values. Airports with smaller average
delay times are more likely to be influenced by delays from other airports. There is no clear
relationship between an airport’s delay causing delays at different airports and its average
delay time, but most out-degree values are below 10.

In addition to airport degree, this experiment also utilized complex network metrics
such as connectivity density, interaction parameter, and clustering coefficient to describe
the causal relationship network and analyze the characteristics of airport delay propagation.
Table 1 provides the corresponding values for different metrics.

Table 1. The values of network metrics for measuring the propagation of delays in the causal
relationship network.

Metric Indicators Value

Connectivity density (ld ) 0.0155
Interaction parameter 0.0018
Clustering coefficient 0.1405

The connectivity density ld represents the degree of tightness in network connections
and is defined as the ratio between the number of edges in the network and the maximum
possible number of edges among all nodes. Its value ranges within [0, 1]. A higher value of
connectivity density ld indicates a tighter network connection, making delay propagation
easier within the network. The connectivity density of this causal relationship network
is 0.0155, which is influenced by the parameter selection in Section 4.2. This relatively
low connectivity density interrupts delay propagation within the airport network through
specific measures. The interaction parameter indicates whether delay propagation between
airports has bidirectional effects. It represents the influence of delay at airport i on airport
j and vice versa. The interaction parameter is calculated using the method provided in
reference [32] by generating 1000 randomly generated networks with the same number of
nodes and edges using network randomization techniques, and the average interaction
parameter R is 0.17. In comparison, the interaction parameter in the causal relationship
network is a much smaller value of R, indicating very few pairs of airports where delays
mutually affect each other. When one airport’s delay causes delays at different airports,
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those other airports are considered neighbors. The ratio of actual causal relationships
between existing neighbor airports and the possible causal relationships is known as
the clustering coefficient, which reflects the clustering tendency of airports. For directed
networks, the clustering coefficient is calculated using the method provided in reference [32].
The overall clustering coefficient of this causal relationship network is 0.1405, which is
higher than the clustering coefficient of random networks (0.092). This indicates a clustering
tendency among airports in the delay causal relationship network, where airports affected
by a delay at one airport often have delay causal relationships with each other.

4.5. Discussion

This article adopts the PCMCI algorithm, which has practical feasibility in exploring
the causal relationship of delay propagation in the US airport network. As a complex sys-
tem, airport networks often exhibit nonlinear delay relationships, which traditional linear
causal relationship mining methods often cannot accurately capture. The PCMCI algorithm
can improve the accuracy of causal relationships in airport network delay propagation by
using nonlinear independence testing methods. In addition, the PCMCI algorithm requires
a large amount of data support for accuracy requirements. This article uses 371 days of
historical operating data from 339 airports in the United States for testing, and the amount
of data is quite abundant, which can significantly improve the accuracy of the causal
relationships mined. Usually, large-scale datasets lead to low computational efficiency.
However, the PCMCI algorithm overcomes this drawback by optimizing algorithm design
and adopting efficient data structures. When processing large-scale airport network data,
the PCMCI algorithm can complete causal relationship mining tasks relatively quickly,
which is beneficial for the impact of multiple model parameters on causal relationships,
as shown in Section 4.2. This allows us to adjust and explore different model parameters
more flexibly and conduct an in-depth analysis of causal relationships.

The experiments conducted on accurate historical flight operation data from US
airports demonstrate that the PCMCI algorithm can successfully mine causal relationships
in the delay propagation of airport networks and quantify causal strengths. Therefore, the
PCMCI algorithm is a promising approach that can assist airlines and airport managers
identify the main propagation paths and key node of delays. This, in turn, enables the
development of more effective delay management strategies and proactive measures to
mitigate the impact of delay propagation. While this paper focused on utilizing the PCMCI
algorithm to uncover causal relationships in airport network delay propagation, constraint-
based methods can also be applied in other domains. For instance, they can be employed
in the financial sector to explore causal relationships between different assets in financial
markets or the healthcare domain to investigate the causal relationships between disease
transmission and epidemics.

5. Conclusions

The rapid increase in flight volume has led to increasingly severe flight delays. Delays
at preceding airports can propagate to subsequent airports, making it crucial to explore
causal relationships in the network of airport delay propagation. This paper proposes a
method based on the PCMCI algorithm to mine causal relationships in the airport network
for delay propagation. This method efficiently handles many nonlinear delay data in
airports, considering all airports and removing spurious and indirect causal relationships.
The process is tested on accurate historical flight operation data from the United States. The
results indicate that, on average, a delay at one airport causes delays at six other airports,
and the extent of delay impact varies across airports. Delays are more likely to propagate
to smaller airports, airports with lower flight volumes, and airports with moderate delay
situations, which then propagate delays to other airports.

Additionally, we found that airports more prone to causing delays in other airports
are not necessarily heavily influenced by delays from many different airports, and vice
versa. The density of connections in the causal relationship network reveals that the ability
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of airport network delay propagation is not highly robust, and delay propagation can be
easily disrupted. Small airports with lower flight volumes can take measures to mitigate
delay propagation, based on the findings of this study.

One limitation of this study is that we did not calculate the delay propagation time.
In an airport network, the delay at one airport propagates to other airports after a certain
period, and there are different time delays in delay propagation. The PCMCI algorithm
cannot accurately capture these time delays and variations in propagation paths, which
restricts a comprehensive understanding of causal relationships in delay propagation. The
PCMCI algorithm uses a fixed time window to analyze time series data, and the time
resolution is limited. Smaller time steps can improve the time resolution but also increase
computational complexity. Future research will employ new techniques such as dynamic
causal models and hybrid models to incorporate the time factor into causal relationship
mining to establish more accurate delay propagation models and obtain information about
the delay time delays and propagation paths.
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