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Abstract: Distributed space systems are increasingly valued in the space industry, as they enhance
mission performance through collaborative efforts and resource sharing among multiple heteroge-
neous satellites. Additionally, enabling autonomous and real-time satellite-to-satellite communica-
tions through Inter-Satellite Links (ISLs) can further increase the overall performance by allowing
cooperation without relying on ground links and extensive coordination efforts among diverse stake-
holders. Given the constrained resources available onboard satellites, a crucial element of achieving
cost-effective and autonomous cooperation involves minimizing energy wastage resulting from un-
successful or unnecessary communication. To address this challenge, satellites must anticipate their
ISL opportunities or encounters with minimal resource utilization. Building upon prior publications,
this work presents further insights into the use of supervised learning to enable satellites to forecast
their encounters without relying on orbit propagation. In particular, a more realistic definition of
satellite encounters, along with a versatile solution applicable to all polar low-Earth orbit satellites is
implemented. Results show that the trained model can anticipate encounters for realistic and unseen
data from an available data source with a balance accuracy of around 90% and six times faster when
compared with the well-known Simplified General Perturbation 4 orbital model.

Keywords: distributed space systems; non-terrestrial networks; inter-satellite links; low-Earth orbits;
sun-synchronous orbits; simplified general perturbations; 6G; supervised learning

1. Introduction

In recent years, there has been a notable shift in the space industry towards the adop-
tion of Distributed Space Systems (DSSs) [1]. Unlike conventional monolithic systems,
DSSs comprise multiple satellites that coordinate their activities to enhance overall mission
performance in areas such as telecommunications, navigation, and remote sensing. Addi-
tionally, the increasing interest in Non-Terrestrial Networks (NTNs), a fundamental concept
in sixth-generation (6G) wireless networks, alongside the rising number of launched satel-
lites and constellations, highlights the importance of DSSs based on inter-satellite links
(ISLs) [2–4]. DSSs can provide optimal cooperation to further increase mission performance
and meet strict requirements by enabling satellite-to-satellite communication for the sharing
of data and unused resources.

Ensuring optimal cooperation is particularly crucial in resource-constrained scenarios,
such as nano-satellite constellations. This entails designing contact plans [5] and exploring
optimal communication routes [6] and task allocations [7,8] to maximize network utility
and fairness while minimizing latency and energy consumption within ISL systems. The
current heterogeneous Low-Earth Orbit (LEO) space, while benefiting from the huge num-
ber of orbiting satellites for resource sharing, presents a significant challenge to overcome:
unlike specific mesh-like topologies, such as Iridium [9] or Walker Star [10], where satellite
links are fixed, heterogeneous satellites have dynamic neighbors and intermittent links due
to their varying altitudes and inclinations. This characteristic increases the complexity of
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cooperation tasks, as optimal communication routes can change significantly over time.
To address these challenges, it is essential to anticipate contact opportunities between
satellites, also known as close-approach encounters. Traditional methods for anticipating
satellite encounters typically employ deterministic and centralized on-ground orbit propa-
gation techniques [5,11]. These methods use an orbital model to propagate the satellite’s
initial states encoded in Two-Line Element (TLE) sets. While on-ground solutions excel at
producing accurate contact windows, their centralized design renders them impractical
for DSSs comprising heterogeneous satellites, as extensive collaboration among diverse
stakeholders would be required. Additionally, the scalability of centralized computations is
limited by their strong dependence on Earth-based systems and reliance on a single central
unit for all data processing, making them unsuitable for mega-constellations.

In response to these challenges, recent studies explore decentralized solutions to grant
autonomy to satellites [12]. However, these methods typically rely on orbital propagation,
which could impose significant processing costs for satellites with constrained resources.
To avoid the need for orbital propagation while maintaining decentralization and auton-
omy, authors in Ruiz-De-Azua et al. [13] implemented predictive algorithms to learn and
construct the satellite contact windows. Nevertheless, some linearizations are employed in
the mathematical formulation, making this approach applicable only to specific scenarios
where satellites operate at the same altitude in circular and Keplerian orbits. As an alterna-
tive solution, Casadesus and Alarcón [14] investigated the use of Graph Neural Networks
(GNNs) together with Recurrent Neural Networks (RNNs) as a scalable alternative to
model the temporal evolution of large satellite network contacts in an autonomous and
cost-efficient manner.

Following previous works [15,16], we present some advances to the proof of concept
of using Supervised Learning (SL) to predict encounters between heterogeneous satellites.
In particular, the encounter prediction problem is solved for polar LEO, where around 40%
of all active satellites are located. Due to the Earth’s rotation, polar LEO satellites pass over
all latitudes, entirely covering the Earth’s surface and providing global coverage for remote
sensing and Earth observation missions. As in previous works, an encounter is defined
as a close approach between two satellites assuming the Simplified General Perturbation
4 (SGP4) orbital model. SGP4 is a well-known orbital model that considers the effect of
Earth’s non-sphericity and atmospheric drag [17,18]. However, in contrast to previous
publications, these encounters are better defined based on two distance thresholds: an
upper-bound threshold beyond which satellites are too far apart to communicate, and a
lower-bound threshold below which satellite-to-satellite communication is always feasible.
This new definition enables the solution to accommodate a range of user-defined threshold
distances, making it suitable for various antenna characteristics.

In particular, this work contributes to the state of the art by (1) offering an alternative
solution based on machine learning to forecast encounters between polar LEO satellites;
(2) implementing a method to easily generate a synthetic dataset of satellite encounters
given a range of orbital elements; (3) providing a trained model that obtains good predic-
tions given any pair of orbital elements in the range of polar LEO for any distance threshold
within a predefined range; (4) evaluating the SL model with realistic data from real polar
LEO Celestrak satellites; and (5) analyzing the results for two different datasets and three
different scenarios, extracting important conclusions

The remainder of this article is structured as follows. Section 2 defines the problem
statement, introducing the structure of the datasets used for training, validation, and testing.
Section 3 introduces polar orbits and presents their characteristics using real data from
Celestrak [19]. Section 4 details the SL model architecture used to fit the input and output
data. Section 5 presents an exhaustive analysis of the model performance on two different
datasets—one containing synthetic data and another one with realistic satellite orbits from
Celestrak. Finally, Section 6 concludes the paper with a recap of the main discoveries and
offers insights for further exploration within this field.
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2. Encounter Anticipation Problem

Motivated by the need to coordinate resource-constrained satellites autonomously,
this work proposes a cost-efficient solution to solve the encounter anticipation problem
without relying on centralized and ground-dependent orbit propagation. Based on our
previous works [15,16], we apply SL to infer future encounters between satellite pairs given
their initial states. This process involves (1) generation of input and output data, (2) model
training, and (3) model evaluation.

In line with previous studies, encounters are defined as the time sequences that
define satellite communication opportunities based on a close approach. Specifically, it is
assumed that communication can occur if the Euclidean distance between two satellites
is below a given threshold and that the directional antenna is equipped with pointing
mechanisms. Note that the pointing process is beyond the scope of this study. Additionally,
the SGP4 orbital model is utilized to calculate the dynamic distances between satellite
pairs, from which the ground-truth encounters are derived. SGP4 is an orbital model for
near-Earth objects including the effects of Earth’s shape and atmospheric drag. However,
some important changes and improvements are introduced as follows.

On the one hand, the input data encompass all the necessary information to define
the encounters between two satellites. This includes not just the initial position of the
satellites (specified by six values known as orbital elements) but also their initial drag
terms. In total, seven values define the initial state of a satellite. Based on this reasoning,
2000 synthetic polar satellites are generated and divided into two groups—one used for
training and the other for validation. In each group, the satellites are combined into pairs
to create a 14-feature input vector, ensuring that 85% of the total synthetic samples are
allocated for training and 15% for validation. Two additional datasets are created for testing,
namely a synthetic test set with information on 200 synthetic satellites and a Celestrak test
set with 200 real LEO polar satellites. Note that synthetic satellites are randomly distributed
throughout the entire LEO polar space, whereas real satellites from Celestrak tend to cluster
in specific regions due to their organization into different constellations. Details about the
generation of synthetic input data are presented in Section 3.

On the other hand, the definition of encounter is improved from a simple near/not
near decision coming from a single distance threshold to a more complex definition based
on two distinct thresholds. Defining a single distance threshold (T) beyond which the
ISL becomes unreachable would lead to the unrealistic and hard-defined encounters used
in [15,16]. In such scenarios, communication opportunities drastically appear or disappear
with a minor change in the satellite-to-satellite distance. Therefore, if different T values
need to be considered due to varying antenna characteristics, this approach would require
a new training process with different training data, reducing its robustness. Instead,
this work proposes an alternative T-independent encounter definition to anticipate the
communication opportunities associated with any threshold within a specific range. This
improved definition allows for encounter anticipation for different antenna characteristics
based on the same trained model.

Figure 1 illustrates the refined encounter definition, depicting the normalized separa-
tion distance over a 48-h period between Tmin and Tmax. For a more intuitive interpretation,
the time instances where the satellite-to-satellite distance exceeds Tmax are set to 0, indi-
cating no potential encounters, while values of 1 indicate times when the distance falls
below Tmin and the communication is possible. Based on [20], Tmin and Tmax are set to
1000 km and 3000 km, respectively. Under this definition, satellites separated by 3000 km or
more are considered unable to establish an ISL communication link, whereas those within
1000 km can always exchange data. The wide range between 1000 km and 3000 km aims
to accommodate diverse antenna characteristics in heterogeneous environments. Future
research could entail a detailed analysis of actual LEO antenna characteristics to define
more precise optimal threshold ranges. Notice that the approach proposed in this work
remains applicable across various threshold values.
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Section 5 reports the model’s performance associated with three different distance
thresholds, namely T = 1500 km, T = 2000, and T = 2500 km.

Figure 1. Satellite-to-satellite distance, upper and lower bound thresholds (Tmin, Tmax), and result-
ing encounter with 576 features corresponding to 48 h of SGP4 orbit determination with 5 min
discretization intervals.

It is important to note that after a few days, the predicted position of a satellite can
significantly deviate from its actual position, particularly for those satellites that perform
station-keeping maneuvers [21]. Therefore, it is crucial to periodically update the initial satel-
lite state using the latest TLE set. As long as the initial state remains within the range of values
used for training, the same SL model can handle these maneuvers without additional training.

3. Polar Orbits

A polar orbit is characterized by a high inclination angle relative to the equator, which
makes it pass near the Earth’s geographic poles. These characteristics allow polar-orbiting
satellites to provide global coverage, observing different parts of the Earth with each orbital
pass. This property makes polar satellites highly useful for Earth observation and remote
sensing applied in scientific research, disaster management, and environmental studies
(e.g., weather monitoring). For this reason, polar satellites are found at low altitudes and
are defined by orbital periods of less than 128 min.

Figure 2 shows the inclination angle for all 6175 active LEO satellites present in Ce-
lestrak in February 2023. Satellites in the red region, with an inclination range of 66◦ to 114◦

(90◦ ± 24 º), are defined as arctic polar satellites and represent approximately 42% of all
LEO satellites. Within this range, satellites are commonly located in Sun-synchronous orbits
(SSOs), where each successive orbital pass occurs at the same local time under similar light-
ing conditions. This characteristic allows satellites to retrieve consistent Earth observation
data, making them suitable for studies of weather and geophysical phenomena.

To accurately replicate real polar satellites with synthetic data, a detailed analysis of the
two-line elements (TLE) information for all 2613 Celestrak LEO polar satellites is displayed
in Figure 3. A TLE defines the position of a satellite in a given epoch or at a given time with
a set of six orbital elements (OEs) that define the orbit shape or eccentricity (e), the size or
semi-major axis (a), and three orbit orientation angles (inclination (i), right ascension of the
ascending node (Ω), and argument of perigee (ω)), as well as the satellite position along
the orbit or mean anomaly (M). Additionally, the TLE models the atmospheric drag force
with the B-star term (B∗), as defined in Equation (1).

B∗ =
ρ0Cd A

2m
(1)
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where ρ0 is a reference air density, Cd is the drag coefficient, A is the frontal area, and m is
the satellite’s mass. Notice that B∗ is not constant, since both A and Cd change over time
with the satellite’s orientation.

Figure 2. Inclination of all 6175 real active low-Earth orbit satellites in Celestrak. The red region
contains polar satellites. Sun-synchronous orbiting satellites (in brown) are a specific type of po-
lar satellite.

(a) (b) (c)

Figure 3. Probability distribution of selected characteristics for all 2613 real polar satellites from
Celestrak. (a) Distribution of B-star drag term, with over 98% falling within the range of −0.03 to 0.03.
(b) Distribution of semi-major axis, showing that more than 99% of satellites are within the range of
6700 km to 7500 km. (c) Distribution of eccentricity, where over 99% of satellites have values ranging
from 0 (circular orbit) to 0.02.

Figure 3a shows the probability distribution of B∗, measured in units of the inverse of
the Earth’s radius (R−1

E ). The vast majority of the Celestrak polar satellites exhibit a small
positive drag term. However, unexpectedly, approximately 1% of the satellites present a
negative B∗. Those negative values arise from unmodeled forces that alias the drag term,
creating a negative force for orbit compensation. Since SGP4 can deal with negative drag
forces, the range from −0.03 to 0.03, containing more than 98% of the cases, has been
considered to create synthetic satellites. Similarly, Figure 3b shows the distribution of the
semi-major axis. As expected for LEO orbiting satellites (usually found between 160 km and
1600 km above the Earth) the semi-major axis ranges from 6500 km to 8000 km. To delimit
the space and avoid outliers, only values from 6700 km to 7500 km are considered for
synthetic representation, accounting for more than 99% of the cases. In Earth observation
missions, LEO polar orbits are quasi-circular, with low eccentricity values. As shown
in Figure 3c, the vast majority of satellites have eccentricities lower than 0.02. Since the
inclination is the element that defines polar orbits, the whole range from 66◦ to 114◦ is used,
and its distribution is presented in Figure 2. The right ascension of the ascending node,
the argument of perigee, and the mean anomaly present no restriction associated with LEO
polar satellites, and the entire range from 0◦ to 360◦ is considered.

Based on these results, Table 1 summarizes the range of OEs and B-star drag terms
that characterize around 99% of all active LEO polar satellites. The synthetic satellites used
to construct the input dataset were created by combining random values within each range.
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Table 1. Range of values for orbital elements and drag term used to generate synthetic polar satellites.

Value B∗ [R−1
E ] a [km] e [-] i [º] Ω [º] ω [º] M [º]

From −0.03 6700 0 66 0 0 0
To 0.03 7900 0.02 114 360 360 360

Notice that these seven values are all the information that SGP4 requires to propagate
an orbit. Therefore, as long as orbit maneuvers are reflected in these parameters, our
solution can handle them without needing additional training. However, in extreme
cases where a maneuver causes the satellite to move outside the range of orbital elements
presented in Table 1, encounter prediction may fail.

4. Supervised Learning Model

To predict encounters between satellite pairs without relying on orbit propagation
techniques, we employ an SL approach. This method is applied to learn the relationship
between the input data consisting of pairs of satellite initial states and the output data
characterizing the communication opportunities over the following two days. Although the
training stage may involve significant computational costs depending on the complexity
of the architecture and the number of training samples, the SL demonstrates remarkable
cost efficiency in the inference part, which takes place after the training process to predict
the output associated with new and unseen data. Additionally, post-training optimization
techniques can be applied to further reduce the inference time in exchange for a minimal
compromise in model performance, which is especially attractive for edge devices and
resource-constrained systems. A computational cost analysis is presented in Section 5.4.

Given the high level of performance demonstrated by the fully-connected neural
network used in [16], this model architecture is reused but adapted to accommodate
the two additional features of the input vector regarding the drag term. Additionally,
the incorporation of two extra hidden layers has been shown to result in a notable increase
in performance. In that sense, the final architecture comprises 14 neurons for the input
layer; 576 neurons for the output layer; and 4 pairs of hidden layers with 32, 64, 128, and 256
neurons, respectively. This configuration entails a total of 279,488 parameters to be learned
to minimize the loss function.

All parameters related to the activation function, batch size, and training epochs
remain consistent with prior works. However, a weighted loss function is implemented to
address the significant imbalance that characterizes the output dataset.

Weighted Loss Function

Given the nature of satellite encounters in sparse constellations, it is expected that
communication opportunities will be scarce. Specifically, for a set of 20,000 different satellite
pairs, the average time they are within 2000 km of proximity is only 2%. Consequently,
the dataset exhibits a significant imbalance between zeros (no encounters) and non-zeros,
posing challenges during training. To address this imbalance, Equation (2) presents the
weighted loss function (L) used for training. This loss function has proven to work consid-
erably better than other default functions such as mean square error [22], mean absolute
error [23], and cross entropy [24].

L = (AYt + 1) · (Yt − Yp)
2 (2)

where Yt is the true value, Yp is the predicted value, and A is a positive constant.
L represents the squared error between the true value and the predicted value, scaled

by a factor greater than one. This scaling ensures that the loss increases proportionally to
Yt. In other words, for a given squared error, a higher Yt implies a higher loss. Therefore,
more importance is given to higher Yt values, which are rarely found during training.
The scalar parameter A is used to adjust the importance given to non-zero values, having
a significant impact on the training process. Various values greater than 0 are compared.
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The best performance is observed with A values lower than one. For datasets with stronger
imbalances, higher A values might be necessary.

Figure 4 shows the loss function for different true values from 0 to 1 for A = 0.5.
Notice that the minimum loss is always found when Yp = Yt. As Yt increases, the loss for a
given square error increases. For instance, for Yt = 0.2 and Yp = 0.8, the loss is 0.4, while
for the same square error with Yt = 0.8 and Yp = 0.2 the loss increases to 0.5. Notice that
the highest loss is obtained when the true value is 1 and the prediction is 0.

Figure 4. Weighted mean square error loss function with A = 0.5.

5. Results

This section presents the performance of the SL model architecture presented in
Section 4. First, the model’s performance is assessed by quantifying the error between the
ground truth and the model prediction. Then, the ground truth is post-processed with
different distance thresholds to obtain different true encounters. Each true encounter is
compared with the model prediction, and the effect of the decision threshold is analyzed.
Subsequently, a decision threshold is fixed, and the model’s performance is computed for
each sample in both synthetic and realistic test sets. Finally, the computational cost of the
SL model inference is evaluated and contrasted with the time required for the SGP4 model
to compute trajectories and assess encounters.

5.1. Distance Error

Figure 5 shows the ground truth (in blue) and the model prediction (in orange) for
the following six different target satellite pairs: synthetic satellite pairs 0–5, 0–9, and 4–6
and Celestrak satellite pairs 0–1, 0–5, and 2–3. As explained in Section 2, the ground
truth represents the time evolution of the normalized satellite-to-satellite distance between
1000 km and 3000 km. Satellite-to-satellite distances higher than 3000 km are denoted
with 0, indicating an inability to establish communication, whereas values of 1 reflect
distances below 1500 km, symbolizing the potential establishment of an ISL. Encounter
values between 0 and 1 can be directly translated to satellite distances between 1000 km and
3000 km, and the decision on when to start ISL communication relies on the stakeholders.
From visual inspection, we can say that the model can predict satellite-to-satellite distance
with high performance, detecting all the communication opportunities, even when they are
really short in duration, as in synthetic pair 4–6 and Celestrak pair 0–5.

To quantify the error between the ground truth and the model prediction, Figure 6
shows the distribution of the mean absolute error (MAE), considering all satellite pairs in
both the synthetic and Celestrak datasets. Note that the error computation only considers
the time instances with a ground truth higher than 0 and lower than 1. In cases where the
true value is either 0 or 1, the actual distance remains unknown, preventing the calculation
of the true distance error. The results show average MAE values of 281 km and 239 km
for the synthetic and Celestrak test sets, respectively. Based on these findings, it is evident
that the model lacks the level of accuracy necessary to be employed to predict the distance
between satellites, particularly in critical applications like collision avoidance.
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Figure 5. Comparison of ground truth and model predictions (orange) for three distinct satellite pairs
across both synthetic and Celestrak test sets.

Figure 6. Obtained distribution of MAE depicting the model mean performance in predicting all
samples in both synthetic and Celestrak test sets.

5.2. Fixed Distance Threshold

The goal of this work is not to predict the satellite-to-satellite distance but to anticipate
the encounters between satellite pairs and to compute the performance of this anticipation
capability. To do so, the ground truth must be post-processed into a binary signal by
defining a distance threshold (T) above which communication is not feasible. This threshold
can vary depending on the user preferences and the antenna characteristics, but it must
lie between 1000 km and 3000 km. For the following results, three scenarios coming from
three different Ts are presented, namely T = 1500 km, T = 2000 km, and T = 2500 km,
which correspond to the normalized thresholds of 0.75, 0.5, and 0.25, respectively (see
Equation (3)). Notice that these normalized thresholds are the ones used to transform the
ground truth into a binary signal.

Tnorm =
T − Tmax

Tmin − Tmax
(3)

where Tmax and Tmin are set to 3000 km and 1000 km, respectively.
To quantify model performance, the harmonic mean of precision (P) and recall (R),

called the F1 score (F1), is used. In our scenario, P is the probability of estimating a
contact inside the real time slot, while R assesses the proportion of successful encounters
relative to the total available communication time. In this sense, a precision lower than
1 means that some predicted encounters do not exist, which would be translated into
wasted transmission energy. A recall lower than 1 means that some encounters are not
detected and some communication opportunities are lost. Equations (4)–(6) present the
mathematical formulations of the F1, P, and R, respectively.

F1 =
2 × P × R

P + R
(4)
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P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

where TP, FP, and FN stand for true positive, false positive, and false negative, respectively.
It is important to notice that to compute TP, FP, and FN, the model prediction must

also be post-processed into a binary signal using a decision threshold. In this sense, all
output values lower than the decision threshold are interpreted as 0 or no encounter
instances, whereas higher values are set to 1 and interpreted as communication opportuni-
ties. Setting an appropriate threshold is important and hardly affects the performance of
the model.

Figure 7 illustrates the influence of the decision threshold on the P, R, and F1 metrics
for both synthetic and realistic datasets. To provide a more intuitive understanding,
the decision threshold is also expressed in kilometers through the inverse of Equation (3).
Furthermore, each figure presents three different scenarios coming from three different
distance thresholds indicated with a dashed vertical red line, namely 1500 km, 2000 km,
and 2500 km.

(a) (b) (c)

(d) (e) (f)

Figure 7. Precision, recall, and F1-score curves obtained using both synthetic and Celestrak test
sets across three different distance thresholds. (a) Synthetic data, T = 1500 km. (b) Synthetic data,
T = 2000 km. (c) Synthetic data, T = 2500 km. (d) Celestrak data, T = 1500 km. (e) Celestrak data,
T = 2000 km. (f) Celestrak data, T = 2500 km.

As expected, as the decision threshold rises, the count of detected encounters decreases,
resulting in a reduction in FPs and an increase in FNs. According to Equations (5) and (6),
the decrease in FPs enhances the P, elevating the likelihood of accurately estimating a
contact within the real time slot. However, the increase in FNs negatively affects the R,
as it diminishes the proportion of successful encounters. It is worth noting that a similar
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behavior emerges as a result of increasing the distance threshold (T): the number of true
encounters rises as the encounter duration increases, transforming some FPs into TPs but
some TNs into FNs. In this case, the positive effect on both FPs and TPs is reflected in
a larger area under the P curve, while the increase in FNs is strong enough to observe a
decrease in the area under the R curve. However, it can be concluded that the positive effect
outweighs the negative one, as evidenced by the increase in the area under the F1 curve
with the distance threshold. Moreover, the imbalance within the ground truth, characterized
by significantly more lower values compared to higher ones, presents challenges for the
model in accurately predicting encounters associated with higher T values.

Comparing the results obtained with the two distinct datasets, it can be observed
that the Celestrak dataset demonstrates superior performance across all scenarios. This
behavior comes from the distinct characteristics of each dataset. In the synthetic dataset,
satellites are uniformly distributed, whereas real satellites from Celestrak tend to be densely
clustered within specific regions and constellations. This non-uniform distribution results
in longer satellite encounters and, consequently, a better balance between positive (1) and
negative (0) instances. A higher level of dataset balance facilitates prediction.

Additionally, Figure 7 shows that the decision threshold linked to the highest per-
formance hardly depends on the scenario, as it decreases with increasing T. However,
selecting the optimal decision threshold does not only depend on T but is also a trade-off
between detecting all the communication opportunities (but some FPs) and detecting only
true opportunities (but some FNs). This decision is left to the final user. Nevertheless,
an interesting point is found in the intersection between the P and R curves, representing
the maximum F1 score. Generally, these curves intersect when the decision threshold aligns
with the normalized distance threshold (red dashed line) applied to the ground truth. This
indicates the good behavior of the model.

A similar and commonly employed metric for assessing the performance of a binary
predictive model without specifying a decision threshold is the average precision (AP),
measured as the area under the Precision–Recall Curve (PRC). Figure 8 illustrates the PRC
for each scenario and dataset. In line with previous observations, it is noted that the AP of
the Celestrak dataset surpasses that of the synthetic dataset by approximately 6% to 4%.
These results also highlight the upward trend with the distance threshold, corresponding
to an increase in the number of true encounters accompanied by a decrease in FPs and a
simultaneous rise in TPs. Figure 8a showcases the most challenging scenario characterized
by the highest degree of imbalance in the ground truth with T = 1500 km. It features
minimum AP values for the synthetic and Celestrak datasets of 83% and 89%, respectively.
Conversely, the scenario with the highest T, as illustrated in Figure 8c, achieves a maximum
synthetic AP of nearly 92%, escalating to 96% with the Celestrak dataset.

(a) (b) (c)

Figure 8. Precision and recall curves obtained using both synthetic and Celestrak test sets across
three different distance thresholds. The average precision, representing the area under the curves,
is also indicated. Additionally, points denote the precision and recall values corresponding to the
maximum F1 score. (a) T = 1500 km. (b) T = 2000 km. (c) T = 2500 km.
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5.3. Fixed Decision Threshold

The previous results showcase the model’s performance as a function of the decision
threshold, i.e., the threshold used to binarize the model prediction. To assess the perfor-
mance of individual samples in terms of the tangible metrics of F1, P, and R, a decision
threshold must be established. As mentioned before, this threshold plays a crucial role
in the final performance, as it involves a trade-off between detecting all encounters with
some false positives and detecting only a subset of true encounters. Previous insights also
underscore the strong relationship between the decision threshold and the distance thresh-
old. The following results present the model’s performance when the decision threshold
aligns with the normalized distance threshold used to binarize the ground truth, namely
T = 1500 km with a decision threshold of 0.75, T = 2000 km with a decision threshold of 0.5,
and T = 2500 km with a decision threshold of 0.25.

Figure 9 presents a comparative analysis between true and predicted post-processed
encounters across three satellite pairs in both synthetic and realistic datasets. Each dataset
features three distinct scenarios corresponding to three different T values (to binarize the
ground truth) and three different decision thresholds (to binarize the model prediction).
As expected, both true and predicted contact durations increase as the thresholds, expressed
in kilometers, increase.

(a) (b) (c)

(d) (e) (f)

Figure 9. True post-processed encounters (in blue) and post-processed model prediction (in orange)
across three different distance thresholds. (a) Synthetic data, T = 1500 km, decision threshold of 0.75.
(b) Synthetic data, T = 2000 km, decision threshold of 0.5. (c) Synthetic data, T = 2500 km, decision
threshold of 0.25. (d) Celestrak data, T = 1500 km, decision threshold of 0.75. (e) Celestrak data,
T = 2000 km, decision threshold of 0.5. (f) Celestrak data, T = 2500 km, decision threshold of 0.25.

The results indicate that the model is able to generalize the encounters for these six
unseen samples, even in complex scenarios characterized by intermittent encounters, such
as those observed in synthetic pair 4–6 and Celestrak pair 0–5. However, some missed and
false communication opportunities can be observed, particularly in synthetic satellite pair
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0–9, where the contact around hour 42 shown in Figure 9a is lost, and the contact around
hour 40 shown in Figure 9a persists longer than expected. Moreover, in Figure 9d, Celestrak
pair 0–1 exhibits a predicted encounter that initiates and concludes several minutes earlier
than the true encounter.

To quantify these results, Figure 10 shows, for each scenario, the distribution of F1
and the Balance Accuracy (BA) across all samples in both test datasets. The BA, as defined
in Equation (7), is the average of sensitivity and specificity. The sensitivity (or the True-
Positive Rate (TPR)) is the same as the R, while the specificity (or True-Negative Rate
(TNR)) assesses the model’s effectiveness in correctly excluding the negative instances.
Notice that specificity is another way of measuring the wasted energy of the prediction,
since it accounts for the number of FPs.

BA =
TPR + TNR

2
=

1
2

(
R +

TN
TN + FP

)
(7)

(a) (b) (c)

(d) (e) (f)

Figure 10. Probability distribution of F1 and BA for all samples in both synthetic and Celestrak test
sets across three different distance thresholds. Vertical dashed lines indicate mean performances.
(a) Synthetic data, T = 1500 km, decision threshold of 0.75. (b) Synthetic data, T = 2000 km, decision
threshold of 0.5. (c) Synthetic data, T = 2500 km, decision threshold of 0.25. (d) Celestrak data,
T = 1500 km, decision threshold of 0.75. (e) Celestrak data, T = 2000 km, decision threshold of 0.5.
(f) Celestrak data, T = 2500 km, decision threshold of 0.25.

Note that certain pairs exhibit an F1 score of zero. Upon closer examination of these
critical pairs, it is observed that they are characterized by sporadic encounters (e.g., a
single and short communication opportunity throughout the entire duration). In such
critical scenarios, obtaining zero TPs is almost inevitable, and a single FP or FN results in
an overall F1 score of zero, thus significantly impacting the average performance across
all samples. However, in these critical situations where TP equals zero, BA achieves a
maximum value of 0.5 when FP is also zero. For this reason, BA consistently surpasses F1
and serves as a fairer average metric, providing a more realistic quantification of the mean
performance. Furthermore, as observed in the previous results, notable improvements
in both F1 and BA can be observed as the distance threshold increases from 1500 km to
2500 km.
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Finally, Table 2 summarizes the results with the mean values for each distance thresh-
old, dataset, and metric. Increasing the distance threshold from 1500 km to 2500 km makes
the F1 score improve by around 20%. However, as the encounter duration does not evolve
linearly with T, F1 does not increase linearly, and a major improvement is observed be-
tween 1500 km and 2000 km. Similarly, the dissimilarity between BA and F1 decreases
non-linearly with T, reducing from 18% with T = 1500 km to 9% with T = 2500 km. Due to
the reduced number of true communication opportunities in the ground truth, the model
tends to predict low values; thus, R is usually lower than P. Overall, the model can an-
ticipate two days of communication opportunities with a mean accuracy between 80%
and 93%.

Table 2. Mean performance for each scenario and dataset.

T = 1500 km T = 2000 km T = 2500 km

TestS TestC TestS TestC TestS TestC

BA [%] 81.8 86.3 89.6 91.2 91.8 93.1
F1 [%] 63.6 71.8 78.7 81.8 83.0 86.7
P [%] 82.3 83.8 83.5 86.7 84.9 89.7
R [%] 63.8 73.2 79.6 83.1 84.2 87.0

AP [%] 83.0 89.0 89.4 93.5 91.8 95.9

5.4. Computational Cost

Prior findings have demonstrated that ML can be used as an alternative to SGP4 to
anticipate communication opportunities between satellites. While SGP4 offers precise
solutions, our hypothesis suggests that ML can be utilized to trade a degree of accuracy
for computational efficiency and battery savings, which are particularly advantageous in
resource-constrained systems. In that sense, the proposed SL model solution should antici-
pate the encounters faster than the state-of-the-art methods based on orbit determination.

Before analyzing the computational cost, TensorFlow Lite (TF Lite) is used to optimize
the trained SL model. While TensorFlow (TF) is a framework used mainly to build and train
ML models, TF Lite optimizes a trained model mainly through pruning and quantization.
These techniques yield a more compact model and enable resource-constrained devices to
make predictions much faster and with less memory usage.

Table 3 depicts the performance degradation observed upon implementing a 16-bit
floating point quantization of the model’s trained parameters, which reduces the precision
of the trained parameters, originally expressed with a 32-bit floating point. As observed,
the error produced by this optimization is minimal, except for P, which experiences a
loss of nearly 5% in performance for the synthetic dataset with T = 1500 km. However,
unexpectedly, a few isolated cases exhibit slightly improved performance after the model
optimization process.

To determine the significance of sacrificing this 1% or 2% of performance, Table 4
provides insights into the computational time reduction associated with TF Lite. The com-
putational time is measured as the average duration required for the model to make an
inference—specifically, to anticipate the encounters between two satellites given their initial
states. The results show a strong decrease in the computational time by three orders of
magnitude compared to the default TF model, dropping from around 60 ms to 70 µs.

To conclude the evaluation of the proposed ML approach, Table 4 also presents the
computational time required for the baseline SGP4 to anticipate the encounters. Notice that
encounter computation based on SGP4 involves the following three steps: (1) calculation of
the satellite positions every 5 min over 2 days, (2) computation of the satellite-to-satellite
distances, and (3) evaluation of the encounter times given a distance threshold. The average
time required to complete these tasks is around 400 µs, with the first task accounting for
over 90% of the total time. While TF is two orders of magnitude more time-consuming
than SGP4, the optimized model with TF Lite exhibits a speed advantage of approximately
six times over SGP4, which could reduce the satellite’s battery consumption considerably.
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Table 3. Comparison of the previous mean performance metrics obtained with TensorFlow versus
the new results with TensorFlow Lite (BA′, F1′, P′, R′, and AP′).

T = 1500 km T = 2000 km T = 2500 km

TestS TestC TestS TestC TestS TestC

BA–BA′ −0.3% 0.0% 0.5% 0.3% 1.1% 0.9%
F1–F1′ 1.1% 1.0% 1.9% 1.2% 1.8% 1.5%
P–P′ 4.9% 3.1% 3.1% 2.1% 1.1% 1.1%
R–R′ −0.8% −0.3% 0.9% 0.5% 2.1% 1.6%

AP–AP′ 2.8% 1.8% 2.2% 1.4% 1.6% 1.1%

Table 4. Computational cost obtained with GPU NVIDIA RTX A4000 with 32 GB RAM.

TF TF Lite SGP4

Time [µs] ≈60,000 ≈70 ≈420

Previous findings demonstrate that ML could be a promising alternative to SGP4
in resource-constrained environments, such as LEO satellite networks. In these settings,
where computational resources are limited, ML offers a potential alternative, trading off
some accuracy for reduced computational costs.

6. Conclusions

This work presents a supervised machine learning approach for forecasting encounters
between heterogeneous polar satellites. The model utilizes 14-dimension synthetic input
training data obtained by combining various pairs of orbital elements. The output training
data are a set of 48 h time series that describe communication opportunities depending
on the satellite-to-satellites distance between 1000 km and 3000 km. Directional antennas
with fast pointing mechanisms are assumed. The SGP4 orbital model, which accounts for
the most important perturbations in low-Earth orbits, is used to train, validate, and test
the SL model based on a fully connected neural network architecture with a weighted
loss function. The model performance is evaluated using two different datasets—one
containing synthetic polar satellite data and another containing realistic polar satellite
data from the Celestrak database. Both the distance threshold and the decision threshold
necessary to convert the ground truth and the model prediction into binary signals are
thoroughly examined in the Results section.

The outcomes indicate that the proposed machine learning model can effectively
predict realistic encounters between polar satellites with a balanced accuracy of around
90% when compared with the ground truth based on SGP4 orbit determination. This
performance surpasses that of the synthetic dataset by approximately 5%. The discrepancy
can be attributed to the sparse and uniformly distributed nature of synthetic satellites
across the range space, leading to sporadic, distance threshold-dependent encounters and,
consequently, more challenging prediction. Moreover, computational cost analysis reveals
that after optimizing the trained model through parameter quantization, the time required
to anticipate encounters using machine learning is six times lower compared to employing
state-of-the-art methods based on orbit determination.
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ISL Inter-Satellite Link
LEO Low-Earth Orbit
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