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Abstract: Rotating detonation engines (RDEs), which are Humphrey cycle-based constant-volume
combustion engines, utilize detonation waves to attain higher efficiencies compared with conventional
constant-pressure combustion engines through pressure gain. Such engines have garnered significant
interest as future propulsion technologies, and thus, numerous research and development initiatives
have been launched specific to RDEs in various forms. This paper presents a survey of research and
development trends in RDE operating systems, based on experimental studies conducted worldwide
since the 2010s. Additionally, a performance comparison of RDEs developed to date is presented.
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1. Introduction

Most engines used in conventional aerospace propulsion involve Brayton cycle-based
constant-pressure combustion. However, there is growing interest in Humphrey cycle-
based constant-volume combustion engines owing to their higher thermal efficiency at-
tributed to pressure gain, compared with Brayton cycle engines [1,2]. A performance com-
parison between the Humphrey and Brayton cycles (Figure 1) shows that the Humphrey
cycle exhibits considerably higher thermal efficiency than the Brayton cycle due to a larger
pressure ratio and reduced entropy generation. Consequently, pressure gain combustion
(PGC)-based propulsion engines are being actively researched worldwide owing to their
potential to enhance thermal efficiency.

PGC-based propulsion engines can be divided into resonant pulse combustors and
wave rotors leveraging deflagration at subsonic speeds and pulse detonation engines
(PDEs), standing detonation engines (SDEs), and rotating detonation engines (RDEs) using
detonation at supersonic speeds. Among deflagration-based PGC engines, resonant pulse
combustors operate using pulse jets and are mainly applied in gas turbine combustors.
These engines offer increased thermal efficiency compared with conventional Brayton
cycle-based propulsion engines. However, establishing and maintaining resonant opera-
tion remain challenging tasks [3]. Wave rotors control the flow of fluid through multiple
channels in an axially rotating drum, with PGC combustion occurring within the combus-
tion chamber. Wave rotors also offer increased thermal efficiency. However, the engine
design process is complex [4,5]. Overall, the development of practical PGC propulsion
systems based on deflagration is challenging due to the complexity of the operational and
design processes, prompting research into the development of systems based on detonation.
Among such frameworks, PDEs achieve detonation through deflagration-to-detonation
transition (DDT) in a long conduit through a cycle of propellant supply, combustion,
exhaust, and purge. However, despite their increased thermal efficiency, PDEs require
continuous ignition, and their inherent low-frequency operation renders it challenging for
a single engine to generate consistently high thrust [6]. SDEs leverage a wedge to generate
a normal, oblique detonation wave that is distributed uniformly within the combustor.
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As PGC-based propulsion engines, SDEs are highly efficient but can only operate at high
Mach numbers (Mach 5–7). Moreover, stabilizing the detonation remains a major technical
challenge [7]. RDEs utilize a detonation wave that propagates continuously along the walls
within the combustor. RDEs have the advantage over PDEs and SDEs of being able to
generate continuous thrust under simple operating conditions, with the engine operating
continuously from a single ignition. Consequently, RDEs are the most actively researched
among PGC-based propulsion engines and considered to have the highest potential for
commercialization. Many recent studies conducted in developed countries have been
aimed at introducing RDEs to combustors of various engines, such as rocket, gas turbine,
and ramjet engines.

Voitsekhovskii et al. [8] in Russia first explored RDEs in the 1960s, and until the
late 2000s, basic research was conducted to confirm their operability and to observe the
characteristics of the internally propagating detonation wave. Since the 2010s, these engines
have been increasingly applied to combustors in real engine systems. Furthermore, in
the 2020s, successful flight tests of aircraft and rockets with RDEs were reported. In the
process of developing RDE operating systems, various practical performance data, such
as optimal combustor and injector geometries and propellant-specific performance, have
been obtained through experimental studies. The analysis of these results is expected to be
invaluable for the development of propulsion systems using RDEs in the future. Therefore,
this work is aimed at examining the experimental research and development trends of
RDE operating systems, considering studies conducted in various countries worldwide
since the 2010s. Research conducted by universities, companies, and research institutes in
major countries is investigated and summarized, and a comparative analysis of research
and development trends is performed.
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Figure 1. P-V (a) and T-S (b) diagrams of ideal Humphrey and Brayton cycles [9].

2. RDE Research and Development by Country
2.1. United States

Since the University of Michigan built a small RDE and conducted experimental
research in the 1960s [10], interest in using RDEs has grown since the mid-2000s, and
collaborative research among universities, research institutes, and companies has been
actively conducted since the 2010s. In the United States, universities have primarily
focused on basic research, while companies have engaged in research and development
in cooperation with universities, aiming for the practical operation of RDEs. Research
institutes have explored the performance of RDEs and reported successful ground testing
of engine systems.
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In particular, universities have focused on the propagation characteristics of the
detonation wave within RDEs. In 2010, the University of Texas at Arlington built two
annular-type models with swirl injection applied separately for the fuel and oxidizer and
conducted experiments [11]. As shown in Figure 2, swirl injection was introduced, along
with water cooling. The results confirmed that detonation could occur without a pre-
detonator and that swirl injection plays an important role in ensuring the stability of the
detonation wave.
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The Air Force Institute of Technology (AFIT) conducted experiments using a 3 in
diameter RDE provided by Pratt & Whitney and a 6 in diameter RDE built in-house [12–16].
Russo et al. [12,13] conducted experiments under normal air (volume fraction: 21% oxygen,
79% nitrogen) and enriched air (volume fraction: 23% oxygen, 77% nitrogen) conditions
in an annular-type model with a 3 in outer diameter to explore the minimum fuel flow
conditions required for detonation to occur. The results indicated the stoichiometric RDE
ignition limit for enriched air with a fuel flow rate of 10.6 g/s. Moreover, the velocity of the
detonation wave was noted to increase with increasing fuel flow rate and decrease with
decreasing g (=

.
mtot/Sc) under enriched air conditions. Shank et al. [14,15] fabricated an

annular model with a 6 in outer diameter and conducted tests with the gaseous hydrogen
(GH2)/gaseous oxygen (GO2) configuration. By observing the detonation wave generation
through high-speed camera imaging and comparing the experimental results with those
from a conventional 3 in model, the authors showed that detonation wave generation did
not depend on the mass flux and that the equivalence ratio served as a reliable indicator
of the operating limit. Tellefsen et al. [16] applied an RDE to the combustor section of
a JetCat P-200 gas turbine (JetCat, Ballrechten-Dottingen, Germany) to characterize its
performance in turbine applications. The specific power was improved when RDE was
applied, compared with conventional constant-pressure combustion, and the addition
of nozzles slowed the detonation wave as it became unstable, thereby increasing the
variation in combustion pressure. Later, in 2024, Keller et al. [17] conducted a small-scale
annular-type RDE experiment with the advantages of portability, efficiency, and low noise.
Ethylene-oxygen, which has a small cell size and can generate detonation even at low mass
flow rates, was used as a propellant for stable detonation formation at a small size with
a 28 mm chamber diameter and 2 mm channel gap. The experimental results showed
that the operational detonation frequency of 31 kHz was achieved, which was above the
design target of 20 kHz (human hearing threshold), but the wave speed was 1100–1400 m/s
(approximately 52% of CJ value).

In 2015, the University of Cincinnati [18] conducted experiments using an air-breathing
RDE designed based on the model by Shank et al., 2012 design [14]. Hydrogen and ethylene
fuels were used to assess the occurrence of detonation and characteristics of the exhaust
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plume as a function of the equivalence ratio. In the case of detonation, a dome-shaped
exhaust plume was observed, as shown in Figure 3.
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Walters et al. [19] from Purdue University conducted experiments with RP-2/gaseous
oxygen propellant in an annular-type model with a detonation channel having a 228 mm
outer diameter and measured the heat flux at combustion pressures up to 17 bar. Embedded
thermocouples were used to obtain temperature data and calculate the heat flux. Experi-
ments were performed under flow conditions of 0.77–3.49 kg/s and equivalence ratios of
0.97–1.73, and the calculated average heat fluxes were used to estimate the heat load on
the combustor portion of the RDE and nozzle throat of the constant-pressure combustor.
Although calculations based on thermocouple time constants may be error-prone, the heat
load on the RDE was noted to be smaller than that on the nozzle throat of the constant-
pressure combustor. Kubicki et al. [20] conducted experiments using a hypergolic liquid
propellant in an annular-type model incorporating a detonation channel with a channel
gap of 0.25 in and outer diameter of 3.7 in. Hydrogen peroxide and trigylme were used
as the fuel and oxidizer, respectively, and sodium borohydride was used for hypergolic
ignition. The experiments confirmed that the detonation wave rotated at a speed of 2220 to
2417 m/s under an equivalence ratio of approximately 1.7 and flow rate of approximately
793.79 g/s.

In 2020, the University of Central Florida conducted experiments using hydrogen/
oxygen propellants in an annular-type model with a 76.2 mm outer diameter detonation
channel and 5.1 mm channel gap, modeled after the Edwards Air Force Base RDE [21].
High-speed chemiluminescence imaging was used to quantify the velocity and number of
detonation waves. Experiments were performed at equivalence ratios of 0.95 to 1.7 and
total flow rates of 294.84 to 526.17 g/s, and five detonation waves were observed to rotate.
The detonation wave velocities were measured to be in the range of 2272 to 2326 m/s, with
higher velocities measured for equivalence ratios of 1.1 to 1.3.

Researchers have developed a racetrack-shaped RDE model to observe and understand
the detonation process optically [22–25]. The University of Michigan [22,23] developed
a racetrack-shaped RDE designed to operate in the same combustion mode as a circular
6-inch RDE and performed OH-PLIF imaging, as shown in Figure 4. The experiments
showed how the buffer region (composed of pure fuel and devoid of OH) separated
post-detonation products from fresh reactants and identified parasitic and commensal



Aerospace 2024, 11, 570 5 of 29

combustion, providing insight into the details of the reacting flow field. At the University
of Alabama [24,25], a racetrack-shaped model consisting of an annular section with an
inner diameter of 4 in and a straight section with a length of 4 in was fabricated and
tested. The liquid propane/gaseous oxygen configuration was used as the propellant, and
detonation wave velocities ranging from 975 to 1075 m/s were measured under flow rates
of 276.7–639.6 g/s and equivalence ratios of 0.67–2.21. The detonation wave velocity was
maximized at stoichiometric ratios of 1.75 to 1.8.
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Various companies have collaborated with universities and institutions to perform
research and development on diverse aspects. For example, SwRI, in collaboration with
the University of Central Florida, used particle image velocimetry (PIV) and tunable diode
laser absorption spectroscopy techniques to evaluate the performance of a diffuser in the
combustor [26]. Hydrogen fuel and air were used as the propellants. The computational
analysis confirmed that the diffuser delivered exhaust gas with minimal total pressure
loss, and the computationally simulated diffuser design was modeled and tested. Figure 5
shows the 10 cm annular-type model geometry used in the experiment and a photo of the
combustion experiment obtained using the PIV technique.
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From 2010 to 2018, Aerojet-Rocketdyne conducted experiments using various models
for the development of rocket and air-breathing RDEs [27]. More than 1350 tests were
conducted in collaboration with DARPA and various universities. Tests were conducted
on various annular-type models with diameters ranging from 100 to 430 mm, as well as
models with aerospike nozzles. The results showed that the detonation wave velocity
increased when the plasma ignition system was used, compared with the non-plasma
ignition system. In addition, combustion experiments with liquid fuels such as JP-8 and
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JP-10 were conducted. Aerojet-Rocketdyne has reported that it will continue to study
injectors and diffusers for the 13.2 in diameter model in the future.

Laboratories in the United States have conducted research primarily to evaluate the
performance of RDEs. The Air Force Research Laboratory (AFRL) conducted experiments
using an RDE model provided by Pratt & Whitney (East Hartford, CT, USA). Thomas
et al. [28] conducted experiments using an annular-type model with a 3 in diameter detona-
tion channel and channel gaps of 2, 6, and 10 mm with different center body diameters. The
hydrogen/air configuration was used as the propellant, and experiments were conducted
to predict the size and initial pressure of the detonation cell, albeit without success. Rankin
et al. [29,30] performed experiments under various conditions using a combustion cham-
ber wall made of quartz to visualize the detonation wave using OH* chemiluminescence
and a steel wall to measure static pressure. The experiments were conducted using an
annular-type model with a channel width of 7.6 mm, a 153.9 mm outer diameter detonation
channel, and a 138.7 mm outer diameter center body, using hydrogen/air as the propellant.
The flow rates of the fuel and oxidizer, equivalence ratio, injector geometry, and diameter
and number of injection slots and holes were varied to observe the characteristics of the
detonation wave. Figure 6 shows a photo of the model with a quartz outer wall.
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The experimental results showed that at low flow levels (0.15 kg/s), the detonation
wave height (length of the detonation wave in the direction of the nozzle exit) increased
with the flow rate of the oxidizer (0.32 to 0.61 kg/s), while the detonation wave height
decreased and the number of waves increased from one to two when the oxidizer was
supplied at a higher flow rate (0.86 kg/s). Experiments with injector geometry variables
showed that the detonation wave front tended to become more concave as the diameter of
the oxidizer injection slot increased under the same flow conditions. When the number of
holes in the fuel injector with the same hole area decreased from 120 to 80, the number of
detonation waves changed from one to two. In addition, in experiments with a low oxidant
flow rate (0.15 kg/s), oxidant injection slot with a smaller diameter, and fewer holes in the
fuel injector, two counter-rotating detonation waves and their interactions were observed.
Static pressure measurements showed periodic changes in oxidizer plenum pressure as
the diameter of the oxidizer injection slot increased, and wave speeds of 1160–1740 m/s
(60–90% of Chapman–Jouguet (CJ) detonation speed) were found depending on the experi-
mental conditions. Fotia et al. [31,32] conducted experiments using an annular-type model
with a 6 in outer diameter detonation channel. Hydrogen and ethylene were used as the
fuel, with air as the oxidizer, and the performance variations in the presence and absence
of an aerospike nozzle and different nozzle throat sizes and detonation channel widths
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were examined. When the aerospike nozzle was used, performance metrics such as the
specific impulse, specific thrust, and normalized corrected specific impulse (= IspP0,Re f /P0)
increased when the nozzle throat size was reduced. Moreover, the normalized corrected
thrust (= FP0,Re f /P0) increased as the combustion channel width increased. This outcome
indicated that changing the geometry of the RDE could enhance the thrust production
efficiency, leveraging the dynamic characteristics that change along the flight profile. In ad-
dition, experiments with ethylene/air were conducted to compare the normalized corrected
thrust with hydrogen/air, specific impulse, and specific thrust in the PDE with hydrogen
and ethylene. The results showed that the normalized corrected thrust of the hydrogen/air
case was higher than the ethylene/air case. Furthermore, the specific impulse by fuel
was found to be similar to that reported in prior studies using PDE and RDE. Hargus Jr.
et al. and Bennewitz et al. [33,34] performed over 500 experiments on an annular-type
model with a detonation channel having a 3 in (76.2 mm) outer diameter and 0.2 in (5 mm)
channel width using methane/oxygen propellant. Various shapes of the center body were
considered to change the internal geometry of the combustor, and the RDE operation char-
acteristics under different nozzle constriction ratios (ratio of combustion chamber area to
nozzle throat area) and combustion channel lengths were determined. The results showed
that the maximum thrust was approximately 1334 N, and the maximum specific impulse
by mixture was approximately 250 s. The thrust increased with the nozzle constriction
ratio, and detonation wave speeds of 50–70% of the CJ velocity were observed. The length
of the combustion channel did not considerably affect the performance, with detonation
wave speeds of 70–75% of the CJ velocity and fewer detonation waves propagating in
the counter direction. In 2021, the National Energy Technology Laboratory conducted
experiments on an annular-type model with a detonation channel having a 152.4 mm outer
diameter and 7.62 mm channel width for gas turbine application [35]. Hydrogen/air was
used as the propellant, water cooling was applied, and NOx emissions from hydrogen and
natural gas–hydrogen blends were compared. The results showed that the amount of NOx
in the natural gas–hydrogen blend was approximately 5 to 15 ppm higher than that for
hydrogen fuel.

NASA conducted a design verification test totaling 10 min, as shown in Figure 7,
for a 2023 deep space mission [36]. The rotating detonation rocket engine (RDRE) model
incorporated a GRCop-42 copper alloy developed in-house using additive manufacturing
based on 3D printing technology to increase the engine thermal performance. During tests,
the RDRE generated more than 4000 lbf of thrust for about a minute at an average chamber
pressure of 622 psi. The team is now engaged in follow-up research to develop a reusable
RDE with a thrust of 10,000 lbf.
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2.2. Russia

As mentioned in the introduction, research on RDE was pioneered by Voitsekhovskii
et al. [8]. In Russia, the Lavrentyev Institute of Hydrodynamics (LIH) led the research.
Frolov et al. [37,38] at the Semenov Institute of Chemical Physics conducted experiments
on the detonation ramjet model in short-duration (pulsed) wind tunnels, Transit-M and
AT-303. The wind tunnel and detonation ramjet model used in the experiments are
shown in Figure 8. The Transit-M wind tunnel is designed to perform aerodynamic tests
in the Mach number range of 4–8 using a nozzle with a cutoff diameter of 300 mm. The
AT-303 wind tunnel is designed to perform tests over a wide range of Mach numbers from
5.7 to 20 with a cutoff diameter of 400 mm. The detonation ramjet model includes an inlet
and annular expander that decelerates the supersonic flow through three oblique shock
waves, with the outer cowl having a diameter of 284 mm and the combustor having an
outer diameter of 310 mm. The Transit-M wind tunnel was used to conduct experiments
at an air temperature of 290 K and Mach numbers of 4–8, using hydrogen as the fuel. The
maximum specific impulse by fuel was 3600 s, and a maximum thrust of approximately
2200 N was achieved [37]. Later, the same detonation ramjet model was used to conduct
experiments in the AT-303 wind tunnel at a temperature of 1500 K and Mach number of
5.7. The maximum specific impulse based on fuel was 3300 s, and a maximum thrust of
about 1500 N was determined [38]. In addition, a large-scale annular-type RDE was built
and tested using liquid fuel [39]. The detonation channel outer diameter was 406 mm,
length was 310 mm, and channel width was 25 mm. Hydrogen/air and hydrogen–
liquid propane/air mixtures were used as the propellants. The experimental results
showed that the hydrogen/air propellant did not generate a detonation wave when the
hydrogen pressure was 0.52 MPa, and the hydrogen–liquid propane/air propellant did
not generate a detonation wave when the hydrogen pressure was 0.24 MPa. Additionally,
continuous detonation combustion did not occur at low velocities of the detonation
wave (600–650 m/s). Since then, research has been ongoing to achieve continuous
detonation combustion for propane/air propulsion without hydrogen addition. Since
then, Ivanov et al. [40] have designed and experimented with a new type of hydrogen-
fueled detonation ramjet for cruise flight speeds of Mach 2. The experiments were
carried out in a pulsed wind tunnel with free jet Mach numbers 2.0 and 1.5, and the
results confirmed stable continuous detonation combustion of hydrogen at both Mach
numbers, with the maximum thrust and fuel-based specific impulse at each condition
being 650 N and 1610 s for M = 1.5, respectively, and 860 N and 1630 s for M = 2.0,
respectively. Subsequently, a detonation afterburner (DA) for continuous detonation
combustion of TS-1 aviation kerosene was developed, fabricated, and tested for the first
time [41]. Longitudinally pulsating detonation mode (LPD) and spin detonation (SD)
mode were observed, and the static pressure inside the DA was measured, and it was
found that the specific fuel consumption was 30% lower and the specific thrust and
thrust boosting coefficient were 30% higher compared to the conventional afterburner
at the same chamber pressure. The Russian rocket engine company NPO Energomash
established the “Detonation Liquid Rocket Engine” laboratory in 2014, and in 2016,
they successfully conducted a liquid propellant RDE test using liquid kerosene and
oxygen [42]. At a supply pressure of 40 bar, a 6% higher specific thrust was obtained
compared with deflagration combustion. Moreover, this experiment (Figure 9) was the
first to confirm the feasibility of RDE with liquid propellants.
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2.3. France

RDE studies in France were mainly conducted by the company MBDA France, in
collaboration with LIH, Russia. Le Naour et al. [43] performed experiments on an annular-
type model with a 100 mm outer diameter detonation channel and 10 mm channel width.
The model was composed of a copper/zirconium alloy to ensure long burn times without
a cooling system, and gaseous hydrogen/gaseous oxygen was used as the propellant.
The maximum test time was 5 s, and the maximum thrust was approximately 338.5 N
(equivalent thrust in vacuum). In 2017, an annular-type large-scale RDE model with an
outer diameter of 330 mm was developed and tested for application in turbofan and ramjet
engines [44]. The experiments were performed at the MBDA ramjet test facility, which
can supply a high flow rate of 60 kg/s of air at a total pressure and temperature of up to
15 bar and 750 K, respectively. The experimental facility is shown in Figure 10. The fuels
used were hydrogen and a hydrogen–kerosene mixture. The experimental results indicated
that the detonation region stabilized at higher mass flow rates and temperatures, and the
velocity of the detonation wave decreased when kerosene was injected in the experiments
with the hydrogen–kerosene mixture.
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2.4. Germany

In Germany, research on RDEs has been conducted since the late 2010s, led by the
Technical University of Berlin. Bach et al. [45,46] performed several experiments using an
annular-type model with a detonation channel having a 90 mm outer diameter and 7.6 mm
channel width. In 2019, an experiment was conducted to examine the influence of the
inclination of guide vanes on the detonation wave propagation direction. In this experiment,
a nozzle guide vane was introduced, and the geometry of the rotating detonation combustor
(RDC) and guide vane is shown in Figure 11 [45]. The results showed that the detonation
wave was more likely to travel in one direction when a non-inclined instrumented guide
vane (IGV) was applied, whereas the presence of an inclined IGV with an angle of 8.6◦

increased the probability of detonation wave propagation in the counterclockwise direction.
In 2021, experiments were conducted to determine the effect of changing the combustor
geometry and operating conditions on pressure gain [46]. The outlet area and injector area
were varied, as shown in Figure 12, and experiments were conducted under mass fluxes
of 50 to 300 kg/s·m2. The results confirmed that when the outlet area was constant and
the injector area increased, the pressure gain increased with the decrease in injection loss.
Conversely, when the injector area was constant and the outlet area increased, the pressure
gain decreased. Moreover, the pressure gain was noted to increase continuously with the
increase in the mass flow rate. Using the same experimental model, Bluemner et al. [47]
observed the longitudinal operating mode as a function of combustor length and outlet
geometry. The results showed that this mode was achieved only for a combustor length
(= L/πDm) of 0.435 when the ratio of outlet area to combustor area was 75%. The mode
was also observed in the combustor length range of 0.435 to 0.6 when the ratio of outlet
area to combustor area was 50%. However, after stabilization, the operating frequency was
constant for a given combustor length regardless of the outlet area, consistent with the
longitudinal acoustic resonance frequency of the combustor annulus.
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2.5. Poland

In Poland, the Warsaw University of Technology and its research center, the Institute
of Aviation, have been actively conducting RDE research. In experiments conducted at the
Warsaw University of Technology, detonation waves were observed in an annular-type
model with a 168 mm outer diameter detonation channel, using liquid kerosene/air as the
propellant [48]. The kerosene was heated, and small amounts of gaseous hydrogen as well
as liquid isopropyl nitrate (IPN) were added to promote mixing and evaporation of the
liquid fuel. The experiments confirmed stable detonation wave formation when kerosene
and air were heated, and the speed of the rotating detonation wave was reduced by 20–25%
when a heterogeneous mixture was used.

The Institute of Aviation has attempted to apply RDEs to gas turbine, ramjet, and
rocket engines [49–53]. In 2018, combustion experiments were conducted with a model
combining a GTD-350 turbojet engine and an RDC to test the application of RDEs in gas
turbine engines [49]. Jet-A1 was used as the fuel, and the combustion performance was
noted to be improved by 5–7% when trace amounts of gaseous hydrogen were added to
the fuel.

In 2021, a turbojet-shaped RDC with a 225 mm outer diameter detonation channel was
fabricated, and combustion experiments were conducted to explore stable detonation wave
formation in liquid fuel–air propellant application [50]. Jet-A and gasoline were used as
fuels, preheated to approximately 160 ◦C, with air heated to approximately 100 ◦C. Wave
speeds of 1170 m/s and 1110 m/s were measured under stoichiometric conditions using
Jet-A fuel and gasoline, respectively, with the detonation wave lasting approximately 4 s.
In 2019, an annular-type rocket-ramjet combined RDE with a 130 mm diameter detonation
channel and 3.5 mm channel width was built and tested for the application of RDEs in ramjet
engines [51]. Gaseous methane (GCH4)-gaseous oxygen was used as the propellant, and
the experiments were conducted under equivalence ratios of 0.58–0.81. The experimental
results confirmed that stable detonation occurred at equivalence ratios of 0.66 to 0.81, and
the thrust was measured to be approximately 200 N. At subsonic conditions, the thrust and
specific impulse of the combined RDE were up to 40% better than those of the conventional
rocket RDE with the same propellant.

For this rocket engine, annular-type, disk-shaped, and cone-shaped RDEs were fab-
ricated (Figure 13) to conduct experiments with different geometries and compare their
performance [52,53]. The propellant, liquid propane-liquid nitrous oxide, was pressurized
with helium to ensure supply. The results showed that the cone shape had the highest
thrust of 250–270 N with an Isp of approximately 200 s. Building upon these results, in
2022, Kawalec et al. [53] launched a small rocket utilizing a cone-shaped liquid propellant-
regeneratively cooled RDE rocket engine. Figure 14 shows an image of the small rocket
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and experiment. The engine was operated for approximately 3.3 s and reached a maximum
altitude of ~450 m and maximum velocity of ~95 m/s during the flight time of 20.3 s.
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2.6. Japan

Japan has been conducting RDE research since the mid-2000s when Fujiwara et al. [54]
collaborated with Warsaw University of Technology in Poland. RDE research in Japan has
been driven by the Japan Aerospace Exploration Agency (JAXA), mainly in collaboration
with Nagoya University and Keio University. Notably, Japan was the first in the world to
demonstrate an RDE in a space environment.

In particular, Nagoya University and Keio University conducted collaborative research
with JAXA to assess the performance of RDEs under various conditions and eventually
conducted experimental studies for the flight demonstration of an upper-stage rocket engine
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with an RDE in a space environment [55,56]. Kawasaki et al. [55] evaluated the combustion
characteristics of an annular-type RDE with a 78 mm outer diameter detonation channel
as a function of the size of the cylinder diameter inside the combustor. The propellant was
ethylene-oxygen, and both the fuel and oxidizer were injected from 120 doublet injectors with a
diameter of 1 mm. The thrust was measured to be 200–312 N, and the detonation wave velocity
was 1780–2380 m/s. Moreover, the thrust increased and wave velocity decreased as the inner
cylinder diameter increased. The detonation wave was attached to the inner cylinder surface
when the diameter was large, while it was detached from the inner cylinder surface in the
case of a small diameter. In 2018, Goto et al. [56] conducted an annular-type RDE combustion
experiment with a 78 mm outer diameter detonation channel to verify the flight system
characteristics. The propellant was ethylene-oxygen. The fuel was injected through 72 triplet
injectors with a diameter of 1 mm, and the oxidizer corresponded to a diameter of 1.4 mm.
The experiments yielded a combustion time of 4.4 s, combustion pressure of up to 11 bar,
maximum thrust of approximately 291 N, and maximum specific impulse of approximately
206 s. The RDE could then be operated reliably. Subsequently, combustion experiments were
conducted to explore the effective injection area for stable operation of the RDE [57]. An
annular-type RDE model with a detonation channel having an outer diameter of 78 mm and
channel width of 8 mm was used. Ethylene-oxygen and methane-oxygen propellants were
used, and a triplet injector was applied. A maximum thrust of approximately 561 N and
specific impulse of 257 s were measured, and experiments with fuel injector diameters of 0.8
and 1.0 mm showed that the detonation wave propagated faster in the case of smaller injector
diameters. To compare the specific impulse results with those obtained using an indoor stand
test, a 100 m-long sled test was conducted, using the same ethylene-oxygen propellant as
that for the stand test [58]. An annular-type RDE model with a detonation channel having an
outer diameter of 66.9 mm and channel width of 3.2 mm was used. An image of the sled test
is shown in Figure 15. The results showed that the thrust was approximately 201 N, and the
specific impulse was approximately 144 s, similar to the specific impulse result of the stand test.
Based on previous research, in 2021, JAXA successfully demonstrated an RDE rocket engine in
the space environment by installing an RDE in the second-stage engine system of the S-520-31
Sounding Rocket, as shown in Figure 16 [59,60]. The propellant was methane-oxygen, the
thrust was measured to be approximately 518 N, and the specific impulse was approximately
290 s.
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Additionally, Japan has been conducting experimental research on cylindrical (hollow)-
type RDEs for liquid propellant applications. Yokoo et al. [61] conducted experiments
with a cylindrical (hollow)-type RDE model incorporating a detonation channel having an
outer diameter of 20 mm, without an internal cylinder in the combustion chamber, using
ethylene-oxygen propellant. The experimental results showed that the detonation wave
was maintained even without the inner cylinder. The maximum thrust in the experiment
was measured to be approximately 108 N, and the maximum specific impulse by mixture
was approximately 242 s. Cylindrical (hollow)-type RDEs exhibit a simple structure, are
capable of resolving the issue of heat loading within the inner cylinder, and exhibit a
specific impulse that is comparable to that of annular-type RDEs. Ishihara et al. [62]
conducted combustion experiments to assess the performance of a cylindrical (hollow)-type
RDE model with a 20 mm outer diameter detonation channel using liquid ethanol-oxygen
propellant. The diameters of the fuel and oxidizer injectors were designed to be small,
with values of 0.2 mm and 0.8 mm, respectively, and the collision distance between the
fuel and oxidizer was decreased to generate a stable detonation wave. The model is
schematically illustrated in Figure 17. In the case of liquid fuel, the thrust was highly
dependent on the pressure distribution at the bottom of the combustor. The thrust was
measured to be approximately 61 N, and the specific impulse was approximately 195 s.
Furthermore, experiments were conducted using a cylindrical RDE to compare thrust
performance with conventional rocket engines [63]. By varying the length of the combustor,
they found that 94–100% of the theoretical rocket thrust was achieved for a combustor
length of 0 mm. This was the same thrust as a conventional rocket with a combustor
length of 200 mm. Nakata et al. [64] fabricated a throatless diverging RDE and conducted
experiments using ethylene-oxygen propellant in a diverging combustor with a diffusion
angle of 5◦, starting from a detonation channel with an outer diameter of 20 mm. The
geometry of the combustor is shown in Figure 18. Pressure measurements confirmed
that the exhaust flow was supersonic even in a diverging combustor without a nozzle
throat. To implement cooling by propellant injection, Goto et al. [65] fabricated an RDE that
injected propellant from the wall. The authors conducted experiments with a cylindrical
(hollow)-type RDE model with a detonation channel having an outer diameter of 24 mm.
The increase in heat flux transferred to the wall ranged from 18 to 25% even when the
flow rate was doubled through propellant injection from the wall. In 2024, Sato et al. [66]
conducted a hollow-type RDE experiment using liquid ethanol and liquid nitrous oxide
as the propellants. The vapor quality of nitrous oxide was varied by flash boiling, and
the temperature of liquid ethanol and the momentum angle of the propellant were varied
to determine the propagation mode of RDE. The experimental results demonstrated the
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occurrence of a detonation wave under the conditions of a high vapor quality of nitrous
oxide, an injector with a high stiffness, a high temperature, and a momentum angle of
ethanol. The characteristic exhaust velocity of the detonation mode was found to be lower
than that of the deflagration mode due to the lower static combustion pressure. However,
exhaust velocity efficiencies of more than 85% were achieved in all combustion tests.
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Japan has also conducted research on other types of RDEs, such as annular and hollow
types. In 2016, Nakagami et al. [67] from Nagoya University conducted an experimental
study using a disk-type RDE to understand the structure of the detonation wave. They
used ethylene-oxygen as the propellant and performed self-luminescence, shadow graph,
and Schlieren visualization experiments. The results showed that the detonation wave
propagated at a speed of 900–1600 m/s and the propagation process inside the combustion
chamber. In 2023, Ishii et al. [68] from Yokohama National University conducted an
experiment using a disc-type RDE with a constant cross-sectional channel area. Hydrogen-
air propellant was used and the pressure gain was estimated with a developed flow model.
The experimental results showed that the wave number increased as the equivalence ratio
increased, and that the static pressure and pressure gain in the combustion chamber were
high when the wave number was one, regardless of the equivalence ratio.
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2.7. China

RDE research in China commenced in the 2010s. Although the period of research and
development is short, several universities have conducted basic research on RDEs.

The National University of Defense Technology (NUDT) conducted research on an
annular, hollow-type RDE and successfully obtained a continuous detonation wave. Liu
et al. [69,70] built an annular-type RDE incorporating a detonation channel with an outer
diameter of 100 mm and channel width of 5 mm and conducted experiments. Gaseous
hydrogen-air propellant was used, and the purpose was to understand the propagation
characteristics of the detonation wave under changes in air flow rate at a constant fuel flow
rate. The number of detonation waves increased with air flow rate, and the velocity of
the detonation wave decreased as the number of waves increased. In 2015, Wei et al. [71]
conducted a hollow-type RDE experiment in which gaseous CH4-O2 propellant was used.
The generation of a continuously rotating detonation wave was investigated by changing
the injection conditions of the gas mixture mass flow rate. It was found that stable prop-
agation occurred under conditions of increased injection mass flow rate. Subsequently,
Peng et al. [72] conducted a hollow-type RDE experiment with a Laval nozzle. The outer
diameter of the chamber was 100 mm, gaseous methane-air propellant was used, and the
equivalence ratio and the contraction ratio of the nozzle were varied. The experimental
results demonstrated that a continuous rotating detonation wave is generated exclusively
when the contraction ratio exceeds 4. Furthermore, the operating range of the equivalence
ratio decreased as the contraction ratio increased to 10. In 2024, Fan et al. [73] developed
and experimented with the rounded-rectangle hollow-type RDE presented in Figure 19.
The non-premixed continuous rotating detonation initiation process was revealed through
high-speed Schlieren images, and the initiation time as a function of equivalence ratio
was quantitatively analyzed. In 2017, Liu et al. [74] developed a model to confirm the
feasibility of a continuous rotating detonation ramjet engine and conducted a free-jet test
with a Mach number of 4.5 and a height of 18.5 km. Gaseous hydrogen and ethylene were
used as fuel, and the experimental results demonstrated the successful completion of the
free jet test using hydrogen. The wave speed was confirmed to be greater than 90% of the
theoretical CJ value, and the maximum specific impulse based on fuel was 2510 s. NUDT
first proposed the cavity-based annular combustor shown in Figure 20 and conducted
research on it [75,76]. It was predicted that flame stabilization in the cavity would facil-
itate heat release and stable propagation of continuous rotating detonation when using
hydrocarbon fuels such as ethylene. The experimental results of Peng et al. [75] confirmed
the achievement of ethylene-air CRD in a cavity combustor, an extended operating range,
and faster propagation velocity at a stoichiometric equivalence ratio due to the effect of the
cavity compared to an annular-type combustor. Subsequently, experiments were conducted
by varying the L/D and equivalence ratio in the ethylene-air fuel to find the optimum L/D
at which the propagation frequency and pressure were improved [76].

Peking University conducted experimental studies on annular-type and hollow-type
RDEs. Wang et al. [77] experimentally observed the variation in detonation propagation
characteristics under pre-detonator injection conditions in an annular-type model incorpo-
rating a detonation channel with an outer diameter of 78 mm and channel width of 10 mm.
Gaseous hydrogen/gaseous oxygen was used as the propellant. The results demonstrated
that single and multiple detonation waves were formed when the detonation wave gener-
ated in the pre-detonator was introduced in the direction tangential to the axial direction of
the combustor internal flow, respectively. Ma et al. [78] conducted experiments to explore
the variation in operating characteristics with nozzle throat width and number of injectors
in an annular-type model incorporating a detonation channel with an outer diameter of
120 mm and an aerospike nozzle. Gaseous methane/gaseous oxygen was used as the
propellant, and the experiments were performed at a maximum thrust level of approxi-
mately 400 N. A smaller ratio of the injector area to the nozzle throat area corresponded
to a smaller mass flux and more stable detonation. Additionally, the authors proposed a
method for comparing the normalized characteristic velocity (= c∗exp/c∗ideal), normalized



Aerospace 2024, 11, 570 17 of 29

thrust coefficient (= CF,exp/CF,ideal), normalized specific impulse (= Isp,exp/Isp,ideal), and
pressure gain for performance evaluation. Zhang et al. [79] experimentally compared
the performance of annular- and hollow-type models, as shown in Figure 21. The outer
diameter of the detonation channel of both models was the same, 120 mm, and the channel
width of the annular-type model was 15 mm. The ratio (= Ath/Ain) between the injector
area and nozzle throat area was varied for each experimental model. The experimental
results demonstrated that the efficiency of the hollow-type RDE was lower than that of the
annular-type RDE. However, a high detonation wave success rate was confirmed for the
hollow geometry model and large area ratio condition.
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In 2022, Wu et al. [80] conducted a solid fuel RDE experiment using a gas generator.
The experiment was conducted by operating an annular-type RDE using gas from solid
fuel combustion in a gas generator with a cylinder section diameter of 165 mm. An image
of the experiment is shown in Figure 22. The combustion products generated by the gas
generator contained 36.5% carbon and 26.83% hydrogen by mass fraction. The detonation
velocity was approximately 2625 m/s, an increase of ~20% compared with the detonation
velocity under hydrogen-oxygen propellant conditions, and a thrust of 69 N was measured.
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Peng et al. [81] from Nanjing University of Science and Technology conducted experi-
ments on an annular-type model incorporating a detonation channel with an outer diameter
of 80 mm and channel width of 5 mm, using a spark plug for direct ignition instead of
a pre-detonator. Gaseous hydrogen/gaseous oxygen was used as the propellant. The
experiments showed that the ignition success rate was up to 94% even with a conventional
igniter. Zhou et al. [82] conducted experiments using an annular-type model incorporating
a detonation channel with an outer diameter of 136 mm and channel width of 4 mm using
a centrifugal compressor. The rotational speed of the centrifugal compressor with a radial
turbine was 11,000 rpm. Gaseous hydrogen/air propellant was used, and the propagation
characteristics of the detonation wave as a function of air injector area and operating time
were investigated. The experimental results showed that the detonation tended to be
unstable as the area of the air injector increases, but a stable detonation wave was formed
after a certain operating time. Wu et al. [83] conducted experiments on an annular-type
model incorporating a detonation channel having an outer diameter of 88 mm and channel
width of 5 mm with a turbine guide vane (TGV). The experiments were conducted using
hydrogen fuel in a model with a TGV consisting of 13 turbine blades. The results showed
that the velocity of the detonation wave was 1812 m/s (92% CJ) on average, and the com-
bustion pressure was in the range of 10–15 bar. Moreover, a pressure reduction of more
than 10% was observed in the case of a mismatch between the propagation direction of
the detonation wave and flow turning angle of the turbine blades. In 2022, experiments
with cavity-based annular combustor by Meng et al. [84] confirmed kerosene-air rotating
detonation, which was feasible under Mach 4 flight conditions using liquid kerosene as
fuel and confirmed that the flame in the cavity contributed to the generation of the rotating
detonation wave.
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In 2024, Nanjing University of Aeronautics and Astronautics conducted liquid kerosene-
air RDE experiments under various incoming flow conditions [85]. The experimental results
confirmed that under the condition that the detonation wave propagates stably, the wave
speed increased and the initiation time decreased as the equivalence ratio increased, but the
overall stability decreased. In addition, a long-term experiment of about 4 s was conducted
to confirm the reliability of the short-term experimental results.

In 2023, Chongqing University conducted experiments on an annular-type model
incorporating a detonation channel with an outer diameter of 106 mm using a straight
guide vane (SGV) [86]. GH2/air was used as the propellant, and the SGV was composed
of 30 vanes to explore the effect of vane length on RDE performance and the propagation
characteristics of the detonation wave. The results showed that the detonation wave speed
in the presence of the vane was lower than that without the vane, and the thrust tended to
increase with the increase in the length of the guide vane, as shown in Figure 23.
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Xi’an Aerospace Propulsion Institute conducted an experiment to verify the practicality
of using liquid contact ignition propellants [87]. Liquid nitrogen tetroxide (NTO) and liquid
monomethyl hydrazine (MMH) were used as the propellants to verify the generation of
detonation waves inside an annular-type model incorporating a detonation channel with
an outer diameter of 60 mm and channel width of 20 mm. An impinging-type injector was
applied for liquid propellant injection and atomization. The experimental results showed
that the number of detonation waves increased with increasing flow rate under the same
oxidizer/fuel ratio condition.

3. Research Trend Analysis

Section 2, which summarizes the research and development trends of RDEs, shows
that RDEs are being researched and developed worldwide. To compare the performance
of these RDEs, Tables 1–7 present the performance metrics by country. The tables include
information on engine type, geometry type, engine size, propellant, rotating detonation
wave speed, and thrust for RDEs developed in each country, excluding studies without
wave speed and thrust information. This section outlines the research trends, presents a
performance comparison, and discusses the related issues.
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Table 1. Performance characteristics of rotating detonation engines developed in the United States.

Organization Engine
Type

Geometry
Chamber Size [mm] Propellant Wave

Speed
[m/s]

Thrust
[N]

First
AuthorOuter

Diameter
Channel
Width Fuel Oxidizer

Texas University Rocket Annular 87.6 4.45 GH2,
GC3H8

GO2 4083 - Braun
(2010) [11]

AFIT
(Air Force
Institute of

Technology)

Rocket Annular 76.2 2, 6, 10 GH2 GO2 1013–2818 - Russo
(2011) [12]

Rocket Annular 28 2 C2H4 GO2 1100–1400 - Keller
(2024) [17]

Rocket Annular 152.4 7.62 GH2 GO2 1400–1550 - Shank
(2012) [14]

Air-
breathing - 76.2 - GH2 Air 1200–1600 - Tellefsen

(2012) [16]

University of
Cincinnati

Air-
breathing Annular 228 19 GH2, C2H4 Air 1200–1300 - George

(2015) [18]

Purdue
University

Rocket Annular 228 19 RP2 GO2 - 3000 Walters
(2018) [19]

Rocket Annular 94 6.35 H2O2 C8H18O4 2220–2479 - Kubicki
(2020) [20]

University of
Central Florida Rocket Annular 76.2 5.1 GH2 GO2 2272–2326 - Sosa

(2020) [21]

University of
Michigan Rocket Annular

(Racetrack)
63.5 ×
177.8 - - Air 1450 - Chacon

(2018) [22]

University of
Alabama Rocket Annular

(Racetrack)

101.6
(annulus,

linear)
7.62 LC3H8 GO2 975–1075 - Unruh

(2021) [25]

Aerojet-
Rocketdyne

Rocket
Air-

breathing
Annular 100–430 -

CH4, C2H2,
C2H6, H2,
LNG, JP-8,

JP-10

Air, O2
1000 <

wave speed - (2018) [27]

AFRL
(Air Force
Research

Laboratory)

Rocket Annular 76.2 2, 6, 10 GH2 Air 684 - Thomas
(2011) [28]

Rocket Annular 228 19 RP2 GO2 1160–1740 1020 Rankin
(2017) [30]

Rocket Annular 152.4 - GH2, C2H4 Air - 1360 Fotia
(2017) [32]

Rocket Annular 76.2 5 CGH4 CO2 980–2200 1334 Bennewitz
(2021) [34]

NASA Rocket Annular - - - - - 25,800 (2023) [36]

Table 2. Performance characteristics of rotating detonation engines developed in Russia.

Organization Engine
Type

Geometry
Chamber Size [mm] Propellant Wave

Speed
[m/s]

Thrust [N] First
AuthorOuter

Diameter
Channel
Width Fuel Oxidizer

Semenov
Institute of
Chemical
Physics

Air-
breathing Annular 310 - GH2 Air - 2200 Frolov

(2017) [37]

Air-
breathing Annular 310 - GH2 Air - 1500 (2018) [38]

Rocket Annular 406 25 GH2, GH2
+ LC3H8

Air 400–2200 - (2017) [39]

Air-
breathing Annular 120 - kerosene Air -

650
(M = 1.5)

860
(M = 2.0)

Ivanov
(2021) [40]
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Table 3. Performance characteristics of rotating detonation engines developed in France.

Organization Engine
Type

Geometry
Chamber Size [mm] Propellant

Wave Speed
[m/s]

Thrust [N] First
AuthorOuter

Diameter
Channel
Width Fuel Oxidizer

MBDA
France

Rocket Annular 100 10 GH2 GO2

3100
(wave number: 2)

2750
(wave number: 3)

338.5 Le Naour
(2011) [43]

Air-
breathing Annular 330 25 GH2, GH2

+ kerosene Air 1000–1400 - (2017) [44]

Table 4. Performance characteristics of rotating detonation engines developed in Germany.

Organization Engine
Type

Geometry
Chamber Size [mm] Propellant Wave

Speed
[m/s]

Thrust [N] First
AuthorOuter

Diameter
Channel
Width Fuel Oxidizer

Technical
University of

Berlin

Air-
breathing Annular 90 7.6 GH2 Air 1181–1812 - Bach (2019)

[45]

Air-
breathing Annular 90 7.6 GH2 Air 355–1773 - (2021) [46]

Table 5. Performance characteristics of rotating detonation engines developed in Poland.

Organization Engine
Type

Geometry
Chamber Size [mm] Propellant Wave

Speed
[m/s]

Thrust [N] First
AuthorOuter

Diameter
Channel
Width Fuel Oxidizer

Warsaw
University of
Technology

Air-
breathing Annular 168 -

Kerosene
(add GH2,

LIPN)
Air 1350–1550 - Kindracki

(2015) [48]

Institute of
Aviation

Air-
breathing Annular - -

Jet-A
Jet-A +
GH2

Air 500–2500 - Wolanski
(2018) [49]

Air-
breathing Annular 225 - Jet-A

Gasoline Air 1045–1170 - (2021) [50]

Rocket-
Ramjet

combined
Annular 130 3.5 GCH4 GO2 - 200 (2019) [51]

Rocket Cone, disk,
Annular 228 19 C3H8 N2O 1200–1300 250–270 (2022) [53]

Table 6. Performance characteristics of rotating detonation engines developed in Japan.

Organization Engine
Type

Geometry
Chamber Size [mm] Propellant Wave

Speed
[m/s]

Thrust [N] First
AuthorOuter

Diameter
Channel
Width Fuel Oxidizer

Nagoya
University,

Keio
University,

JAXA

Rocket Annular,
Hollow 78 Hollow

8, 16, 24, 60 C2H4 GO2 1780–2380 200–312 Kawasaki
(2019) [55]

Rocket Annular 78 8 C2H4 GO2 1293–2121 92–291 Goto (2018)
[56]

Rocket Annular 78 8 C2H4
CH4

GO2 1213–1648 561 (2021) [57]

Rocket Annular 66.9 3.2 C2H4 GO2

2040
(wave

number: 2)
1750

(wave
number: 3)

201 (2021) [58]
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Table 6. Cont.

Organization Engine
Type

Geometry
Chamber Size [mm] Propellant Wave

Speed
[m/s]

Thrust [N] First
AuthorOuter

Diameter
Channel
Width Fuel Oxidizer

Nagoya
University,

Keio
University,

JAXA

Rocket Annular - - CH4 GO2 - 518 (2022) [59]

Rocket Hollow 20 - C2H4 GO2 1209–1333 108 Yokoo
(2020) [61]

Rocket Hollow 20 - LC2H6O GO2 1400–1900 61 Ishihara
(2023) [63]

Rocket Hollow
20

Diverging
angle: 5◦

- C2H4 GO2 1180–1261 133–234 Nakata
(2023) [64]

Rocket Hollow 40 - C2H5OH N2O 1650–1850 280 Sato
(2024) [66]

Rocket Disk 33.6 - C2H4 GO2 900–1600 - Nakagami
(2016) [67]

Yokohama
National

University
Rocket Disk 76 - GH2 GO2 - 75–400 Ishii

(2023) [68]

Table 7. Performance characteristics of rotating detonation engines developed in China.

Organization Engine
Type

Geometry
Chamber Size [mm] Propellant Wave

Speed
[m/s]

Thrust [N] First
AuthorOuter

Diameter
Channel
Width Fuel Oxidizer

National
University of

Defense
Technology

Rocket Annular 100 5 GH2 Air

1605–1790
(wave

number: 1)
1329–1475

(wave
number: 2)

- Liu (2016)
[69]

Rocket Hollow 100 - GCH4 GO2 1500 - Wei (2015)
[71]

Rocket Hollow 100 - GCH4 GO2 1767.8 - Peng (2019)
[72]

Air-
breathing Annular 80 - GH2 Air 1725 610–824 Liu (2017)

[74]

Peking
University

Rocket Annular 78 10 GH2 GO2 2449 - Wang
(2014) [77]

Rocket Annular 120 15 GCH4 Air 1621–1646 14.2–400.4 Ma (2023)
[78]

Rocket Annular
Hollow 120 15

(annular) GCH4 GO2

1200–1650
(Annular)
1700–2700
(Hollow)

10–350
(Annular)

50–380
(Hollow)

Zhang
(2023) [79]

Rocket Annular - -

Burned gas of solid
propellant

N2 (36.5%), H2
(26.83%)

2625 69 Wu (2021)
[80]

Nanjing
University of

Science of
Technology

Rocket Annular 80 5 GH2 GO2 1621–1646 14.2–400.4 Peng (2019)
[81]

Air-
breathing Annular 88 5 GH2 Air 1550–1950 - Wu (2023)

[83]

Air-
breathing Annular 136 4 GH2 Air 1380–1530 - Zhou

(2017) [82]
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Table 7. Cont.

Organization Engine
Type

Geometry
Chamber Size [mm] Propellant Wave

Speed
[m/s]

Thrust [N] First
AuthorOuter

Diameter
Channel
Width Fuel Oxidizer

Nanjing
University of
Aeronautics

and
Astronautics

Rocket Annular 206 31 Liquid
Kerosene Air 1575–1610 - Li (2024)

[85]

Chongqing
University

Air-
breathing Annular 106 5 GH2 Air 1550–1700 40–55 Zhou

(2023) [86]

Xi’an
Aerospace
Propulsion

Institute

Rocket Annular 60 20 MMH NTO 1350–1650 - Xue (2018)
[87]

3.1. Summary of Research and Development

Most of the research conducted in each country was preceded by basic research on
RDEs. This basic research was aimed at verifying that detonation waves are generated
inside the combustor and at exploring the propagation characteristics and stable forma-
tion conditions of detonation waves. Pre-detonators, spark plugs, and contact ignition
propellants were used to generate detonation waves inside the RDE, and the conditions
for stable detonation waves were explored by changing the geometry of the injector,
combustor, and nozzle, as well as the propellant supply conditions. To confirm the oc-
currence of a stable detonation wave, the occurrence and velocity of the detonation wave
were verified through direct imaging using a high-speed camera, optical techniques such
as OH* chemiluminescence and PIV, and measurements using dynamic pressure sensors
and ion probes.

Depending on the engine type, RDEs have been studied as a combustor for rocket and
air-breathing engines. In the case of rocket engines, research has been extended beyond
the nascent stage to the flight test stage, and prototypes are being developed to apply
large-scale RDEs to actual launch vehicles. In addition, research on the application of liquid
propellants is actively underway. For the application of RDEs in air-breathing engines, prior
research has been focused on gas turbine and ramjet engines. In the case of gas turbine
engines, research has been conducted mainly on the operating characteristics of RDEs
in turbine applications. Most studies have examined the propagation characteristics of
detonation waves and performance changes when a guide vane is applied. Moreover, NOx
measurements have been attempted for RDE applications. In the case of ramjet engines,
RDE studies have been conducted focusing on rocket-ramjet combinations, or inlets have
been introduced to conduct wind tunnel experiments and actual flight tests.

Research has also been focused on the propellant type. As oxidizers, gaseous oxygen
or air has been mostly used. In the case of air, studies have also been conducted with
varying proportions of oxygen. Gaseous fuels are mainly hydrogen, methane, and ethylene,
and liquid fuels include kerosene, propane, and ethanol. Among these fuels, hydrogen
and liquid hydrocarbon-based fuels have been applied to air-breathing engines. In studies
using liquid hydrocarbon-based fuels, it was confirmed that combustion performance was
improved by introducing additional gaseous hydrogen. Gaseous fuels, such as methane
and ethylene, and liquid fuels, such as propane and ethanol, have been used primarily for
rocket engine applications. In addition, contact ignition propellants or solid fuels have also
been studied for possible use in RDEs by examining the generation of detonation waves
inside the RDE.

Depending on the type of RDE geometry, studies on annular-type RDEs were initially
conducted, followed by studies on hollow-type and disk-type RDEs. Annular-type RDEs
have been used as an experimental model for initial research and to determine the feasibility
of RDE operation for new propellants, given the facile formation of stable detonation waves
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due to its internal cylinder shape. Hollow-type RDEs are currently the subject of active
research due to their lack of a cylindrical center body, which facilitates cooling and reduces
the weight of the engine. It has a similar specific impulse to the annular-type combustor,
and Zhang et al. [79] demonstrated a high detonation wave success rate compared to the
annular-type in their experiments, although the efficiency was lower. Disk-type RDEs have
the advantages of the hollow-type and, at the same time, have the advantage of shortening
the length of the combustor, which can further reduce the weight. They are currently being
actively researched.

Previous studies have compared the thrust performance of RDEs to constant-pressure
combustion systems [16,41,51,63]. The results show an increase in specific power with
RDEs compared to constant-pressure combustion [16] and a 30% higher specific thrust with
a detonation afterburner compared to a conventional afterburner [41]. The specific impulse
is 40% higher than that of a conventional rocket [51], and it has been demonstrated that the
same thrust can be generated with a shorter combustor length than a conventional rocket,
thus reducing the weight of the engine [63]. These findings indicate that the use of RDEs
in rocket and air-breathing propulsion systems has the advantage of reducing the weight
of the engine and increasing the thrust performance. Consequently, it is recommended
that further research be conducted into the development of future propulsion technologies
utilizing RDEs.

3.2. RDE Performance

A comparative evaluation of the performance of RDEs developed so far was performed
considering studies conducted in different countries. Tables 1–7 summarize the RDE
performance indicators by country. The results demonstrate that although the detonation
wave speed has been measured in most cases, thrust has been measured in only a few
cases, and the highest thrust among rocket-applied RDE engines has been reported to be
25,800 N in a ground test conducted by NASA [36] in the United States. The thrust range of
rocket-applied RDEs in other countries outside of the United States is mostly below 1000 N.
RDE studies of air-breathing engine applications have not measured thrust in most cases,
and experiments at the Semenov Institute of Chemical Physics in Russia have confirmed
thrust levels of up to 2200 N [37]. In terms of engine size, most studies have been conducted
with combustor diameters of 400 mm or smaller, with the United States and Russia having
conducted studies considering larger engines with combustor diameters of 400 mm or
higher [26,39]. Poland [53] and Japan [60] have reported engine demonstrations through
flight tests. Poland has conducted flight tests of a small rocket with a cone-type RDE with
regenerative cooling. Japan has successfully demonstrated the installation of an RDE on the
second stage of a sounding rocket in a space environment. The performance comparison
highlights that current RDE research can be divided into two groups: countries that are
conducting basic research and development using small-scale RDEs, and countries that
have conducted research up to the development stage for application to actual systems.

3.3. Research and Development Issues

Three main issues are being addressed in studies conducted in different countries.
The first pertains to RDE geometry optimization. It is crucial to understand the effect of
geometric variables on performance while changing the geometry conditions of components
such as combustors, injectors, and nozzles to maximize performance. Thus, this aspect
has garnered significant research interest. Injectors, in particular, represent a key design
variable for efficient combustion when using liquid propellants, as they directly affect the
degree of mixing of the fuel and oxidizer.

The second issue pertains to combustion instability. As the detonation wave propa-
gates at supersonic speeds, the flame is unstable and difficult to control. Consequently,
it is necessary to continue research on the formation of stable detonation waves and the
number and direction of waves.
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The third issue, cooling, must be addressed before RDEs can be applied to real engines.
As combustion using detonation wave creates an extremely high-temperature environment
inside the combustor, it is necessary to consider optimal cooling methods to operate RDEs
for extended periods. Current research has been focused on applying cooling methods such
as water cooling, regenerative cooling, and propellant injection at the wall. As water-cooling
methods have been typically applied for ground tests, it is difficult to apply them to actual
engines, and research on cooling methods such as propellant injection and regenerative
cooling must be actively conducted to ensure long-term operation when applying RDEs to
actual engines.

4. Conclusions

This review was focused on exploring experimental research and development trends
on RDEs across various countries. Basic research has been conducted on the propagation
characteristics of the detonation wave inside RDEs, the performance of RDEs with different
geometries, the characteristics of RDEs depending on the propellant type, and application
of RDE cooling. In terms of the development trends of each country, the United States is
currently conducting RDE research and development for application to lunar exploration
rockets. Russia, France, and Germany continue to conduct research and development for
the commercialization of air-breathing RDEs. Poland successfully conducted the world’s
first flight test of a small rocket using a liquid propellant RDE with regenerative cooling.
Japan has successfully demonstrated an RDE rocket engine in the space environment and
is continuing research on more advanced liquid propellant RDEs. China claimed to have
successfully flight-tested an RDE on a launch vehicle engine with an inlet. According to
the RDE research conducted by each country so far, experiments have been conducted on
RDEs of various sizes and shapes depending on the application system of the engine, and
different thrust levels have been obtained. Among them, the United States has conducted
the largest number of thrust experiments, but only Poland, Japan, and China have reported
the successful conduction of flight tests.

Through the analysis of research and development trends in each country, the direction
of progress and common issues in existing research were analyzed. Issues related to
the optimization of RDE geometry, combustion instability, and cooling for prolonged
combustion must be addressed for the practical application of RDEs, and the relevant
solutions are expected to provide references for future RDE research.
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