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Abstract: Orbital maneuver detection for non-cooperative targets in space is a key task in space
situational awareness. This study develops a passive maneuver detection algorithm using line-of-
sight angles measured by a space-based optical sensor, especially for targets in high-altitude orbit.
Emphasis is placed on constructing a new characterization for maneuvers as well as the corresponding
detection method. First, the concept of relative angular momentum is introduced to characterize the
orbital maneuver of the target quantitatively, and the sensitivity of the proposed characterization is
analyzed mathematically. Second, a maneuver detection algorithm based on the new characterization
is designed in which sliding windows and correlations are utilized to determine the mutation of the
maneuver characterization. Subsequently, a numerical simulation system composed of error models,
reference missions and trajectories, and computation models for estimating errors is established.
Then, the proposed algorithm is verified through numerical simulations for both long-range and
close-range targets. The results indicate that the proposed algorithm is effective. Additionally, the
sensitivity of the proposed algorithm to the width of the sliding window, accuracy of the optical
sensor, magnitude and number of maneuvers, and different relative orbit types is analyzed, and the
sensitivity of the new characterization is verified using simulations.

Keywords: space situational awareness; maneuver detection; angles-only measurement

1. Introduction

With the rapid development of space technology, the frequency of launching satel-
lites in various countries has increased rapidly. For example, SpaceX plans to launch
42,000 satellites for Starlink. The huge number of launches may have disastrous conse-
quences for near-Earth space [1–5]. The falling off of objects produced in the launch process,
and failed satellites at the end of their service life or after failure may affect the normal op-
eration of active satellites or even cause collisions. Collisions and secondary collisions will
produce countless space debris, which is very difficult to remove and poses a major threat
to the safety of satellites [6–9]. In addition, the mastery of space requires huge national
interests. Space provides an important support for national security. Fierce competition in
space utilization technology has occurred, which makes the importance of space security
increasingly prominent [9–11]. Therefore, to protect space resources, whether to avoid
damage caused by space debris or to defend against space military threats, it is extremely
critical to improve space situational awareness [12].

To date, many situational awareness methods have been proposed. Based on the
environment in which the measuring equipment is located, the existing situational aware-
ness methods can be divided into space-based awareness and ground-based awareness
methods. The main method of ground-based sensing establishes an observation station on
the ground, and the operational state of the target is observed using ground-based radar
and photoelectric systems [13–15]. However, these methods are not only constrained by
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political factors but also have the problems of high construction costs and complex mainte-
nance. Therefore, increasing attention has been paid to research focusing on space-based
situational awareness. Space-based methods can overcome many of the shortcomings of
ground-based methods, such as the direct observation of space targets in space which can
overcome the influence of the atmosphere and the limitation of the field of regard. At
present, researchers have proposed many space-based sensing methods. Several space-
based sensing systems have been used in practical applications, like the MiTEx satellite of
the United States [16], the GSSAP project [16–18], and the ESPAStar platform [19].

Sensors for space-based sensing generally include lidar, radio ranging equipment, and
optical cameras [16–24]. Among space-based navigation methods, the optical angles-only
navigation method has become the prominent development trend because of its relatively
simple equipment and high reliability [21–24]. Considering the related measurement errors
in practical applications, the Kalman filter method is the most commonly introduced to deal
with the errors in measurement. However, the traditional Kalman filter method can only
deal with known perturbations and common measurement errors. When the target satellite
performs unknown orbit maneuvers due to collisions, perturbations, or orbit changes, the
orbit determination error often diverges gradually over time. Therefore, navigation based
on this method will lose its effectiveness in these cases. To solve this problem, it is necessary
to find a way to detect the orbit maneuver and estimate the maneuver time.

Researchers have studied orbit maneuver detection from multiple angles. Some studies
have started with improving the navigation accuracy or data processing methods [25–30].
For example, Jia et al. [25] proposed an improved Kalman filter algorithm using four co-
operative satellites, which could achieve the goal of detecting the target orbit maneuver
accurately, but the cost increases a lot, like for more individual cooperation or the high cost
of high-precision sensors. Previous studies [26,27] proposed empirical mode decomposition
(EMD) processing for the detected quantity, which allowed the abnormal points of parame-
ters to be highlighted among the observed values to realize the identification of maneuvers
or abnormal points. Scientists have proposed these methods because the state parameters
of general space targets, such as velocity and position, are not sensitive to orbit maneuvers,
and their changes caused by orbit maneuvers are easily submerged in measurement errors,
particularly for long-range targets. Therefore, identifying new feature quantities that are
sensitive to maneuvers is a new trend in this field [31–36]. For example, Yu et al. and
Huang et al. [31,32] proposed the use of the semi-major axis and eccentricity as detection
quantities for maneuvers, but these quantities have certain limitations in the use scenar-
ios. Liu et al. [33] proposed a maneuvering weighted fusion of multiple hypothesis tests
(WFMHTs) method for space-based angles-only measurement, in which the observation
error in the extended Kalman filter calculation was set as the characterization, and target
maneuvers were determined by judging whether the residual had the characteristics of
zero-mean white noise. The method proposed by [13] used the orbit determination residual
to evaluate the start and end times of maneuvers. Wang et al. [34] proposed using the
calculated rate of change in the distance as the characterization and transformed the orbit
maneuver detection problem into a hypothesis test problem. Although these methods are
valuable, they all have certain application limitations. Some are not suitable for small orbit
maneuver detection, whereas others have poor real-time performance or some limitations.

The objective of this work is to develop a maneuver detection algorithm for non-
cooperative targets in high-altitude orbits, where angles-only measurements are used. The
main contribution is focused on two aspects: a new characterization based on relative
angular momentum is modeled to solve the non-sensitive problem of the existing character-
ization in high-altitude relative motion application; the concept of the correlation coefficient
is introduced to design a mutation detection algorithm for the characterized time series.
Compared to existing methods, the proposed algorithm is more sensitive to maneuvering
where a high precision detection is achieved.

The rest of the manuscript is organized as follows: Following the problem statement
in Section 2, the model of the maneuvering characterization and its sensitivity analysis are
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presented in Section 3. The maneuver detection algorithm is addressed in Section 4. The
numerical simulation framework is described in Section 5. The results of the simulations
and analysis are presented in Section 6. Finally, the conclusions are given in Section 7.

2. Problem Statement

Based on space-based observation, the target’s line-of-sight angle is measured to
provide a continuous evaluation of whether the target is performing an orbital maneuver,
and the orbital maneuvering time is estimated. The logic framework of the continuous
detection algorithms is given in Section 2.1, and the kinematic model used in this study is
introduced in Section 2.2; finally, the measurement model of the target line-of-sight angle is
introduced in Section 2.3.

2.1. Framework of the Maneuver Detection Algorithm Based on Angles-Only Measurements

The basic logical relationship of the non-cooperative target orbit maneuver angles-only
detection method proposed in this study is shown in Figure 1. First, the line-of-sight angle
measurement (the azimuth az and elevation el) is filtered and estimated in combination
with the dynamic model to obtain the relative position vector rrel and relative velocity
vector vrel of the non-cooperative target. Then, the maneuver-detecting characterization
(the relative angular momentum hrel) is constructed based on the relative orbit parameters.
Finally, the maneuver time is determined through the inspection and discrimination of
the characterization, and the process of determining the initial orbit is restarted at the
same time.
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Figure 1. Framework of the algorithm.

Because the focus of this study is the design of the maneuver detection algorithm, the
angle measurement and orbit determination algorithm including the Unscented Kalman
filter (UKF)-based filter in Figure 1 is not discussed in detail, and the method proposed by
Gong et al. [37] is adopted directly. The mapping relationship between the history of the
line-of-sight angle and the relative orbit parameters is given as follows:[

rT , vT
]T

= Mapping(az, el) (1)

where az and el are the history of the azimuth and elevation, respectively.

2.2. Relative Motion Dynamics Model

As shown in Figure 2, a rotating frame, i.e., a local vertical–local horizontal (LVLH) ref-
erence coordinate system, is established. The origin is located at the center-of-mass (COM)
of the chaser satellite, the X-axis points to the COM of the satellite from the Earth’s center,
the Z-axis is normal to the orbital plane, and the Y-axis completes the right-hand system.
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Figure 2. LVLH reference system.

When the orbital eccentricity, e, of the two satellites satisfies 0 ≤ e <1, the nonlinear
relative dynamics model proposed by Yamanaka et al. [38] can be used to model the relative
state between the chaser satellite and the target satellite:

 ..
x
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y
..
z
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.
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−kω
3
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2kω
3
2 z − 2ω

.
x − .

ωx + ω2z

+ a f + acd − atd (2)

where [x, y, z]T is the position of the target’s COM relative to the COM of the chaser
satellite in the LVLH frame, ω is the orbital angular velocity of the chaser satellite, a f is
the acceleration caused by the propulsion force of the target satellite, acd is the acceleration
caused by forces other than the inverse square gravity term on the chaser satellite, and atd
is the acceleration caused by forces other than the inverse square gravity term on the target
satellite. The constant k is defined as follows:

k ∼=
µ

h3/2 (3)

where µ is the gravitational constant, and h is the orbital angular momentum.
In this paper, we assume the chaser satellite is flying in free motion and the external

forces on the chaser satellite and the target satellite are identical.

a f = 0, acd = atd (4)

2.3. Measurement Model

In this study, it is assumed that the orbit and attitude of the chaser satellite are known,
and only passive optical cameras on the satellite can be used to measure non-cooperative
targets. According to the engineering constraints, the camera is installed away from the
chaser’s center-of-mass (COM), and the measurement is shown in Figure 3. The offset vector
of the camera is denoted by d = [dx, dy, dz]

T in the LVLH frame. Then, the line-of-sight
vector from the camera to the target in the LVLH frame can be modeled as follows:

iLOS = r − d =

x − dx
y − dy
z − dz

 (5)

where x, y, and z are the components of the target’s relative position r.
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where [n1, n2]
T is the measurement noise which is commonly modeled as zero-mean

Gaussian noise.
The offset of the camera can increase the observability of relative orbit if the offset

satisfies the observable criterion. Moreover, the increment of observability depends on the
ratio of the effective offset to the relative range between two spacecraft. Detailed analysis
for the angles-only observability from the offset can be found in a study by Gong et al. [37].

3. Modeling of the Maneuvering Characterization and Its Sensitivity Analysis

As analyzed in Section 1, the existing algorithms that use features such as semi-
major axis and eccentricity to detect the orbit maneuver suffer from poor sensitivity in
many applications, especially in the cases of high-altitude orbit, e.g., GEO. Therefore, a
new maneuver detection feature based on the concept of relative angular momentum is
proposed for high-altitude orbit cases in this study. The following sections first describe
the definition of the characterization to be tested and then analyze and verify its sensitivity.

3.1. Concept of Relative Angular Momentum

The relative angular momentum is defined as follows:

hrel = rrel × vrel (7)

where rrel = [x, y, z]T ∈ R3, and vrel =
[ .
x,

.
y,

.
z
]T ∈ R3.

A maneuver directly affects the position and velocity vectors of the satellite, and the
calculation of the angular momentum is related to the position and velocity vector of the
object [6]. The cross product of relative position and velocity vectors can not only reflect the
changes in the values of relative position and relative velocity, but it can also directly reflect
the changes in the direction of the relative position and relative velocity through the change
in the value of the angular momentum, which makes the relative angular momentum more
sensitive to satellite maneuvers than individual velocity or position. In a very short time
after maneuver, the value of position is large compared to velocity, but its change is close
to zero, and the value of velocity and of its change are both very small. Relative angular
momentum amplifies the change in velocity by the cross product of velocity and position so
that its change is easier to detect than that of velocity. Compared with the position almost
unchanged in a very short time after maneuver, the relative angular momentum has more
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obvious changes because of the implicit velocity information, so it is easier to detect. In
addition, using the relative angular momentum as a characterization to detect maneuvers
has fewer restrictions, such as not restricting a specific orbit of the target satellite, such as
some methods only applicable to targets in GEO [39], or a specific way of maneuver, such
as maneuvering at perigee or apogee in the direction of velocity [32].

In addition, compared with the inertial orbital angular momentum in the geocentric
coordinate system, the relative angular momentum defined in Equation (7) is more sen-
sitive to maneuvers. The satellite carries limited energy, and thus the impulse of satellite
maneuvers is small [13,40], resulting in a very small speed variation in a short time after
the maneuver. However, the velocities of low-Earth-orbiting (LEO) satellites are on the
order of 7.5 km/s. Therefore, the variation in the inertial position and velocity of the
satellite in a short time after a maneuver is very small compared with its initial position and
velocity before the maneuver. The angular momentum in a geocentric coordinate system
consists of the position and velocity relative to the Earth’s center, which makes it difficult to
identify the variation in the angular momentum within the noise. However, based on the
assumption mentioned in the abstract that the two spacecraft are in high-altitude orbits and
the relative range between them is far shorter than their geocentric distance, if the chaser
satellite is taken as the reference point, the relative angular momentum in this coordinate
system consists of the relative position and relative velocity, which greatly reduces the gap
between the variation and the initial relative velocity. Therefore, the risk of the variation in
the relative angular momentum being submerged by noise can be effectively reduced.

3.2. Sensitivity Analysis

To mathematically prove the quantitative analysis after the definition of the relative
angular momentum in the previous section, the sensitivity analysis for this new characteri-
zation is conducted in this section. It should be noted that the following analysis is based
on the assumption mentioned in the abstract that the two spacecraft are in high-altitude
orbits and the relative range between them is far shorter than their geocentric distance.

According to Equation (7), the relative angular momentum at t1 before the maneuver
and t2 after the maneuver can be obtained as follows:{

hrel1 = rrel1 × vrel1
hrel2 = rrel2 × vrel2

(8)

where rrel1 ∈ R3 and rrel2 ∈ R3 are the positions of the target satellite relative to the chaser
satellite at t1 and t2, respectively, vrel1 ∈ R3 and vrel2 ∈ R3 are the velocities of the target
satellite relative to the chaser satellite at t1 and t2, respectively, and hrel1 ∈ R3 and hrel2 ∈ R3

are the relative angular momentums of the target satellite relative to the chaser satellite at
t1 and t2, respectively.

For a single-impulse maneuver, the maneuver time is very short and the position and
velocity at t2 are as follows: {

rrel2 ≈ rrel1
vrel2 = vrel1 + ∆vrel

(9)

where ∆vrel is the change in velocity.
Then, the relative angular momentum at t2 is

hrel2 = rrel2 × vrel2 = rrel1 × (vrel1 + ∆vrel) = rrel1 × vrel1 + rrel1 × ∆vrel (10)

Therefore, the change in the relative angular momentum is

∆hrel = hrel2 − rrel1 × vrel1 = rrel1 × ∆vrel (11)
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Similar to the process of Equations (7)–(11), the change in angular momentum in
the geocentric inertial frame can be derived from the following steps: First, define the
angular momentum: {

he1 = re1 × ve1
he2 = re2 × ve2

(12)

where re1 ∈ R3 and re2 ∈ R3 are the positions of the target satellite in the geocentric inertial
frame at t1 and t2, respectively, ve1 ∈ R3 and ve2 ∈ R3 are the velocities of the target satellite
relative to the geocentric inertial frame at t1 and t2, respectively, and he1 ∈ R3 and he2 ∈ R3

are the angular momentums of the target satellite in the geocentric inertial frame at t1 and
t2, respectively. Similar to Equation (10), the angular momentum at t2 is

he2 = re2 × ve2 = re1 × (ve1 + ∆ve) = re1 × ve1 + re1 × ∆ve (13)

Therefore, the change in the angular momentum in the geocentric inertial frame is

∆he = re1 × ∆ve = re1 × (Ce
lvlh·∆vrel) (14)

where the subscript e is used to denote the re1 = [xe1, ye1, ze1]
T , ∆ve = ve2 − ve1, and

vrel = [
.
xe1,

.
ye1,

.
ze1]

T , and Ce
lvlh is the direction cosine matrix from the LVLH frame to the

geocentric inertial frame which can be calculated from the orbit position and velocity vector.
Because the change in velocity provided by a single-impulse is approximately 0.1~1 m/s [13,40],

and the speed of the satellite in the geocentric coordinate system is at least close to 7.5 km/s,
it is much larger than the single-impulse velocity increment:

∥∆ve∥ = ∥ve2 − ve1∥ ≪ ∥ve1∥ (15)

Then, substituting into Equations (12) and (14) yields the following:

he1 ≫ ∆he (16)

where h = norm(h).
Therefore, if the angular momentum in the geocentric inertial frame is selected as

the maneuver characterization, it is difficult to distinguish the maneuver from the noisy
estimation in a short time. Relative angular momentum, on the other hand, measures the
relative change in the LVLH frame. For the common orbit types, the orbit shape of the two
spacecraft with respect to the geocentric inertial coordinate system changes little before
and after the maneuver. However, the relative orbits in the LVLH frame are very different,
which also shows the superiority of relative angular momentum from the other side. Thus,
the relative motion change is much larger than the absolute motion change. However, it
can be found that the following inequality holds:

∥∆ve∥
∥ve1∥

≪ ∥∆vrel∥
∥vrel1∥

(17)

Then, the following inequality is established:

∥re1 × ∆ve∥
∥re1 × ve1∥

=
∆he

he1
≪ ∆hrel

hrel1
=

∥rrel1 × ∆vrel∥
∥rrel1 × vrel1∥

(18)

From Equation (18), it can be seen that the relative angular momentum works better
as a characterization to detect maneuvers.

Next, when the relative orbit estimation error is considered, Equation (10) is switched
to the following form:

hrel2 = (rrel2 + nr)× (vrel2 + nv) = (rrel1 + nr)× (vrel1 + ∆vrel + nv)
= rrel1 × vrel1 + rrel1 × ∆vrel + rrel1 × nv + nr × vrel1 + nr × ∆vrel + nr × nv

(19)
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where nr and nv are the errors in the relative position and relative speed, respectively.
Due to the fact that the estimated error is much smaller than the state when the system

is observable, the following inequality holds:{
∥nr∥ ≪ ∥rrel1∥
∥nv∥ ≪ ∥vrel∥, ∥∆vrel∥

(20)

Then, combining Equations (19) and (20) yields

∥rrel1 × ∆vrel + nr × ∆vrel∥ ≫ ∥rrel1 × nv + nr × vrel1 + nr × nv∥ (21)

Equation (21) shows that the change in the relative angular momentum caused by
the orbit maneuver will be significantly different from the change caused by the relative
orbit estimation error. Therefore, as long as the relative orbit estimation error satisfies
the conditions in Equation (20), the relative angular momentum is quite sensitive to the
target’s maneuver.

4. Maneuver Detection Algorithm

If the resultant force acting upon the target satellite does not point to the sensing
satellite (the origin of the LVLH reference system), its relative angular momentum will
change as follows [41]:

dhrel
dt

= τ (22)

where τ is the unit mass moment on the target satellite relative to the COM of the
chaser satellite.

When satellites are flying in free motion and the target satellite does not execute a
maneuver, τ is only provided by inertial forces, gravity, and related perturbation forces.
As a result, the change in τ is very gentle, i.e., the change in hrel is continuous during the
coasting flight. On the contrary, if there is a sudden change in hrel , there must be a thrust
or collision force put on the target. Therefore, when the orbit of the target changes, hrel
will exhibit a sudden change, which can be naturally used to check the maneuver and
determine the maneuver epoch.

However, it is difficult to use the individual time point information to determine the
true single mutation point because the fluctuating local information value caused by the
measurement is very likely to be identified as the true mutation point. Therefore, we aim to
use more information to characterize the data and make decisions to reduce this possibility.
According to Equation (15), the information segments before the mutation point maintain
the characteristics of continuous change, and they have a high correlation. However, when
a certain information segment contains the mutation point, its trend changes, and thus the
correlations between the information segments containing the mutation point information
and all the previous information segments are very low. Using this phenomenon, we
can divide the information into two types of segments with different characteristics: the
information segments before the mutation point and the information segments containing
the mutation point. For example, Figure 4 shows a group of virtual data containing a
mutation point. The data before and after the mutation point satisfy Gaussian distributions,
and a, b, c, and d are the information segments of four sequential sliding windows with
equal widths. In Figure 4, we can see that although some local trends (the trends of any
number of sequential points, but the number is far less than the total) of a, b, and c are
different owing to noise, the overall trends are almost the same, i.e., a, b, and c have a high
correlation. However, the overall trend of d is very different from that of a, b, and c (i.e., the
correlation is very low). Therefore, we can divide information segment d into a different
category from that of information segments a, b, and c.
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Figure 4. Illustration of the sliding windows (only for better description, and the data in this figure
have no practical significance).

Therefore, we can transform the problem of finding a single mutation point into that of
finding an information segment including the mutation point; therefore, the concept of the
correlation coefficient is introduced in this study. The correlation coefficient is a quantity
that reflects the degree of correlation between variables. For example, for the variables X
and Y, the correlation coefficient is calculated as follows:

ρXY = r(X, Y) =
Cov(X, Y)√

Var[X]× Var[Y]
(23)

where Cov(X, Y) is the covariance of X and Y, Var[X] is the variance of X, and Var[Y] is
the variance of Y. The correlation coefficient, ρXY ∈ [−1, 1], reflects the correlation between
X and Y. The greater the value of |ρXY|, the higher the degree of correlation; the smaller
the value of |ρXY|, the lower the degree of correlation.

Based on the characteristics of the correlation coefficient mentioned above, a simulated
mutation array is established in this study. By calculating the correlation coefficients be-
tween each information segment of hrel and the simulated mutation array, the information
segments before the mutation point can be distinguished from the information segments
containing the information after the mutation point. Thus, the information segment con-
taining the mutation information can be identified to determine the maneuver point. The
specific calculation steps are described below.

Firstly, hsimulated, an N-width sliding window made of an array of numbers, is de-
fined to simulate the sudden change in the data. It is noticed that the setting of hsimulated
not unique. The requirement for setting hsimulated is that the trend of hsimulated is obvi-
ously different from the gentle change trend of h with no maneuvers (as mentioned after
Equation (15)), and is as similar to the rapid change trend of h after maneuvers. Therefore,
in fact, any group of arrays showing rapid changes can be set as hsimulated, but it should
be noted that when setting different hsimulated, ρthreshold will be different (the definition of
ρthreshold will be given later).

Then, each series of the three axes components of the relative angular momentum in
the sliding window can be used to calculate the correlation coefficient with the simulated
mutation array hsimulated as follows:

∣∣∣ρhX(i)

∣∣∣ = ∣∣∣∣ Cov(hsimulated ,hX,window)√
Var[hsimulated ]×Var[hX,window ]

∣∣∣∣∣∣∣ρhY(i)

∣∣∣ = ∣∣∣∣ Cov(hsimulated ,hY,window)√
Var[hsimulated ]×Var[hY,window ]

∣∣∣∣∣∣∣ρhZ(i)

∣∣∣ = ∣∣∣∣ Cov(hsimulated ,hZ,window)√
Var[hsimulated ]×Var[hZ,window ]

∣∣∣∣
(24)
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where hX,window, hY,window, and hZ,window are the components of the estimated relative
angular momentum in the sliding window.

Finally, the absolute values of the correlation coefficients, i.e.,
∣∣∣ρhX/Y/Z(i)

∣∣∣ (short for∣∣∣ρhX(i)

∣∣∣, ∣∣∣ρhY(i)

∣∣∣, and
∣∣∣ρhZ(i)

∣∣∣) are used to compare with a designed threshold to determine

the maneuver. In detail, if
∣∣∣ρhX/Y/Z(i)

∣∣∣ > |ρ|threshold is satisfied, the maneuver is deduced;
on the contrary, it infers no maneuver. Since the measurements are continuously obtained,
the above steps can be repeated. Moreover, the threshold |ρ|threshold is defined as the

maximum of
∣∣∣ρhX/Y/Z(i)

∣∣∣when the target does not maneuver in a large number of simulation
experiments, which changes corresponding to specific hsimulated.

5. Numerical Simulations

To verify the effectiveness of the proposed method, a standard Monte Carlo simulation
system with two-body dynamics is created to model the dynamics of the orbital maneuver
detection. As this study is focused on orbit maneuver detection, the attitude of the satellite
is not discussed as it is directly assumed the attitude of the chaser satellite remains constant.
Additionally, the effects of perturbations (J2 and higher-order gravity terms), vehicle mass
and geometry (aerodynamic drag and solar radial pressure), and specific instrument error
model structures are beyond the scope of this study as well.

Then, the truth models in the geocentric inertial frame for two spacecraft under
two-body assumption can be given as follows:

.
Rc = Vc.
Vc = − µ

|Rc |3
Rc,

.
Rt = Vt.
Vt = − µ

|Rt |3
Rt

(25)

where µ is the standard gravity constant, Rc ∈ R3 and Vc ∈ R3 are the position and
velocity of the chaser satellite in the geocentric inertial frame, respectively, and Rc ∈ R3

and Vc ∈ R3 are the position and velocity of the target satellite in the geocentric inertial
frame, respectively.

According to the measurement model in Equation (5), the state of the target relative to
the chaser satellite is obtained.

rrel = Clvlh
e (Rt − Rc)

vrel = Clvlh
e (Vt − Vc)− Clvlh

e [ω×](Rt − Rc)
(26)

where is ω the chaser satellite’s inertial angular velocity vector, [×] denotes the cross-
product operator, Clvlh

e is the direction cosine matrix from the geocentric inertial frame to
the LVLH frame which can be calculated from the orbit position and velocity vector. Finally,
the true measurements are calculated from the true relative state and the camera offset as
shown in Equation (6).

5.1. Error Models

It is assumed the attitude measurement error of the sensor satellite is made up of bias
and Gaussian white noise. The bias for attitude is set to 0.001 rad/axis (X-axis, Y-axis,
and Z-axis) while the standard deviation of the white noise is set to 0.001 rad/axis (X-axis,
Y-axis, and Z-axis).

Meanwhile, as stated in Section 2.3, the line-of-sight angle measurement error is
assumed to be Gaussian noise. Two values of the standard deviation of the LOS angle
measurement noise are studied, i.e., σcam = 3 × 10−4 rad/axis or σcam = 3 × 10−5 rad/axis
(azimuth-axis and elevation-axis). The specific selection of the sensor is described in a
subsequent section.
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5.2. Reference Mission and Trajectory

Because the proposed algorithm is developed for the application in high-altitude
orbits and Geostationary Earth Orbit (GEO) is a kind of quite important high-altitude
orbit, it is assumed that the chaser is orbiting near GEO as shown in Table 1, while two
types of target’s orbit are set in terms of the relative range. The first type is the long-range
case that is beyond one hundred kilometers, as shown in Table 2, where the target orbit
is set by the differences with the parameters shown in Table 1 (the eccentricity and right
ascension are the same). The second type is the kilometer-level close-range case as shown
in Table 3, where four classical motions including the Vbar Stationary, Co-elliptic, Football,
and Oscillating orbit for inspection are presented.

Table 1. Initial orbit parameters of the chaser satellite.

Semi-Major
Axis Eccentricity Inclination Ascending

Node
Argument
of Perigee

True
Anomaly

42,278.14 km 0.001 0◦ 0◦ 0◦ 200◦

Table 2. Type 1: Initial relative orbit parameters of the long-range target relative to the chaser satellite.

Altitude
Difference

Phase
Difference

Inclination
Difference

Relative
Distance

Target 1 20 km 0.15◦ 0◦ 112.512 km
Target 2 70 km 0.30◦ 0◦ 232.365 km
Target 3 20 km 0.15◦ 0.5◦ 169.431 km

Table 3. Type 2: Initial relative orbit parameters of the close-range target relative to the chaser satellite.

Initial Relative Position (m) Initial Relative Velocity (m/s)
X Y Z X Y Z

V-bar Stationary 1000 0 0 0 0 0
Co-elliptic
Approach 1000 0 0 0 0 0.56342

Football Orbit 1000 0 −100 −0.16926 0 0
Oscillating Orbit 1000 0 0 0 −0.11284 0

5.3. Computation Models for Estimation of the Error

Since the LOS angles and camera offset are measured values with noise, Monte Carlo
simulation is employed to evaluate the accuracy of these statistics. The error models
presented in Section 5.1 are then used to generate a set of measurements that are processed
by the proposed algorithm to determine the maneuver for the i-th Monte Carlo sample.

To verify the validity and test the performance of the proposed algorithm, two param-
eters will be checked. The first one is the accuracy of the maneuver determination, defined
by the true positive rate in all of the Monte Carlo runs.

Pm =
m
n
× 100% (27)

where m represents number of the correct determination cases while n is the number of
Monte Carlo runs. A total of 200 runs are selected for the Monte Carlo simulations which
can roughly lead to 90% confidence (Buckland, 1984) [42].

The second one is the estimated error of the maneuver epoch for the determined cases,
defined as follows:

etrue =
1
n

n

∑
j=1

|te − tr| (28)
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where te is the estimated maneuver epoch and tr is the reference one for the j-th Monte
Carlo sample.

6. Performance Analysis
6.1. Settings of Key Parameters

As the calculation steps mentioned in Section 4, hsimulated and ρthreshold need to be set
at first.

As mentioned in the steps, hsimulated is not unique, but after a large number of experi-
mental attempts, it is found that the growth section of the quadratic parabola meets the
requirements well, so this paper sets hsimulated as follows:

hsimulated = [12, 22, 32 . . . , N2] (29)

And ρthreshold is set to 0.989 in this paper after 200 Monte Carlo runs corresponding to
the setting of hsimulated in Equation (22).

6.2. Results of Long-Range Cases
6.2.1. Advantage of the Relative Angular Momentum

To verify the advantage of using the relative angular momentum for maneuver de-
tection, a single-impulse maneuver with the magnitude of 0.1 m/s and random direction
is executed on the epoch of 3000th second by the three targets in Table 2. The ratio of
the change in the angular momentum within 1 s after the maneuver of the target satellite
relative to the angular momentum before the maneuver is presented in Table 4, where the
results are the statistics of 200 Monte Carlo runs.

Table 4. Sensitivity comparison of the relative angular momentum and angular momentum for
∆V = 0.1 m/s.

he(j+1)−he(j)

he(j)

hrel(j+1)−hrel(j)

hrel(j)

Target 1 ≪ 1 × 10−10% 0.44501%
Target 2 ≪ 1 × 10−10% 0.2867%
Target 3 ≪ 1 × 10−10% 0.2031%

It can be seen that the relative change in the angular momentum is close to 0%, while
the variation in the relative angular momentum is greater than 0.2%. The relative variation
in the relative angular momentum is much larger than that of the angular momentum,
which shows that the sensitivity of the relative angular momentum to orbital maneuvers is
much higher than that of angular momentum.

To verify that the sensor accuracy requirements mentioned in Section 3.2 are applica-
ble to remote targets, Target 1 is taken as an example. A single-impulse maneuver with
a magnitude of 0.1 m/s and random direction is executed at t = 1000 s for the case of
σcam = 3 × 10−5 rad/axis. Through the second-order polynomial fitting of the data be-
fore the maneuver, the expected values before and after the maneuver are obtained and
compared to the measured values, as shown in Figure 5.

It can be seen that the measured value fluctuates around the expected value for
the reason of sensor noise when the maneuver does not occur. After t = 1000 s, the
measured value deviates markedly from the expected value, and the deviation magnitude
is significantly greater than that caused by noises. Therefore, the change in the relative
angular momentum caused by the maneuver can be easily distinguished. This verifies the
correctness of the theoretical derivation results presented in Section 3.2.
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Moreover, Target 1 and Target 2 are selected to show the estimated performance of the
relative angular momentum for an orbit maneuver. Figure 6 shows the theoretical values of
Target 1’s relative angular momentum after 0.1 m/s impulse maneuver at t = 3500 s and
the corresponding estimation with noises is shown in Figure 7, while the results for 1 m/s
impulse on Target 2 are shown in Figures 8 and 9.
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Figure 8. Theoretical values of the relative angular momentum for Target 2.

As shown in Figures 6 and 8, the relative angular momentum exhibits an obvious
mutation after maneuver which verifies that the relative angular momentum has very good
observability for the target orbit maneuver. The changes in the relative angular momentum
values in Figures 6 and 9 are somewhat different after maneuvers because the filter for
the estimation of relative position and velocity mentioned in Section 2.1 deals with the
change caused by the orbital maneuver as noise, but they are generally similar and have
the same characteristics. In Figures 6 and 8, when there is no maneuver before t = 3500 s,
the relative angular momentum exhibits a trend similar to a straight line after the filter
converges smoothly. At t = 3500 s, the relative angular momentum in the Y-direction of
the LVLH system has a larger mutation than the original foundation. After the mutation,
the relative angular momentum values in the three directions tend to be a stable straight
line. This shows that the relative angular momentum still has excellent observability for
the orbital maneuvers of long-range targets when the noises are considered.
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Compared with Figure 8, the curve in Figure 7 is smoother and closer to the correspond-
ing theoretical curve, which is caused by the difference in the measurement accuracy of the
sensor. This shows that the accuracy of the sensor will affect the observation performance,
and the higher the accuracy, the better the observation performance achieved.

6.2.2. Maneuver Detection Error and the True Positive Rate

As discussed in the previous section, the estimation of the relative angular momentum
is polluted by the sensor noise. Thus, an appropriate width sliding window is quite impor-
tant for matching with the pre-defined mutation simulation array during the detection. Too
small or too large of a sliding window will affect the ability of the window containing data
to reflect the overall characteristics of the actual inspection quantity. To test the performance
of different width windows, the following simulation is conducted: Target 1 is selected
to test, σcam = 3 × 10−4 rad/axis, and a randomly directed 1 m/s impulse is executed at
t = 3000 s.

The results of 20 runs are shown in Figure 10 to present the distribution of maneuver
detection errors in terms of different sliding widths. It can be seen that when the width of
the sliding window is too small, the detection errors are relatively large. In these cases, the
false positive rate is high because the estimation data in the narrow window cannot reflect
the overall actual characteristics of the trend. As the width increases, the false positive
rate significantly reduces. According to the performance shown in Figure 10, a sliding
window with 50 widths is a good choice for the detection, which will be used for the
subsequent simulations.

Next, the sensitivities of the proposed algorithm to the accuracy of the optical sensor,
magnitude of the maneuver, and different relative orbit types are checked in the following
simulations. A total of 200 Monte Carlo runs are conducted for each case, where the
maneuver is executed at t = 3000 s. The simulation results are shown in Figures 11–13 while
the average errors of the 200 runs are presented in Table 5. The six points from left to right
on the curve represent the probability that the detection error is less than 60 s, 120 s, 180 s,
240 s, 300 s, and 360 s, respectively.
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Table 5. Average detection errors.

Target σcam ∆V = 0.2 m/s ∆V = 0.6 m/s ∆V = 1.0 m/s

Target 1 3 × 10−4 rad/axis 238.00 s 85.90 s 58.05 s
3 × 10−5 rad/axis 41.80 s 36.90 s 35.45 s

Target 2 3 × 10−4 rad/axis 262.91 s 148.67 s 89.85 s
3 × 10−5 rad/axis 55.05 s 38.80 s 37.70 s

Target 3 3 × 10−4 rad/axis 230.23 s 122.13 s 160.89 s
3 × 10−5 rad/axis 129.72 s 59.10 s 130.67 s

By comparing the detection results for the same target with different observation
sensor accuracies in Figures 11–13, it can be concluded that the detection performance is
improved with higher detection accuracy. Taking Target 1 in Figure 12 as an example, the
red solid line is the detection result under the high-precision sensor, and the red dotted line
is the detection result under the low-precision sensor. It can be seen in Figure 12 that the
distance between the two curves is large initially and then decreases. This shows that with
the high-precision sensor, the detection error has a greater probability of being concentrated
in a place with a small value, and the overall error is smaller.

Figures 11–13 also indicate that the maneuver magnitude has a significant influence on
the performance. For small maneuvers (e.g., 0.2 m/s), the detection with the low-precision
sensor is less effective, but it is more effective with the high-precision sensor. With the
high-precision sensor, the detections of coplanar Target 1 and Target 2 are better than that
of the heterogeneous Target 3. The true positive rate of Target 1 with a detection error of
less than 60 s is 88.5% and that of less than 120 s is 98%. The true positive rate of Target 2
with a detection error of less than 120 s is 96%. The detection error of Target 3 is greater
than that of the coplanar targets overall; however, for a detection error of less than 360 s,
the true positive rate is 88%. When the maneuver magnitude is 0.6 m/s, the probability
that the detection error of Target 1 and Target 2 is less than 60 s reaches 98.5%, and the true
positive rate for a detection error of Target 3 of less than 360 s increases to 94%. When the
maneuver magnitude reaches 1.0 m/s, the probability that the detection errors of Target 1
and Target 2 are less than 60 s is close to 100%. This shows that the method proposed in
this study requires a high-precision measurement sensor for small maneuvers; otherwise,
the detection performance will be reduced or lost. For large maneuver magnitude cases,
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the detection error of the high-precision measurement sensor is smaller overall. However,
if the magnitude of the detection error is not considered, but only whether the target orbit
maneuver is detected, there is little difference in the detection true positive rate. In this
case, a low-precision measurement sensor with a lower cost can be selected.

Additionally, the results show that the detection performance for the targets in coplanar
orbits such as Target 1 and Target 2 is better than for the targets in non-coplanar orbits, such
as Target 3. The detection errors for the targets in coplanar orbits have a greater probability
than those of the targets in coplanar orbits to fall in range with small values, so the overall
errors for the targets in coplanar orbits are smaller. Moreover, a comparison of Target 1 and
Target 2 shows that among the coplanar targets, the performance for the closer targets is
better, the reason for which is that the orbit determination of closer targets is more accurate
and stable, thus the variation in characterization, i.e., hsimulated caused by orbit maneuvers
is more obvious.

The above analysis demonstrates that distance and coplanarity can impact the detec-
tion performance. Comparing the results for Target 2, which is more distant but coplanar,
with those for Target 3, which is closer but not coplanar, indicates that the negative impact
of not being coplanar is greater than that of the larger distance.

Table 5 shows the average detection errors for different targets with different settings
of sensors. As expected, errors were smaller with high-precision measurement sensors.
With the increase in ∆V, the errors reduce, except for Target 3. The reason is that when
selecting hsimulated and ρthreshold, we decided to try to detect all the maneuvers possible
sacrificing the size of errors, so hsimulated may not be most suitable considering the size
of errors when ∆V is a certain value. And this also explains why some other expected
phenomena, such as the obvious differences in the average detection errors between the
targets in different distances or between the targets in coplanar orbits and in non-coplanar
orbits do not appear in Table 5.

Furthermore, a comparison of the performance between the proposed approach in
this paper and the algorithm in studies by Liu et al. [33] and Wang et al. [34] is conducted.
Liu et al. [33] present a maneuver detection scheme based on space-based LOS angle
measurements. To make a fair comparison, a magnitude of maneuver impulse, i.e., 1 m/s
impulse as same as the one used in the study by Liu et al., is executed on Target 1. The
detection true positive rate by using Liu’s scheme is approximately 90%, which is less than
the result of the proposed algorithm in this study.

Wang et al. [34] developed a maneuver-detecting method based on space-based Lidar,
which provides excellent ranging performance (the standard deviation of the noise is
0.05 m). When the standard deviation of the noise increases to 0.5 m, Wang’s method
maintains excellent detection capability. However, when it comes up to 5 m, the detection
performance greatly reduces, and if the standard deviation of the noise comes up to
8 m or even larger, the method will fail. On the contrary, the proposed method in this
study works well in the case that the relative position uncertainty is more than 8 m when
σcam = 3 × 10−5 rad/axis.

6.2.3. Double Single-Impulse Maneuver Detection and Tracking

To demonstrate the multiple-maneuver tracking ability of the proposed method, the
following simulations based on Target 1 are conducted. The first maneuver, i.e., randomly
directed impulse with a magnitude of 0.4 m/s is executed at t = 2500 s, and the second
maneuver, i.e., randomly directed impulse with a magnitude of 1 m/s is executed at
t = 5000 s. Moreover, σcam is set to 3 × 10−4 rad/axis. The filter for the estimation of
relative position and velocity is set to be restarted after a maneuver is determined.

The results of the estimated error of the relative position and velocity are shown in
Figures 14 and 15. It can be seen that both the maneuvers are detected, and the detection
error is quite small. In detail, the first maneuver detection result is t = 2579 s with an error
of 79 s, and the second detection result is t = 5058 s with an error of 58 s. After the filter is
restarted, the estimation error is going to converge and then keep convergent, as indicated
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by the red curves. In contrast, the blue curves presenting the errors without the proposed
method are divergent after maneuvers.
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Figure 14. Relative position estimation error of Target 1.
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Figure 15. Relative velocity estimation error of Target 1.

6.3. Results of Close-Range Cases

The application in close-range cases is tested in this section. A randomly pointed impulse
maneuver with a 0.1 m/s magnitude executed at t = 600 s and σcam = 3 × 10−4 rad/axis is
selected for the simulation. The results based on 200 Monte Carlo runs are summarized in
Table 6, where the initial relative orbit is randomly selected for each run in the four types
shown in Table 3.

Table 6. Detection of true positive rate for close-range cases.

Error < 30 s Error < 60 s Error < 90 s Error < 120 s

∆V = 0.1 m/s 93.5% 98.5% 98.5% 98.5%

As can be seen from Table 6, the maneuver of 93.5% of the runs is successfully estimated
within 30 s after the maneuver, and 98.5% is estimated within 60 s. However, the true
positive rate does not change when the error is greater than 60 s. It indicates that the
remaining 1.5% of the runs were not detected because of the sensor noise.

The continuous tracking performance for a close-range target initialized in a V-bar
stationary orbit (which is considered as the most disadvantageous trajectory for angles-only
navigation) is tested. There are two randomly directed impulses executed at t = 500 s and
t = 700 s with the magnitudes of 0.1 m/s and 1 m/s, respectively. The results are shown in
Figures 16 and 17, where the red curves present the estimated errors with the proposed
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method and the blue curves present the errors without the proposed method. It can be seen
that the maneuvers are detected and the estimate error is convergent after the restarting of
the filter when each maneuver is detected. The errors of the two detection results are 23 s
and 29 s, respectively.
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Figure 16. Relative position estimation error for a close-range target.
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7. Conclusions

In this study, a novel space-based passive orbital maneuver detection algorithm for a
non-cooperative space target is developed, where the concept of relative angular momen-
tum is introduced to characterize the maneuver. A standard Monte Carlo simulation system
with two-body dynamics was created to validate the proposed algorithm and evaluate
the performance in the context of near-GEO orbit space. The accuracy of the detection
algorithm was determined and presented for a variety of parameters and trajectories. When
σcam = 3 × 10−5 rad/axis, the true positive rates approach 100%, much better than when
σcam = 3 × 10−4 rad/axis. The average detection error is greater when the orbit of the chaser
satellite and the target satellite are not in the same plane, but there is no obvious difference
in the true positive rate. As expected, the algorithm worked better for the close-range
cases than for the cases where the target was kilometers away. Surprisingly, the detection
algorithm worked well for the long-range cases that were hundreds of kilometers away
while the magnitude of the maneuver impulse was as small as 0.2 m/s. In the future, the
detection algorithm for continuous low-thrust maneuvers will be studied.
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