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Abstract: Hypersonic vehicles are susceptible to considerable aerodynamic heating and noticeable
aerothermoelastic effects during flight due to their high speeds. Functionally graded materials
(FGMs), which enable continuous changes in material properties by varying the ratio of different
materials, provide both thermal protection and load-bearing capabilities. Therefore, they are widely
used in thermal protection structures for hypersonic vehicles. In this work, the aerothermoelastic
behaviors of functionally graded (FG) plates under arbitrary temperature fields are analyzed via a
semianalytical method. This research develops a method considering the influence of thermal loading,
specifically the decrease in stiffness due to thermal stresses, as well as the correlation between material
properties and temperatures under arbitrary temperature fields, based on Ritz’s method. The classical
plate theory, von–Karman’s large defection plate theory and piston theory are employed to formulate
the strain energy, kinetic energy and external work functions of the system. This paper presents a
novel analysis of static aerothermoelasticity of FG plates, in addition to the linear/nonlinear flutter
under arbitrary temperature fields, such as uniform, linear and nonlinear temperature fields. In
addition, the effects of the volume fraction index, dynamic pressure, and temperature increase on the
aerothermoelastic characteristics of FG plates are analyzed.

Keywords: aeroelasticity; aerothermoelasticity; functionally graded materials; panel flutter; Ritz’s
method; classical plate theory

1. Introduction

Hypersonic vehicles, defined as vehicles with a flight Mach number greater than 5,
have emerged as a crucial area of interest in aerospace applications due to their rapid
flight speed, robust defense capability, and extended flight range. A substantial amount of
aerodynamic heat is generated during flight because of the significant air friction. There
is a complex coupling effect with the structure, resulting in aerothermoelastic behaviors.
Notably, panel flutter occurs in supersonic vehicles and can drastically affect their safety
and durability. Several scholars have conducted groundbreaking studies on panel flutter.
In earlier researches, linear analysis was used to study panel flutter [1]. Later, Dowell [2]
conducted a study of two- and three-dimensional plates undergoing limit cycle oscillations
using von Karman’s large deflection plate theory and quasisteady aerodynamic theory.
Additionally, the Galerkin method was used to solve discretely considered in-plane and
static pressure differentials. The findings indicated that the limit cycle deflection, stress,
and frequency are functions of the dynamic pressure, air/panel mass ratio, static pressure
differential, in-plane load and length-to-width ratio. The findings indicated that four to
six modes can yield accurate results. There are also numerous methods for the nonlinear
analysis of panel flutter, such as the finite element frequency domain method proposed by
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Xue and Mei [3] and the aeroelastic modes proposed by Guo and Mei [4]. McNamara and
Friedmann concluded the aeroelastic and aerothermoelastic analyses of hypersonic flow in
their review paper [5]. Zhou [6] conducted an aerothermoelastic analysis of moderately
thick orthotropic plates with general boundary conditions. Quan [7] conducted an analysis
of the post-flutter aerothermoelastic characteristics of hypersonic skin panels using a CFD-
based approach.

Due to severe aerodynamic heating, it is often crucial to apply a thermal protective
layer on the surface to safeguard the structures and devices inside a vehicle. The ther-
mal insulation layer and the structural layer consist of disparate materials with distinct
mechanical characteristics, which can cause stress concentration, delamination, peeling,
and other interfacial phenomena, impairing structural integrity and safety. In order to
avoid this phenomenon, Japanese researchers proposed the concept of functionally graded
materials (FGMs), which involves the continuous alteration of the material properties of
two or more materials by varying their compositions and structures. This ensures that there
is no discernible interface or structural mutation. This continuous variation in material
properties promotes the use of FGMs as crucial elements of thermal protective systems for
hypersonic vehicles, which has been extensively researched by scholars investigating the
phenomenon of panel flutter. It is beneficial to investigate panel flutter for suppression of
flutter and optimization. Song [8] moderated the mode of localized airflow in the direction
of the flow, for supersonic airflows, by designing axial FGMs to alter the thickness and
material properties according to a specific law. The introduction of material property
changes led to a significant enhancement in comparison to solely adjusting the thickness,
resulting in the passive suppression of flutter. Wei [9] examined the flutter characteristics
of axial functionally graded column shells, which could be improved by adjusting the
thickness and material properties in the axial direction. Muc and Flis [10] studied the flutter
and free vibration characteristics of functionally graded porous plates using analytical and
Rayleigh–Ritz methods. Optimization can effectively increase the natural frequency and
critical dynamic pressure according to the outcome of a variable parameter analysis. In re-
cent years, novel structures based on the concept of FGMs have been created and analyzed.
These structures include functionally graded graphene nanoplatelet-reinforced composite
(FG-GPLRC) cylindrical panels [11–13], cracked functionally graded plates [14], FG multi-
layered graphene platelet-reinforced polymer composites (GPL-RPC) [15,16], FG porous
doubly curved panels with piezoelectric layers [17], imperfect FG cylindrical shells [18],
magnetic–electric–thermoelastic functionally graded plates [19], carbon-based nanohybrid
composite panels [20], FG variable thickness blades [21], and cylindrical sandwich panels
with FG-saturated porous cores [22], etc.

Thermal loads significantly impact the structural integrity of hypersonic vehicles,
so there have been numerous investigations into the panel flutter of FGM structures in
thermal environments. Several plate theories are commonly used in FGM modeling,
including classical plate theory (CPT), first-order shear deformation theory (FSDT) [23–25],
higher-order shear deformation theory (HSDT) [26], and other novel shear deformation
theories, such as trigonometric shear deformation theory [27]. Equations governing shear-
deformation theories of plates are typically more complicated and can take shear effects
into consideration, which should be not neglected in thick plates [28]. However, the
shear deformation theories lead to more complicated and less intuitive results than CPT
that can characterize physical laws of plates directly. In aircrafts, thin-wall structures
are commonly used. For thin plates, shear effects are so tiny that CPT can satisfy the
accuracy need through fewer computations. Different methods are used to analyze the
panel flutter of FG plates, such as finite element method (FEM) [29,30], Rayleigh–Ritz
methods [10], Galerkin method [31,32], meshless method [33] and generalized differential
quadrature method (GDQM) [34,35]. Praveen and Reddy [36] employed a finite element
approach that considered shear strain to assess both the static and dynamic responses
of ceramic–metal FG plates under different transient temperature fields. Ibrahim [37–39]
employed a finite element technique based on first-order shear deformation theory and
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classical plate theory, respectively, to analyze the nonlinear flutter and thermal buckling
issues of FG plates subjected to aerodynamic, thermal, and random acoustic loads. Navazi
and Haddadpour [31,32] examined the impact of various parameters on the nonlinear
aeroelastic behavior of semi-infinite FG plates using the Galerkin method. It was found
that FG plates made of temperature-sensitive materials using the Mori–Tanaka model
demonstrated less stability than those utilizing a simple power-law model. Su [40] proposed
a unified method for the consideration of vibrations and flutter in elastically constrained
FG plates under nonlinear temperature fields. The method involved the use of a modified
Fourier series as a displacement basis function to express the displacement field of the
reinforcement through the displacement variable of the plate, thereby eliminating the
need for additional displacement variables. Lee and Kim [41] investigated the thermal
postbuckling and snap-through instabilities of FG plates in hypersonic flows.

Most studies on panel flutter of FG plates are conducted in uniform or nonlinear
temperature fields. However, the temperature field inside the structure of hypersonic
vehicles can often become complex due to the influence of thermal loads. Therefore, it is
necessary to establish an aerothermoelastic analysis method that can accommodate arbitrary
temperature fields. Additionally, thermal stress and the relationship between properties
and temperature should be taken into account simultaneously in thermal environments.

However, among the various aerothermoelastic behaviors, current studies have mostly
concentrated on panel flutter for FG plates. There is a glaring lack of static aerothermoelastic
studies examining aeroelastic responses in a certain temperature field in hypersonic flows.
To investigate the influence of different variables on aerothermoelastic behaviors of FGM
plates and provide a basis for design and optimization of FGM structures, concise solutions
are needed. Therefore, aerothermoelastic analysis based on CPT and Ritz method is helpful
to acquire a semianalytical solution for the FGM plate response.

In this study, an aerothermoelastic analysis was conducted via a semianalytical method.
Static aerothermoelastic, linear panel flutter, and nonlinear panel flutter behaviors were
imposed on simply supported FG plates. Equilibrium equations were established using
classical plate theory and the Ritz method under arbitrary temperature fields in general
forms, such as uniform, linear, and nonlinear temperature fields. Thermal stress and
temperature-dependent properties were focused on in analytical expressions. The von
Karman’s strain–displacement relationship was used to consider geometric nonlinearity,
and the stress function is used for simplification in case of jointly solved the multivari-
able partial differential equations. The effects of the volume fraction index, aerodynamic
pressure, and thermal load were investigated.

2. Methods

In this section, the relevant theories including structure modeling of FGM, thermal
effects, and aerodynamic modeling are briefly presented to serve for theoretical deriva-
tions. The semianalytical expressions of aerothermoelasic behaviors of FG plates are
also presented.

2.1. FGM Properties

Unlike those of conventional homogeneous materials, the properties of FGMs vary
because they consist of a blend of two components. For metal–ceramic FGMs, which are
commonly used in hypersonic vehicles, modifications in properties are attained based on a
continuous component gradient.

The Voigt model is used here to determine the effective material properties. The FGM
properties can be represented by the following equation:

P(z) = Pm(1 − Vc(z)) + PcVc(z) (1)
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where P(z), Pc, and Pm express the properties of the FGM, ceramic and metal, respectively.
The subscripts c, m and cm denote the properties of the ceramic and metal and the difference
between the ceramic and metal, that is,

Pcm = Pc − Pm (2)

The FG plate coordinates are presented in Figure 1. The airflow is assumed to be in
the x-direction, and the z-coordinate is measured from the mid-plane of the plates, where a,
b, and h denote the length, the width, and the thickness of the FG plate, respectively. The
relationship between the ceramic volume ratio, Vc and the z-coordinate can be expressed
as follows:

Vc(z) = (
1
2
+

z
h
)

k
(3)

where k is the volume fraction index of the FGM.
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Therefore, for FG plates, the material properties vary according to the location in the
thickness direction as follows:

P(z) = Pm + Pcm(
1
2
+

z
h
)

k
(4)

2.2. Constitutive Relations

This study focuses on the modeling and characterization of FG thin plates, which are
predominantly utilized in aircrafts. Thin-walled structures with small shear effects are
commonly used in aircraft, making the classical plate theory (CPT) an appropriate choice
for analysis due to its speed and simplicity of application. Because of the asymmetry of the
material in the thickness direction of FG plates, the strain on the geometric middle surface
is not 0. Instead, the physical neutral surface has a strain of zero. When subjected to a
bending load, only the axial force is applied on this plane, with no moment. The distance
between the physical neutral surface and the geometric middle surface, z0 can be expressed
as [42]

z0 =

∫ h/2
−h/2 zE(z)dz∫ h/2
−h/2 E(z)dz

=
(Ec − Em)hk

2(Ec + Emk)(k + 2)
(5)

where E(z), Ec, and Em are the elastic moduli of the FGM, the ceramic, and the metal, respectively.
The strains on the FG plates can be expressed through the deflection function, w, as
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εx = − ∂2w
∂x2 (z − z0)

εy = − ∂2w
∂y2 (z − z0)

γxy = −2 ∂2w
∂x∂y (z − z0)

(6)

According to the plane stress assumption, the stress on the FG plates can be expressed as

σx = E(z)
1−ν2 (εx + νεy)

σy = E(z)
1−ν2 (εy + νεx)

τxy = E(z)
2(1+ν)

γxy

(7)

where υ is Poisson’s ratio.

2.3. Thermal Effects on FGM

High-temperature environments are frequently encountered when using FGMs. Such
environments subject structures to intense conditions, revealing structural flaws that might
not surface at lower temperatures. The impacts of thermal environments on structures are
typically apparent in two forms:

(1) Thermal stresses related to temperature changes lower the overall structural stiffness.
(2) Material properties are subject to changes in response to temperature, often resulting

in a decrease in overall material performance.

In the following section, the dual impacts of thermal environments on FGMs
are outlined.

The thermal environment in hypersonic vehicles is intricate, necessitating the char-
acterization of the temperature field through a general form. This would facilitate the
analysis of thermal loads and aerothermoelastic behaviors for FG plates. The polynomial
expansion form can fulfil the requirement of modeling FG plates with volume fraction as a
power function, and also represent various types of temperature fields with satisfactory
accuracy. Consequently, in this paper, the temperature field is characterized by means of a
polynomial expansion.

The temperature increase in the FG plates can be expressed as

∆T = c0 + c1z + c2z2 + · · · cnzn (8)

where z is the nondimensional z-coordinate, which is defined as z = 1/2 + z/h, and ci is
the coefficient of the temperature increase with respect to the nondimensional z-coordinate.

The thermal stresses can be expressed as

σT = − E(z)
1 − ν

α(z)∆T(z) (9)

where σT, α, υ, and ∆T denote the thermal stress, coefficient of thermal expansion, Poisson’s
ratio and temperature increase caused by thermal loads, respectively.

The effect of temperature loading on the structure can be considered by the in-plane
compression force as

NT =
∫ h/2

−h/2
σTdz (10)

where NT is the thermal force.
From an energy perspective, the work performed by thermal stress can be defined as

WT = −1
2

∫ a

0

∫ b

0
NT(

∂2w
∂x2 +

∂2w
∂y2 )dxdy (11)

where WT is the thermal work.
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In addition, temperature influences FGMs by altering the material properties and can
significantly affect the structure. This phenomenon can be described as the correlation
between material properties and an increase in environment temperature, where P0, P−1, P1,
P2, and P3 denote the coefficients of properties and the subscript i denotes the constituent
material, such as ‘m’ for metal and ‘c’ for ceramic:

Pi(T) = P0(P−1T−1 + 1 + P1T + P2T2 + P3T3) (12)

To ensure clarity and conciseness, only the primary term impact of temperature on the
material properties is explored:

Pi(T) = P0(1 + P1T) (13)

The material properties of Ti-6Al-4V and ZrO2 are shown in Table 1.

Table 1. Material properties of FGM.

Material P0 P1

E (Pa)
Ti-6Al-4V 122.70 × 109 −4.605 × 10−4

ZrO2 132.20 × 109 −3.805 × 10−4

α
Ti-6Al-4V 7.4300 × 10−6 7.483 × 10−4

ZrO2 13.300 × 10−6 −1.421 × 10−3

ρ (kg/m3)
Ti-6Al-4V 4429 0

ZrO2 3000 0

λ (W/(m·K))
Ti-6Al-4V 7.82 0

ZrO2 1.8 0

Changes in material properties primarily impact the elastic modulus and thermal
conductivity, which significantly affects the structure. The correlation between material
properties and temperature alters the strain energy and the work performed by thermal
stresses. The general forms of the thermal forces and the position of the physical neutral
surface at arbitrary temperature fields are listed in the Appendix A.

In this paper, the distribution of temperature fields within the FG plate can be des-
ignated as uniform, linear or nonlinear. By determining the temperature field within the
plate, the thermal force can be obtained.

In the uniform temperature field, the temperature increase in the FG plate is uniform,
where the corresponding coefficients in Equation (8) are

c0 = ∆T, c1 = · · · = cN = 0 (14)

When there is no internal heat source and the temperature increase (∆T) remains
constant, known as steady-state heat transfer, Fourier’s law dictates that

d
dz

(λ(z)
d∆T(z)

dz
) = 0 (15)

where λ is the thermal conductivity.
When the thermal conductivity is assumed to be constant, the temperature distribution

is linear through the thickness. The corresponding coefficients of the linear temperature
field in Equation (8) become

c0 = Tm, c1 = Tcm, c2 = · · · = cN = 0 (16)
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Due to the nonuniformity of the material properties in the thickness direction, the
thermal conductivity is related to the spatial location in the FGM as follows:

λ(z) = λm + (λc − λm)(
1
2
+

z
h
)

k
(17)

For FG plates, the differential equation Equation (15) is no longer linear, and the
temperature field solved is also nonlinear. By using Taylor expansion, the nonlinear
temperature field in the FG plates can be acquired. The corresponding coefficients in
Equation (8) are

c0 = Tm, c1 = ctTcm, ck = −ct
λcm

(1 + k)λm
, · · · , cNk =

(−1)NλN
cm

(1 + Nk)λN
m

(18)

The thermal forces and the position of the physical neutral surface under uniform,
linear and nonlinear temperature fields can be acquired by substituting the coefficients
above into the general equations in the Appendix A. Temperature and property distribu-
tions of FG plates under uniform, linear and nonlinear temperature fields can be found in
the previous study [43].

2.4. Aerodynamic Modeling

In this paper, the aerodynamic forces are calculated using piston theory, which is
analogous to the propagation of a perturbation generated by a wing in the normal direction
at supersonic speeds. When Ma ≫ 1, the first-order piston theory can be expressed as

q =
2qd
Ma

(
∂w
∂x

− α0 +
1

c∞ Ma
∂w
∂t

) (19)

where q is the applied aerodynamic pressure, qd is the dynamic pressure, Ma is the Mach
number, α0 is the initial angle of attack, c∞ is the velocity of sound and t is the time.

The aerodynamic forces can be decomposed into three parts: first, a spatially relevant
term concerning the normal disturbance of the incoming flow caused by the variations in
the slope of the plate surface; second, a constant term related to the downwash produced by
the initial angle of attack; and third, a time-varying term originating from the oscillations
of the plate surface.

The displacement function can be selected as a double sine function under a sim-
ply supported boundary condition. To examine the work carried out by the theoretical
aerodynamic force, we apply the first-order function in the vertical inflow direction, and
two separate ordered functions as the m1- and m2-order functions in the downstream
flow direction:

w = w1(t) sin (
m1πx

a
) sin (

πy
b
) + w2(t) sin (

m2πx
a

) sin (
πy
b
) (20)

The influence of the applied aerodynamic forces can be quantified by the work of the
external force as

wqd =
bqd

2Ma2 (
− 8(−1+(−1)m1 )aα0 Ma

m1π2 − aw1
′(t)

c

+ 2(−1+(−1)m1+m2 )m1m2 Maw2(t)
m1

2−m2
2

) (21)

2.5. Nonlinear Characterization

Dowell [2] derived a form of geometrical nonlinearity in differential equations by
employing a stress function. The impact of von Karman’s nonlinear strain—displacement
relation on the structure manifests in the integrated stress value throughout the plate
thickness, influencing the neutral surface. Because of the variation in the elastic modulus
through the thickness of FGMs, the internal force calculation is slightly different from that
for homogenous plates.
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As in Dowell’s calculation in [2], the effect of the geometric nonlinear term can be
expressed in energy form as shown in Equation (23), where A, B, C, D, E, F, and G are
integration coefficients. The specific expression is shown in Equation (A5) in Appendix A,
where EFGM is the equivalent elastic modulus of the FGM:

EFGM =
12Ec

2 + 4EcEmk(k2 + 4k + 7) + Em
2k2(k2 + 4k + 7)

(2 + k)2(3 + k)(Ec + Emk)
(22)

Wnon =
Ec + Emk

(1 + k)EFGM
3π2(1 − ν2)(

w2
m(t)
4

(m2 A + (
a
b
)

2
B) + wm(t)(

a
b
)

4
(C + D +

E
4
− F

2
)) (23)

2.6. Static Aerothermoelastic Analysis

In this paper, the aerothermoelastic behaviors of the FG plate are determined with the
Ritz method and classical plate theory, in which only one unknown variable, the deflection
function, is necessary to express other physical quantities. The double sine function can be
used as the basis function based on simply supported boundary conditions. The deflection
function can be expressed as follows:

w(x, y) = ∑ cmn sin (
mπx

a
) sin (

nπy
b

) (24)

where cmn is an unknown coefficient. The partial differential equations can be transformed
into algebraic equations or ordinary differential equations via the Ritz method.

By substituting the deflection function, the strain energy, thermal strain energy, and
kinetic energy can be obtained. These quantities are determined under uniform temperature
conditions and when the material properties are temperature independent as follows:

U = 1
2

∫ a
0

∫ b
0

∫ h/2
−h/2 (σxεx + σyεy + τxyγxy)dxdydz

= ∑ c2
mn((b/a)2m2 + n2)

2
L1

(25)

WT = −1
2
∫ a

0

∫ b
0 NT(

∂2w
∂x2 +

∂2w
∂y2 )dxdy

= ∑ c2
mn∆T((b/a)2m2 + n2)L2

(26)

Ek =
1
2

∫ a

0

∫ b

0

∫ h/2

−h/2
ρ(z)

.
w(x, y, t)

2

dxdydz (27)

where

L1 =
a(12Ec

2 + 4EcEmk(7 + k(4 + k)) + Em
2k2(7 + k(4 + k)))π4

96(b/h)3(2 + k)2(3 + k)(Ec + Emk)(1 − ν2)
(28)

L2 =
a(αc(Ec + Eck + Emk) + αmk(Ec + 2Emk))π2

8(b/h)(1 + k)(1 + 2k)(1 − ν)
(29)

In aeroelastic analyses, it is essential to consider the impact of the work by the applied
aerodynamic forces. In the static analysis, the time-dependent term in Equation (20) is not
considered. When two separate ordered functions are selected, the deflection function can
then be expressed as

w = cw1 sin (
m1πx

a
) sin (

πy
b
) + cw2 sin (

m2πx
a

) sin (
πy
b
) (30)

where cw1 and cw2 are unknown coefficients.
The general applied aerodynamic forces can be expressed as

qpm1 =
bqd

2ma2 (
− 8(−1+(−1)m1 )aα0 Ma

m1π2

+ 2(−1+(−1)m1+m2 )m1m2 Macw2
m1

2−m2
2

) (31)
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In this case, the constant component of the odd-order term is effective, whereas the
even-order term is not. The aerodynamic forces of the same order of the spatially relevant
term do not influence the deformations of the same order, and there is a coupling effect
between the different orders.

From Hamilton’s principle, the governing equation of static aerothermoelastic behav-
iors can be derived as

∂

∂cwi
(U − WT)− qp = 0 (32)

Using two orders as an example, we can derive the algebraic equation as{
a10 + a11cw1 + a12cw2 = 0
a20 + a21cw1 + a22cw2 = 0

(33)

where when the temperature-independent FG plates are under a uniform temperature field,
the corresponding coefficients can be expressed as shown in Equation (35).

The solution of the unknown coefficients is given by

cw1 = a10a22−a20a12
a21a12−a11a22

cw2 = a20a11−a10a12
a21a12−a11a22

(34)

a10 = 4(−1+(−1)m1 )abqdα0
m1 Maπ2

a11 = 2((b/a)2m2
1 + 1)

2
(L1 − L2∆T)

a12 = (1−(−1)m1+m2 )bqdm1m2
Ma(m2

1−m2
2)π

2

a20 = 4(−1+(−1)m2 )abqdα0
m2 Maπ2

a21 = (1−(−1)m1+m2 )bqdm1m2
Ma(m2

2−m2
1)π

2

a22 = 2((b/a)2m2
2 + 1)

2
(L1 − L2∆T)

(35)

2.7. Linear Analysis of the Thermal Panel Flutter

In linear analyses of thermal panel flutter, with the assumption of harmonic oscillations,
the deflection function can be expressed as

w =
M

∑
m=1

cwm sin (
mπx

a
) sin (

πy
b
)eiωt (36)

Then the kinetic energy can be expressed as

Ek =
abc2

whω2(ρc + kρm)

8(1 + k)
(37)

Linear thermal panel flutter analysis can be formulated as a generalized eigenvalue
problem to acquire the flutter modes and frequencies. In this analysis, only the homoge-
neous terms are retained, and the constant term is eliminated. Consequently, the general-
ized aerodynamic force can be expressed as

qpm1 =
bqd

2Ma
(

2(−1 + (−1)m1+m2)m1m2cw2

m1
2 − m22 ) (38)

From Hamilton’s principle, the governing equation can be derived, as

∂

∂cw
(U − WT − Wq + Ek) = 0 (39)
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A generalized eigenvalue problem can be formulated as Ac = λBc with the cor-
responding eigenvalues λm = ω2

m, in which, ωm denotes the flutter frequency for the
corresponding mode shape number m in the x direction. For temperature-independent FG
plates under a uniform temperature field, this problem can be solved by expressing the i-th
diagonal term of the coefficient matrix A as

Aii = 2((b/a)2i2 + 1)
2
(L1 − L2∆T) (40)

The nondiagonal term primarily comprises coupling terms of different orders of the
generalized aerodynamic forces. The i-th row and j-th column can be expressed as

Aij =
bqd

2Ma
(

2(−1 + (−1)i+j)ij
i2 − j2

) (41)

Matrix B, which represents the coefficient of mass, consists solely of diagonal entries.
The i-th element can be expressed as

Bii =
abc2

wih(ρc + kρm)

4(1 + k)
(42)

2.8. Nonlinear Analysis for the Thermal Panel Flutter

In nonlinear analysis, the effect of geometric nonlinearity is considered. The aerody-
namic forces consist of constant, time-dependent and spatially dependent terms and are
explicitly defined as

q =
2qd
Ma

(
∂w
∂x

− α0 +
1

c∞ Ma
∂w
∂t

) (43)

The deflection function can be defined as

w =
M

∑
m=1

wm(t) sin (
mπx

a
) sin (

πy
b
) (44)

Then the generalized aerodynamic forces are expressed as

qp =

 − abqd
2Ma2 (

8(−1+(−1)m1 )α0 Ma
m1π2 +

w′
1(t)
c ), m1 = m2

(−1+(−1)m1+m2 )bqdm1m2w2(t)
Ma(m2

1−m2
2)

, m1 ̸= m2
(45)

From Hamilton’s principle, the governing equation can be derived as

∂

∂wm(t)
(U + Wnon − WT +

d
dt
(

∂Ek

∂
.

wm(t)
))− qp = 0 (46)

When the temperature-independent FG plates are under a uniform temperature field,
a set of M differential equations for deflection coefficients can be derived. The m-th differ-
ential equation is shown in Equation (48). where DFGM is the equivalent flexural rigidity:

DFGM =
(12Ec

2 + 4EcEmk(7 + k(4 + k)) + Em
2k2(7 + k(4 + k)))h3

12(2 + k)2(3 + k)(Ec + Emk)(1 − ν2)
(47)

2((b/a)2m2 + 1)
2
(L1 − L2∆T)wm(t)−

M
∑

i=1
qp(m,i) +

abh(ρc + kρm)
..
wm(t)

8(1 + k)
+

Ec + Emk
(1 + k)EFGM

3π2(1 − ν2)
DFGM(b/a)

4a2 (
w2

m(t)
4

(m2 A + (
a
b
)

2
B) + wm(t)(

a
b
)

4
(C + D +

E
4
− F

2
)) = 0

(48)
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3. Numerical Results of Static Aerothermoelasticity

In this section, vibration analysis and static aerothermoelastic analysis of simple
supported FG thin plates are conducted under a uniform/linear/nonlinear temperature
field. The impact of the thermal environment is particularly explored.

Case 1: A ceramic/metal FG plate composed of ZrO2/Ti-6Al-4V with a length of
a = 0.5 m, a width of b = 0.5 m and a thickness of h = 0.05 m. The material properties of
ZrO2 and Ti-6Al-4V are shown in Table 1.

The following numerical results are based on the model in Case 1. The results are
displayed as dimensionless variables, including the dimensionless time, dynamic pressure,
and air-to-plate mass ratio, as shown in Equation (49).

τ = t(
DFGM

ρcha4 )

1
2
, λd =

2qda3

MaDFGM
, µ =

ρaa
ρch

(49)

3.1. Validation

To validate the FGM modeling method in this study, a vibration analysis is conducted
for comparison with the FEM. The finite element model is partitioned into 50 sections
in the length and width directions, and 10 segments in the thickness direction, resulting
in 250,000 solid elements with the simple-supported boundary conditions, as shown in
Figure 2. The first-order vibration frequencies, which correspond to the bending modes,
are compared between the semianalytical method and the FEM results solved by sol 103
in MSC. Nastran, as shown in Figure 3. Firstly, the stiffness matrix under thermal loading
is solved by sol 153. Based on the updated stiffness matrix as a static pre-stress field, the
vibration characteristics are solved by sol 103.
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Table 2 shows the dimensionless frequencies (ω1) of the FG plates, defined in Equation
(50) under different temperature fields obtained with the Ritz-based method and FEM at
k = 1 and a temperature increase of 30 K, which means that ∆T = 30 K under a uniform
temperature field and Tm = 30 K and Tcm = 30 K under a linear and nonlinear temperature
fields. In addition, the results under room temperature without the influence of thermal
gradient are listed as a reference. The relative errors between the semianalytical method
and the finite element method are trivial, thus confirming the accuracy of the proposed
approach. Errors arise from the use of the semianalytical method based on the CPT,
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which neglects the shear effect, while the FEM utilizes three-dimensional solid element
modeling to account for this effect. In addition, the semianalytical method involves a
continuous theoretical approach in the thickness direction whereby the material properties
and individual response quantities vary continuously. Conversely, the FEM provides
discrete results and hence does not accurately represent the material properties at that
specific location.

ω1 = ω1
a2

h
(

ρm(1 − υ2)

Em
)

1
2

(50)

Table 2. Comparison of dimensionless first-order frequencies (ω1) under different temperature fields
determined by the semianalytical method and FEM.

The Type of Temperature Field Results of the
Semianalytical Method Results of FEM Relative Errors

Room temperature 6.33999 6.28984 0.80%
Uniform (temperature-independent) 3.92460 4.08109 −3.83%
Uniform (temperature-independent) 3.96067 4.10907 −3.61%

Linear (temperature-dependent) 5.14583 5.19792 −1.00%
Linear (temperature-independent) 5.16377 5.20979 −0.88%

Nonlinear (temperature-independent) 5.40486 5.45582 −0.93%
Nonlinear (temperature-independent) 5.41505 5.46070 −0.84%

3.2. Static Aerothermoelastic Analysis

First, the static aerothermoelastic behaviors are analyzed under a uniform temperature
field. The first six orders are considered in the Ritz function. The conditions are assumed to
be as follows: the flight Mach number is Ma = 5, the dimensionless mass-to-Mach number
ratio is µ/Ma = 0.01, and the dimensionless dynamic pressure is λd = 200, the temperature
increase is ∆T = 20 K, and the initial angle of attack is α0 = 0.01.

When k = 1, Figure 4 reveal the deformation of the FG plate and the corresponding
applied aerodynamic pressures, respectively. The deformation is symmetric perpendic-
ularly to the flow direction and exhibits a half-period of the sinusoidal function, as the
first-order deflection function is the only one applied. In the direction of the incoming flow,
the first-order coefficient dominates and generates a slight forward tilt of the deformation
due to aerodynamic forces, resembling a sinusoidal function. In terms of the aerodynamic
distribution on the FG plates, the distribution in the x-direction follows a cosine function
law since the spatial correlation term is proportional to the first-order derivative of the
de-flection function. The front half of the FG plate is designated the positive pressure zone,
while the rear half is the negative pressure zone, and the maximum positive pressure zone
occurs at the front end.

Research has revealed that the FG plate response is temperature sensitive, particularly
in terms of the variation in the response versus the volume fraction index. Figure 5
shows the variance patterns of the maximum deformation with respect to the volume
fraction index at ∆T = 0, 2 K, 4 K, 6 K, 8 K and 20 K. As the temperature increases,
the correlation between the maximum deformation and the volume fraction index shifts
from a monotonically increasing trend to a monotonically decreasing trend, revealing a
highly intricate pattern of change. This is because structural stiffness is associated with
mechanical stiffness, which leads to a positive contribution, and thermal stiffness related to
the temperature increase, which leads to a reduction in stiffness. As the volume fraction
index increases, metals with a lower elastic modulus and coefficient of thermal expansion
than those of ceramic become more dominant. Simultaneously, the absolute values of
both the mechanical stiffness and the thermal stiffness decrease. As the temperature
increases, the reduction influence of the thermal stiffness increases, while the influence of
the mechanical stiffness remains constant. Therefore, at lower temperatures, the mechanical
stiffness dominates, and the maximum deformation grows with increasing volume fraction
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index. On the other hand, at higher temperatures, the thermal stiffness takes over, resulting
in a decrease in the maximum deformation. Due to the contrasting trends of mechanical
stiffness and thermal stiffness with respect to the volume fraction index, which have varying
rates of change, the trend with respect to the volume fraction index becomes more intricate
when the temperature increases moderately.
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When the temperature increase is 20 K or 2 K, the deformation of the FG plate and
the applied aerodynamic pressure in relation to the volume fraction index are illustrated
in Figures 6 and 7. The volume fraction index predominantly affects the overall stiffness
of the structure. However, the influence does not directly alter the distribution pattern
of the aerodynamic force. Additionally, the deformation in the flow direction remains
consistent with the prescribed rules. The deformation and aerodynamic force of the
FG plate fall between those of the metal and ceramic plates. At a temperature of 20 K,
as the volume fraction index increases, the decrease in thermal stiffness is greater than
the increase in mechanical stiffness, resulting in an overall stiffer FG plate. This leads
to reduced deformation, decreased aerodynamic force due to aeroelastic deformation,
and, consequently, a decreased aerodynamic force. When the temperature is 2 K, the
overall stiffness increases since the reduction in thermal stiffness is less than the increase
in mechanical stiffness, in contrast to the trend observed at ∆T = 20 K. The deformation
and aerodynamic force of the FG plate have direct relationships with the dynamic pressure.
Figures 8 and 9 depict the relationships between the deformation, aerodynamic force
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and deflection coefficients at each order and the dynamic pressure. When the dynamic
pressure increases from λ = 100 to λ = 1000, the maximum dimensionless deformation
shifts from 0.321 to 0.638 as the position of appearance moves forward, from 0.420 to 0.215.
Additionally, the peak of the aerodynamic force rapidly increases, appearing at the leading
edge. The first-order coefficient initially increases rapidly, reaching a maximum value
at a dimensionless pressure of 0.478 before gradually decreasing, while the remaining
coefficients increase as the dynamic pressure increases. As the dynamic pressure increases,
the energy from the first order slowly spreads to subsequent orders, causing the other order
coefficients to gradually increase while the first order becomes less dominant. This results
in a gradual change in the deformation and the subjected aerodynamic force pattern, with
the first order initially dominating and then spreading to the second and third orders.
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Figure 7. Static aerothermoelastic responses of the FG plate vs. nondimensional length with different
volume fraction indexes (∆T = 2 K): (a) deformation; (b) applied aerodynamic pressure.
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Figure 8. Static aerothermoelastic responses of the FG plate under different dynamic pressures:
(a) dimensionless deformation; (b) applied aerodynamic pressure.
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The maximum deformation and maximum stress of the FG plate under varying
temperature fields, with a volume fraction index of k = 1 and temperature increase of 20 K
and 2 K, are outlined in Table 3. The results show that the maximum deformation and
maximum stress are the largest under the uniform temperature field, but are the smallest
under the nonlinear temperature field. This is because at the same temperature increase, the
FG plate experiences the highest internal temperature, the highest thermal stress, the lowest
total stiffness, and the largest deformation and stress within the uniform temperature
field. Conversely, this effect is associated with the lowest internal temperature and the
smallest deformation and stress within the nonlinear temperature field. Considering the
temperature-dependent properties, when subjected to a larger temperature increase of 20 K,
the coefficient of thermal expansion of the ceramic component decreases more, resulting in
less thermal stiffness but higher total stiffness. Conversely, a smaller temperature increase of
2 K causes the coefficient of thermal expansion and elastic modulus of the metal component
to increase further, leading to decreased thermal stiffness and lower total stiffness.

Table 3. Static aerothermoelastic responses under various temperature fields.

The Type of the Temperature Field ∆T = 20 K ∆T = 2 K

wmax/h σmax(MPa) wmax/h σmax(MPa)

Uniform (temperature-independent) 0.488425 234.952 0.357481 191.747
Uniform (temperature-dependent) 0.487631 233.630 0.357658 191.772
Linear (temperature-independent) 0.414324 184.304 0.352639 188.579
Linear (temperature-dependent) 0.413889 182.916 0.352719 188.538

Nonlinear (temperature-independent) 0.399063 174.064 0.351463 187.811
Nonlinear (temperature-dependent) 0.398896 172.835 0.351532 187.759

3.3. Research on Aeroelastic Effects

Furthermore, this study examines the impact of aeroelastic effects. The investigation
is conducted in the absence of aeroelastic effects, i.e., when the aerodynamic force contains
only the constant term originating from the angle of attack and not the component caused
by deformation. Figures 10–12 display the deformation of the structure and its correspond-
ing variations with the volume fraction index and dynamic pressure. The deformation
approximates a sinusoidal function and is symmetrically distributed when the aeroelastic
effect is not considered due to the constant aerodynamic force on the FG plate. As the
dynamic pressure increases, the stringwise deformation increases, while the deformation
distribution remains symmetric. With a temperature increase of ∆T = 20 K, the maximum
deformation decreases with increasing volume fraction index, but still exceeds that con-
sidering aeroelastic effects. Therefore, the aeroelastic effect primarily reduces structural
deformation and alters its form to direct the deformation toward the leading edge. In
addition, deformations display variations under distinct dynamic pressures, with increased
pressures moving the deformation increasingly forward.
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4. Numerical Results of Panel Flutter in Thermal Environments

In this section, linear and nonlinear analyses of the panel flutter of FG plates in thermal
environments are conducted under a uniform/linear/nonlinear temperature field based
on Case 1.

4.1. Linear Analysis

First, the results of the Ritz-based method in this study are compared with those of
Song’s method [44] for a metal plate. The relationship between the natural frequencies and
dynamic pressure of the plates when k = 0 in Case 1 is depicted in Figure 13. It can be seen
that the curves are very close to each other, which verifies the correctness of the method
used in this paper.
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In this section, linear analysis is conducted for the FG plate in Case 1 using the first
six Ritz orders. Figure 14a illustrates the relationship between the dynamic pressure and
flutter frequency for each order at a Mach number of Ma = 5, a temperature increase of
∆T = 20 K of each order experiences different changes. Low-order frequency changes are
more pronounced, while the first-order frequency gradually increases, and the high-order
frequency slightly decreases. At a dimensionless dynamic pressure of 424, the first two
orders of frequency coincide, and the eigenvalues of the first two orders of the system
transform from two real roots into a pair of conjugate complex roots, thus inducing panel
flutter. This is due to the mutual coupling between different orders of aerodynamic forces
in the spatial correlation term in piston theory. This coupling results in the higher-order
term providing additional aerodynamic stiffness for the lower-order term, improving the
lower-order natural frequencies. Similarly, the lower-order term weakens the aerodynamic
stiffness of the higher-order term. As the dynamic pressure increases, the frequency of the
first coupled orders becomes the lowest-order term and increases with increasing dynamic
pressure, while the higher-order dynamic pressure decreases with increasing dynamic
pressure. The nondimensional frequency can be defined as the ratio of the frequency to the
first-order natural frequency of ceramic plates, ω0, as

ω0 = π2(
1
a2 +

1
b2 )

√
Ech2

12(1 − ν2)ρc
(51)
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Figure 14. Flutter frequencies vs. nondimensional dynamic pressure: (a) the first six orders at
∆T = 20 K; (b) the first two orders at different temperature increases.

To examine the flutter characteristics at various temperatures, Figure 14b shows the
fluctuations in the frequencies in the first two orders, corresponding to dynamic pressure
increases at different temperatures. Furthermore, higher temperatures are shown to have a
more notable effect in this regard. The results indicate that as the temperature increases, the
overall stiffness of the FG plate decreases, causing a reduction in the frequency and flutter



Aerospace 2024, 11, 572 18 of 26

dynamic pressure. Due to the presence of aerodynamic forces, the first-order stiffness
increases, allowing the FG plate to regain a stable state within a certain range even after
buckling under no aerodynamic loading.

In order to investigate the influence of the Mach number, Figure 15 show the variation
of flutter frequencies with the nondimensional dynamic pressure and the actual dynamic
pressure under various Mach numbers, respectively. It can be observed that the flutter
characteristics are independent of the dimensionless dynamic pressure, as the Mach number
is already accounted for in the nondimensionalization, which is also shown in Equation (49).
In contrast, the flutter characteristics are dependent of the actual dynamic pressure. The
flutter dynamic pressure is higher at the higher Mach number when the dynamic pressure
is dimensional.
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Table 4 shows the flutter dynamic pressure under various temperature fields. With the
same temperature increase, the internal temperature of the uniform temperature field plate
is the highest, while the internal temperature of the nonlinear temperature field plate is the
lowest and the opposite is true for the flutter dynamic pressure. Additionally, considering
the temperature-dependent properties of FG plates, the total stiffness is lower, leading to
larger deformations and a lower critical flutter dynamic pressure at lower temperatures.

Table 4. Flutter dynamic pressure under various temperature fields.

The Type of the Temperature Field Flutter Dynamic Pressure

Uniform (temperature-independent) 424.54
Uniform (temperature-dependent) 421.85
Linear (temperature-independent) 454.93
Linear (temperature-dependent) 453.76

Nonlinear (temperature-independent) 462.50
Nonlinear (temperature-dependent) 461.41

Figure 16 displays the modes of each order for the FG plate at dynamic pressures of
λ = 200 (before the flutter boundary) and λ = 424 (near the flutter boundary). The aero-
dynamic forces lead to distinct modes at varying dynamic pressures. When the dynamic
pressure does not reach the flutter boundary, each mode is directly influenced by its respec-
tive sinusoidal order, and the other sinusoidal functions have a lesser impact. However,
when the dynamic pressure approaches the flutter boundary, the modes of each order
exhibit changes compared to when the plate is not near the boundary. Specifically, the first
few orders experience more dramatic changes, while the first two modes display almost
identical shapes, indicating that they are coupled. This coupling results in the occurrence
of flutter.



Aerospace 2024, 11, 572 19 of 26

Aerospace 2024, 11, x FOR PEER REVIEW 20 of 29 
 

 

Table 4 shows the flutter dynamic pressure under various temperature fields. With 
the same temperature increase, the internal temperature of the uniform temperature field 
plate is the highest, while the internal temperature of the nonlinear temperature field plate 
is the lowest and the opposite is true for the flutter dynamic pressure. Additionally, con-
sidering the temperature-dependent properties of FG plates, the total stiffness is lower, 
leading to larger deformations and a lower critical flutter dynamic pressure at lower tem-
peratures. 

Figure 16 displays the modes of each order for the FG plate at dynamic pressures of 
λ = 200 (before the flutter boundary) and λ = 424 (near the flutter boundary). The aerody-
namic forces lead to distinct modes at varying dynamic pressures. When the dynamic 
pressure does not reach the flutter boundary, each mode is directly influenced by its re-
spective sinusoidal order, and the other sinusoidal functions have a lesser impact. How-
ever, when the dynamic pressure approaches the flutter boundary, the modes of each or-
der exhibit changes compared to when the plate is not near the boundary. Specifically, the 
first few orders experience more dramatic changes, while the first two modes display al-
most identical shapes, indicating that they are coupled. This coupling results in the occur-
rence of flutter. 

  

  

  

  

Aerospace 2024, 11, x FOR PEER REVIEW 21 of 29 
 

 

  

  
Figure 16. Aeroelastic modes of the FG plate at dynamic pressures of λ = 200 and λ = 424. 

Table 4. Flutter dynamic pressure under various temperature fields. 

The Type of the Temperature Field Flutter Dynamic Pressure 
Uniform (temperature-independent) 424.54 
Uniform (temperature-dependent) 421.85 
Linear (temperature-independent) 454.93 
Linear (temperature-dependent) 453.76 

Nonlinear (temperature-independent) 462.50 
Nonlinear (temperature-dependent) 461.41 

4.2. Nonlinear Analysis 
First, the results of the Ritz-based method in this study are compared with those of 

Dowell’s method [2] at a dimensionless mass-to-Mach number ratio of µ/Ma = 0.01 and 
Mach number of Ma = 5. The relationship between the limit-cycle amplitudes and dynamic 
pressure of the ceramic plates when k = 0 in Case 1 is depicted in Figure 17. The results of 
this study resemble those of Dowell, indicating the accuracy of the method used in this 
study. 

A nonlinear analysis of panel flutter in thermal environments is conducted for the FG 
plate in Case 1 at a dimensionless mass-to-Mach number ratio of µ/Ma = 0.01, Mach num-
ber of Ma = 5 and angle of attack of α0 = 0.01. With the initial condition that all order de-
flection coefficients have displacement and velocity values of 0, the differential equations 
described in Equation (48) can be numerically integrated in the time domain to determine 
various types of response quantities. 

 
Figure 17. Comparison of limit-cycle amplitudes between the Ritz-based method in this study and 
Dowell’s method. 

Figure 16. Aeroelastic modes of the FG plate at dynamic pressures of λ = 200 and λ = 424.

4.2. Nonlinear Analysis

First, the results of the Ritz-based method in this study are compared with those of
Dowell’s method [2] at a dimensionless mass-to-Mach number ratio of µ/Ma = 0.01 and
Mach number of Ma = 5. The relationship between the limit-cycle amplitudes and dynamic
pressure of the ceramic plates when k = 0 in Case 1 is depicted in Figure 17. The results
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of this study resemble those of Dowell, indicating the accuracy of the method used in
this study.
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A nonlinear analysis of panel flutter in thermal environments is conducted for the
FG plate in Case 1 at a dimensionless mass-to-Mach number ratio of µ/Ma = 0.01, Mach
number of Ma = 5 and angle of attack of α0 = 0.01. With the initial condition that all order
deflection coefficients have displacement and velocity values of 0, the differential equations
described in Equation (48) can be numerically integrated in the time domain to determine
various types of response quantities.

The dynamic responses and phase charts of the FG plate under different dynamic
pressures at representative coordinates chosen as x/a = 0.75 and y/b = 0.5 are shown
in Figure 18. The time-domain response characteristics vary significantly under various
dynamic pressures. When the dynamic pressure is low, the FG plate remains dynamically
stable. Initially, the perturbations decrease gradually while the system dissipates the
perturbation energy, yielding a finite value. The phase diagram shows the convergence of
the displacement and velocity of the representative coordinates toward a single point. As
the dynamic pressure increases, the initial perturbation becomes increasingly larger.

However, the system is unable to dissipate the initial perturbation energy. Conse-
quently, the perturbation gradually accumulates and increases, resulting in the displace-
ment and velocity of the representative coordinates converging to those of the limit cycle
at λd = 426.5. The system response then moves slowly from the center of the phase dia-
gram to the outside and ultimately reaches the limit cycle. As the pressure increases, the
amplitude of the limit cycle also increases because of the geometrically nonlinear effect of
the structure. As the deformation becomes larger, the stiffness increases, which restricts
further amplitude expansion. The system begins with a slight amplitude vibration near the
equilibrium position. The system response swiftly expands from the center of the phase
diagram to the limit ring and ultimately converges.

The limit-cycle amplitude for the dynamic pressure is illustrated in Figure 19a. When
the critical dynamic pressure is not reached, the maximum deformation is minor, result-
ing solely from static forces. However, when the critical dynamic pressure is achieved,
nonlinear panel flutter occurs due to the mutual influence of aerodynamic forces and the
structure, and the limit-cycle amplitude grows rapidly. The relationship between the stress
and dynamic pressure is illustrated in Figure 19b. The stresses can be divided into three
parts: bending stresses, which are symmetrically related to the neutral surface; membrane
stresses, which act on the neutral surface due to geometrical nonlinearities; and thermal
stresses due to temperature loading. In bending stresses, the maximum tensile stresses
are reached at the top while the minimum compressive stresses are reached at the bottom.
On the other hand, in a uniform temperature field, the tensile membrane stresses and
compressive thermal stresses are uniform in the FG plates. Both bending and membrane
stresses are influenced by deformation, and the geometrically nonlinear effect becomes
more prominent in large deformation cases. Prior to reaching the critical dynamic pressure,
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the stresses remain low due to minimal deformation, which is primarily controlled by
thermal stresses. The maximum stresses at the top and bottom of the plate are similar and
are both compressive. Once the flutter dynamic pressure is reached, rapid deformation
and membrane stress expansion occur. Furthermore, due to the upward direction of the
aerodynamic force in most cases, the maximum upward deformation is greater than the
maximum downward deformation. Consequently, the absolute value of the maximum
tensile stress exceeds that of the compressive stress, with a ratio of approximately 3:1.
Therefore, the location of the maximum stress is at x/a = 3/4, y/b = 1/2, and z/h = 1/2.
The stress is expressed in a dimensionless form, where

σ0 =
Ec(h/a)2

1 − ν2 (52)
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To investigate the relationships between the limit-cycle amplitude and the dynamic
pressure, volume fraction index, and temperature increase, the characteristics of nonlinear
panel flutter are analyzed based on the basic state at λ = 427, k = 1 and ∆T = 20 K, which
is near the critical conditions, as shown in Figure 20. Before reaching the critical dynamic
pressure, the FG plate remains dynamically stable with minimal deformation due to static
aerodynamic forces. However, after the critical dynamic pressure is reached, the limit-cycle
amplitude expands rapidly. The amplitude is minimal near the leading edge, where it is
downward, and it increases steadily toward the trailing edge. This is due to the increase in
the limit-cycle amplitude, which causes the deformation to move toward the center. As
the mechanical properties of the metal and ceramic components are quite similar in this
example, the volume fraction index has less influence. However, as the volume fraction
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index increases and the proportion of the metal component increases, the total stiffness
of the FG plate also increases, leading to an increase in the flutter dynamic pressure. The
response of the FG plate is not always situated in the center between the metal plates and
ceramic plates, such that the maximum deformation of the FG plate at k = 0.2 is slightly
greater than that of the ceramic plates. This is because the responses of the plates are
impacted by both the mechanical and thermal stiffness terms, which are related to the
elastic modulus and thermal strains, respectively. Furthermore, at different volume fraction
indexes, the various proportions of ceramic and metal components have different properties
following a certain temperature increase, resulting in complex stiffness variations. At low
temperatures and given dynamic pressures, the critical dynamic pressure is not reached.
However, with an increase in temperature, the stiffness of the FG plate decreases, leading
to deteriorated stability. Gradually, the plate becomes dynamically unstable, and the
limit-cycle amplitude increases progressively.
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5. Discussion

In this study, a semianalytical aerothermoelastic analysis based on the energy method
is conducted, encompassing static aerothermoelastic, linear and nonlinear analyses of the
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panel flutter of functionally graded (FG) plates in thermal environments. The influence
of the thermal environment is focused on the thermal stiffness and thermal degradation
under different temperature fields. In addition, the impacts of the volume fraction index,
temperature increase, and dynamic pressure on the aerothermoelastic behaviors of the FG
plates are also investigated. The method can theoretically aid in investigating the influences
of different variables and in the efficient analysis and optimization of FG structures.

The results obtained using the semianalytical method in this paper are compared
to those obtained using the finite element method and with the results reported in the
literature. The comparison reveals a high degree of agreement, which provides evidence of
the effectiveness of the method presented in this paper. However, due to the limitations of
the conditions under which the work was conducted, the results have not been verified
experimentally. Consequently, further verification of the method can be achieved through
the ground vibration test of a FG plate and other methods.

6. Conclusions

(1) The paper presents a semianalytical analysis method for solving the unknown deflec-
tion coefficients to acquire the explicit solutions for static areothermoelastic responses
and to solve the eigenvalues for the coefficient matrix and a system of ordinary
differential equations in linear and nonlinear analysis for panel flutter, respectively.

(2) According to the static aerothermoelastic analysis, the aeroelastic effect reduces the
maximum deformation and the peak of the applied aerodynamic force. The coupling
effect between the orders of aerodynamic forces shifts the deformation of the structure
toward the leading edge and reduces the maximum deformation.

(3) FG plates exhibit sensitivity to thermal loading, particularly concerning the correlation
between stiffness and the volume fraction index. It is important to note that the ratio of
mechanical stiffness to thermal stiffness was not consistent at different temperatures,
as both of these stiffnesses progressively decrease with an increase in the volume
fraction index despite contributing to the total stiffness in opposite directions. At
lower temperatures, mechanical stiffness prevails, resulting in a decrease in total
stiffness with an increase in the volume fraction index.

(4) The general form of arbitrary temperature fields proposed in this paper can deal with
complex thermal loads and provides a foundation for practical aerothermoelastic
engineering problems. With the same temperature increase, the internal temperature
of the uniform temperature field plate is the highest, while the internal temperature
of the nonlinear temperature field plate is the lowest.
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Appendix A

The general form of thermal forces under arbitrary temperature fields can be acquired as

NT = − h
1 − ν

(
αmEm

N
∑

i=0

ci
i + 1

+ αcmEcm
N
∑

i=0

ci
i + 1 + 2k

+(αmEcm + αcmEm)
N
∑

i=0

ci
i + 1 + k

) (A1)
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When the properties of FGM are temperature-dependent, the thermal forces become
more complex in form, as shown in Equation (A2) where Tij (i = 1, 2, 3, j = 0, 1, 2) denotes
the intermediate coefficients, as shown in Equation (A3).

NT = − h
1 − ν

(

N
∑

i=0
ci(

T10

i + 1
+

T11

i + k + 1
+

T12

i + 2k + 1
) +
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i=0
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∑

j=0
cicj(

T20

i + j + 1
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T21

i + j + k + 1
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T22

i + j + 2k + 1
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+
N
∑

i=0

N
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cicjcl(

T30

i + j + l + 1
+

T31

i + j + l + k + 1
+

T32

i + j + l + 2k + 1
)

) (A2)

T10 = αm0Em0;
T11 = αm0Ec0 + αc0Em0 − 2αm0Em0;
T12 = αc0Ec0 − αm0Ec0 − αc0Em0 + αm0Em0;
T20 = αm0αm1Em0 + αm0Em0Em1;
T21 = αm0αm1Ec0 + αm0Ec0Ec1 + αc0αc1Em0 − 2αm0αm1Em0 + αc0Em0Em1 − 2αm0Em0Em1;
T22 = αc0αc1Ec0 − αm0αm1Ec0 + αc0Ec0Ec1 − αm0Ec0Ec1 − αc0αc1Em0 + αm0αm1Em0 − αc0Em0Em1 + αm0Em0Em1;
T30 = αm0αm1Em0Em1;
T31 = αm0αm1Ec0Ec1 + αc0αc1Em0Em1 − 2αm0αm1Em0Em1;
T32 = αc0αc1Ec0Ec1 − αm0αm1Ec0Ec1 − αc0αc1Em0Em1 + αm0αm1Em0Em1;

(A3)

The integration coefficients of the governing of nonlinear panel flutter are shown in
Equation (A4)

A = ∑
m
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wm

B = ∑
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Moreover, the position of the physical neutral surface differs from the one not concern-
ing the temperature-dependent elastic modulus of FGM, which can be expressed as

z0 =

Em0

2
+

Ec0 − Em0

k + 2
+

N
∑

i=0

Em0Em1ci
ik + 2

+
(Ec0Ec1 − Em0Em1)ci

(i + 1)k + 2

Em0 +
Ec0 − Em0

k + 1
+

N
∑

i=0

Em0Em1ci
ik + 1

+
(Ec0Ec1 − Em0Em1)ci

(i + 1)k + 1

(A5)
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