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Abstract: The European Union is committed to modernising and improving air traffic management
systems to promote environmentally friendly air transport. However, the safety-critical nature of
ATM systems requires rigorous user testing, which is hampered by the scarcity and high cost of air
traffic controllers. In this article, we address this problem with a novel approach that involves non-
experts in the evaluation of expert software in an A/B test setup. Using a transformation model that
incorporates auxiliary information from a newly developed psychological questionnaire, we predict
the performance of air traffic controllers with high accuracy based on the performance of students.
The transformation model uses multiple linear regression and auxiliary information corrections. This
study demonstrates the feasibility of using non-experts to test expert software, overcoming testing
challenges and supporting user-centred design principles.

Keywords: user evaluation; user study; air traffic management; statistics; transformation models

1. Motivation

In today’s push towards climate neutrality, the aviation industry is at a crossroads of
innovation. The European Union has set itself the goal of “modernising and improving
air traffic management technologies, procedures and systems” [1] to make air travel more
efficient and environmentally friendly [2]. However, this progress must also ensure the
highest safety standards from the very beginning. This requirement makes extensive
testing in the software development process essential. At the heart of this testing landscape
is the involvement of air traffic controllers (ATCs) themselves, whose expertise ensures
that the software meets operational realities and end-user needs. However, this critical
need for extensive user testing presents a major problem: the scarcity and high cost
of readily available ATCs is a significant barrier to achieving the required test volume.
The process of software prototyping, from design prototypes to functional prototypes to
pilot systems, requires an ever-increasing number of tests. However, these numbers often
exceed the availability of ATCs, in terms of both financial feasibility and organisational
logistics. A lack of ATCs for user testing, whether due to organisational constraints or
financial factors, limits the scope of testing and consequently reduces the depth of user
feedback. This reduction in user feedback not only increases the deviation from user-
centred development but also increases the risk of overlooking critical user perspectives in
the software development lifecycle. To counter this risk, an attractive solution is to broaden
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the testing pool by including individuals from outside the air traffic management (ATM)
domain. The advantages of this approach are obvious: the pool of test subjects can be
expanded and is not limited by the availability of air traffic controllers; moreover, any lack
of representativeness in terms of age, gender, etc., can be compensated for more easily if
the sample pool is larger. Unfortunately, the most important disadvantage is also obvious:
it is no longer the target group that is being tested.

The main goal of the study is to take advantage of the benefits of an extended user
group without accepting or at least minimizing its disadvantages. This article describes an
approach that makes it possible to partially replace experts with non-experts in A/B testing
and to exploit the advantages (see Figure 1) without having to accept the disadvantages.
Specifically, this article answers the following research questions:

1. Is it possible to perform a meaningful user test without the relevant user group?
2. How large is the error caused by using the wrong user group and how can it be minimized?
3. If the relevant user group is omitted (i.e., no ground truth is available), can the error

still be quantified?

Figure 1. The new approach presented here replaces some expert tests (no. 2, 3, 4, and 6, 7, 8;
shown in grey) with non-expert tests (shown in green). Although the wrong target group is used,
the results can be converted to the results of the expert tests (indicated by #) through statistical
transformations and corrections. If some tests are replaced in this way, and if non-experts are cheaper
and more readily available, this approach can both reduce costs and increase the number of tests.

2. Related Work

The EuroControl white paper on human factors highlights that current ATM systems
are primarily designed from a functional perspective and focus on presenting a specific set
of data to users. However, as Perott et al. note, the presentation of these data often follows
a technical rather than a user-centred perspective [3]. As a result, EuroControl advocates a
shift towards the user-centred design of ATM systems.

2.1. User-Centred Design

The user-centred design process is a highly iterative approach aimed at rapid proto-
typing and evaluation to ultimately develop a system that meets user requirements [4].
Research by König et al. demonstrates the suitability of this approach for ATC interface
design, as they applied the process to create a planning tool tailored to ATC [5]. Evaluation
plays a central role in user-centred design processes [6–9] and represents one of the four
phases of the design process [4]. Rubin and Chisnell stress the importance of focusing
on users and tasks at an early stage, especially in iterative testing [7]. Similarly, the Eu-
roControl white paper on human factors emphasises the importance of prototyping and
evaluation within the iterative design process [3].

2.2. Usability Testing

The evaluation phase of the user-centred design process requires usability evaluation
methods to assess the current system. Usability testing involves using real users to test a
specific system [7,10,11], with the main objective, as defined by Dumas and Redish, being
to improve the usability of the product [12]. Dillon suggests that conducting tests on an
application with a group of users performing specific, pre-defined tasks is widely regarded
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as the most accurate and reliable method for assessing the usability of the application [13].
In addition, Dumas and Redish point out the broad applicability of usability testing in
different domains and product types, with test procedures being tailored to the particular
context [12]. A comprehensive review by Sagar and Saha highlights usability testing as a
prominently used usability evaluation method and covers usability standards, evaluation
methods, metrics, and application domains [14].

In practice, usability testing typically involves users performing pre-defined task
scenarios, followed by questionnaires or surveys to gather users’ opinions or relevant
information [15]. For example, in the Bos et al. study, air traffic controllers tested a
prototype of an electronic flight strip system. Here, ATCs tested the prototype in two
traffic samples, and after each run with the prototype, they completed a questionnaire to
evaluate the prototype [16]. In addition, Bos et al. mention that for evaluation purposes,
debriefing sessions were held and analyses of simulator logs and video recordings were
conducted. Similar methods were used by Huber et al. [17], where ATCs tested prototypes
and provided feedback via questionnaires to evaluate interface and interaction concepts.

2.3. A/B Testing

While usability evaluation methods such as usability testing are used to assess a
specific system, quantifying the effects of design adjustments requires data-driven methods,
of which A/B testing is one of the most common [18]. A/B testing is a method used
to evaluate user experience by conducting controlled experiments in which users are
randomly exposed to different variants of a service or product [19,20]. Although A/B
testing typically involves two variants, it should be noted that any number of variants
can be tested, and with a well-designed experiment, the best-performing variant can be
identified. As described by Quin et al., A/B testing tests hypotheses in live software
systems, with the end users being the participants in the experiment [21]. The hypotheses
in this context represent variants of the software system being tested, and the metrics
resulting from the A/B test can be used to identify the more user-friendly variant.

A/B testing is widely used in various domains, especially in web, search engine and
e-commerce applications. In the web sector, it is mainly social media platforms and news
publishers that use A/B testing methods [21]. For example, Hagar and Diakopoulos [22]
conducted an interview study examining how newsrooms use A/B testing to select optimal
headlines and increase traffic to articles. Other examples include the Wikipedia Foundation,
which uses A/B testing to optimise a wide range of aspects [23–25].

2.4. Sampling and Error Correction

The results of statistical testing methods are highly dependent on the quality of
the underlying data and the sampling technique used. Errors in the data or inadequate
sampling procedures can lead to inaccuracies in the test results, requiring the application
of statistical correction methods.

Sampling error is a major source of error in statistical testing methods. As defined by
Milanzi et al., sampling error is “generally defined as the difference between the actual value
of the population characteristic and an estimate obtained from a sample. This estimate is
generally not equal to the true value of the characteristic because of sampling variability [. . . ]
and bias” [26]. To reduce sampling error, advanced sampling techniques such as stratified
sampling are often used. Stratified sampling involves dividing a population into smaller,
homogeneous groups called strata. These strata are organised on the basis of characteristics
or attributes shared by members of the population [27]. This division helps to prevent the
inclusion of extreme samples that may skew the results [28]. In test design, each stratum of a
stratified random sample is usually modelled separately to ensure accurate representation. For
example, in surveys, strata can be defined based on demographic characteristics such as age,
and the sample size for each stratum is determined independently of the survey according to
the corresponding age group of the population. An alternative approach to stratification has
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been proposed by Liberty et al. They use machine learning and regression analysis to address
the problem of stratification design [29].

Another effective strategy for reducing sampling error is the use of auxiliary informa-
tion. Bethlehem notes that auxiliary information can improve both the sampling design
and the estimation procedure itself [27]. Bethlehem goes on to provide a comprehensive
overview of survey methods, including sampling design, estimators, and the use of auxil-
iary information to reduce error and bias. Early studies by Raiffa and Schlaifer [30] and
Ericson [31] explored the use of auxiliary information in stratified sample surveys. More so-
phisticated approaches include the use of auxiliary information for two-stage sampling [32]
and for determining an optimal compromise allocation of sampling units in multivariate
stratified surveys [33]. Building on these foundations, Khan et al. [34], Varshney et al. [35]
and Gupta et al. [36] extended the use of auxiliary information to obtain integer optimal
solutions. In addition, Deville and Särndal [37] proposed calibration estimators in survey
sampling, using auxiliary information to improve the estimation of population statistics.
In subsequent work, Singh et al. [38] proposed a calibration approach for improved vari-
ance estimators in survey sampling, while Kim et al. [39] proposed various ratio estimators
in the calibration approach and Wu and Sitter [40] used auxiliary information in a model
calibration approach.

3. A/B Test Setup

The new approach is applied to a test configuration that corresponds to the classic A/B
test with experts. In order to control as many factors as possible in the new approach, an A/B
test that has already been successfully performed, documented and published in a previous
project will be repeated: a comparison of an ATC software (4D-NAVSIM, version 2023; VAST,
version 4.14 based on Unity 2019) user interface in 2D and in 3D [41,42]. The setup consists
of a prototype, the result of previous efforts [41,43–45], coupled with an existing air traffic
simulator [46], which enables realistic air traffic control simulations.

The test involved 28 participants, including eight ATCs (one female, seven male)
and twenty students (seven female, thirteen male) with experience in 3D video games.
The ATCs work at an international, Austrian Airport, while the students were enrolled in
media technology or computer science programmes at the University of Applied Sciences
St. Pölten and Graz University of Technology respectively.

3.1. Test Setup and Protocol

The test setup and protocol closely follow those of the previous “Virtual Airspace
and Tower (VAST)” project [42]. The tests were conducted in dedicated environments,
with ATCs being tested in Salzburg and students being tested at their respective universities.
To facilitate a smooth experimental scenario, the test setup consisted of a PC with a powerful
GPU, a 4K monitor for the prototype, and standard peripherals. In addition, the air traffic
simulator (ATS) ran on separate hardware, and interaction with the traffic simulator was
facilitated by voice control via a headset with a microphone.

After a general introduction to the test setting, participants completed a newly de-
veloped psychological questionnaire, which was later used as auxiliary information for
statistical correction. In a training phase, participants were then free to explore the pro-
totype. Subsequently, as in Rottermanner et al. [42], two test scenarios—Task 1 (2D) and
Task 2 (3D)—were performed for 20 min each, with participants using voice control to
manage air traffic. The objectives mirrored those of Rottermanner et al. [42], focusing on
efficient and safe aircraft landing with a test scenario based on data from Frankfurt airport.
As all ATC participants work at an Austrian airport, Frankfurt Airport ensures that all
participants are confronted with an unknown air traffic control scenario and environment.

The tasks also remained unchanged; i.e., in Task 1, the 2D task, participants were
restricted to an aerial (bird’s eye) view of air traffic, while in Task 2, the 3D task, participants
were allowed to adjust the viewing angle within a specified range, excluding the aerial
option. As in Rottermanner et al. [42], the NASA Task Load Index (NASA TLX) [47] to
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assess workload and the Situational Awareness for SHAPE questionnaire (SASHA_Q) [8,48]
to assess situational awareness were completed by the participants after each task.

3.2. Flight Data

Similar to VAST, the test used real-time flight data from Frankfurt Airport to ensure that
participants were exposed to a complex and realistic air traffic control scenario. The data,
recorded over one day, included departing and arriving air traffic and were used at four
different start times for different scenarios. One scenario was used for training, two were
used for the test tasks and one was used as a backup, with all scenarios falling within the
12 pm (noon) to 2 pm time window. This approach prevented participants from anticipating
flight behaviour in subsequent tasks [42].

3.3. Performance Measures

During each task, several performance measures were tracked, including the number
of aircraft taken over, the time to take over, the number of landings, the deviations from
simulation-based optimised routes and landing times, the altitude and distance of unlanded
aircraft, the conflicts and the instructions given. These measures were combined to create
task-related key performance indicators (KPIs) for each participant. As the simulated ATS
traffic was taken as the optimal case, the subjects’ performance measures were related to
the simulated performance of the ATS. Table 1 lists all key performance indicators.

Table 1. These key performance indicators were used to assess the performance of participants within
the test scenarios and were further integrated into the transformation model to establish a mapping
between ATCs and students.

KPI Description

#1 Taken over (#) Number of planes taken over by the test subject
#2 Taken over (%) Percentage of optimal number of taken-over planes

#3 Time until takeover total (mm:ss) Duration from the radio message from the aircraft to
acceptance by the test subject summed across all planes

#4 Time until takeover/plane (mm:ss) Duration from the radio message from the aircraft to
acceptance by the test subject per plane

#5 Landings 1 (#) Number of planes landed by the test subject

#6 Landings 2 (#) Number of non-landed planes already in position to land
with distance to the runway < 10 km and height < 1000 ft

#7 Landings 3 (#) Number of non-landed planes already in position to land
with distance to the runway < 10 km and height < 5000 ft

#8 Calculated Landings (#)
Number of planes landed by the test subject plus planes
close to landing (Landings 2 and Landings 3); calculated via
Landings 1 + 1

2 Landings 2 + 1
4 Landings 3

#9 Optimum Landings (%) Percentage of optimum of landed planes
#10 Calculated Optimum Landings (%) Percentage of optimum of calculated landings
#11 Time deviation to landing total (mm:ss) Total deviation from the simulated landing times of the ATS

#12 Time deviation to landing/plane (mm:ss) Deviation per plane from the simulated landing time of the
ATS

#13 Distance deviation to landing total (km) Total deviation from the simulated routes of the ATS
#14 Distance deviation to landing/plane (km) Deviation per plane from the simulated route of the ATS
#15 Height not landed total (ft) Total height of the non-landed planes
#16 Height not landed/plane (ft) Average height per plane of the non-landed planes
#17 Distance not landed total (km) Total distance of the non-landed planes to the runway

#18 Distance not landed/plane (km) Average distance per plane of the non-landed planes to the
runway

#19 Distance not landed/plane (%) Average distance per plane of the non-landed planes to the
runway in relation to the ATS simulation

#20 Conflicts (#) Number of losses of separation
#21 Instructions/plane (#) Number of instructions given by the test subject per plane
#22 Instructions total (#) Total number of instructions given by the test subject
#23 NASA TLX Average ([0, 100]) Average of NASA TLX results
#24 NASA TLX Average (%) Percentage of optimal NASA TLX score
#25 SASHA_Q Average ([1, 5]) Average of SASHA_Q results
#26 SASHA_Q Average (%) Percentage of optimal SASHA_Q score
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4. Statistical Error Correction

The basic idea of the new approach is to deliberately introduce a systematic statistical
error into the study and then correct it. Under normal circumstances, it is not a good idea
to conduct a user test with the wrong target group. However, if the target group is difficult
to reach, it may make sense—not for statistical reasons, but for economic, organisational or
other reasons—to deliberately introduce this error and then correct it.

The essence of this study is to involve non-domain individuals in the process of testing
expert software. To achieve this, the non-domain individuals need to be mapped into
the domain of the domain experts. By using auxiliary information, the approach aims to
minimise the introduced error of testing expert software with non-domain individuals.

The approach can be easily illustrated for better understanding. Figure 2 provides
a visual representation of the main idea of the approach. Basically, the approach aims to
construct a model that facilitates the transfer of test results from non-domain experts to
domain experts by using auxiliary information. In Figure 2, domain experts are denoted
as ATCi and non-domain individuals are denoted as Sj. Both non-domain individuals
and experts are assessed using a single task (Task 1) and a psychological questionnaire
that serves as auxiliary information. A linear model is then developed to establish the
relationship between the Task 1 results and the auxiliary information of each domain
expert (ATCi) on the one hand and the Task 1 results and the auxiliary information of all
non-domain individuals on the other hand. This model consists of a weight vector for each
expert; each vector contains the weights to optimally represent an individual expert by
non-experts in terms of a linear regression model. Consequently, the model can be applied
to the Task 2 performances of the non-experts to predict the Task 2 KPIs of the experts.

Figure 2. The main part of the transformation model is a mathematical representation of each expert
(resp. the expert’s KPIs) by a weighted sum of non-experts (resp. their KPIs).

In an actual application scenario, the tests would now be completed (and the controller
testing effort saved for Task 2), but in order to not only statistically prove but also clearly
demonstrate the accuracy of the predictions, the controller test results are also recorded in
Task 2 and compared with the model predictions.

In summary, Task 1 scores are used in conjunction with auxiliary information to create
a linear mapping model from non-domain individuals to the expert. The Task 2 scores of
the non-domain individuals, together with their auxiliary information, are then used to
predict the Task 2 scores of each domain expert.

4.1. Auxiliary Information

In this new approach, auxiliary information is used to counteract the introduced
systematic error in the mapping of non-experts to experts. A psychological questionnaire
is used as the auxiliary information. In order to create the most suitable psychological
questionnaire for providing auxiliary information in the novel mapping process, a se-
ries of workshops were conducted with psychologists to define the requirements of the
auxiliary information.

A number of characteristics were considered essential to the mapping process for the
auxiliary information questionnaire:
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1. For procedural reasons, the questionnaire should not provide free text fields for responses
but should only allow responses on a numerical scale or be directly mappable to such
a scale. Furthermore, as the questionnaire was to be included in a user test, it was
imperative that the test could be completed within a limited time (in this case 45 min).

2. The test had to cover a wide range of ATM or ATM-related topics without being too
specific, as it was intended to be auxiliary information. If the test was too specific (e.g., a
question that all ATCs answered in the same way), the information value of the question
would be low; if all non-experts also answered in the same way, the information value
would be non-existent. From a statistical point of view, the answers to the questions
should ideally have a normal distribution for both the experts and the non-experts.
The additional information is not used to select study participants who match the
requirement profile of air traffic controllers as closely as possible; participants with a
negative correlation to the requirement profile (laypersons who, in extreme cases, do the
opposite of professionals) also provide valuable information.

3. Psychological interpretation of the psychological test results was not required for
the purposes of this study; i.e., it did not have to be a validated psychological test.
The aim is not to create personality or character profiles, and although the tests are
conducted anonymously, the questionnaire should not contain any questions that
could be ethically or legally problematic.

4. Aspects already covered by the KPIs, in particular the workload and situational
awareness questionnaires used, should not be included in this psychological test.

Following several sessions with multiple psychologists, a consensus was reached.
The final questionnaire emphasizes various aspects crucial for successful performance in
the ATC profession. These encompass personality traits, such as decisiveness, responsi-
bility and teamwork skills, as well as stress management and processing, concentration,
cognitive abilities, intelligence and work ethic [49,50]. The questionnaire consisted of
75 questions. Each question was tailored to focus on specific aspects. Questions focusing
on the personality traits aspect are based on the Big Five model [51], which includes the
five dimensions: surgency, agreeableness, conscientiousness, emotional stability and in-
tellect. For example, questions #1 “I tend to be spontaneous.”, #25 “I have a passion for
collecting.” and #32 “I love rituals.” are taken from the psychological questionnaires in the
categories of personality traits (#1), stress management and processing (#25) and work ethic
(#32). In addition to cognitive and perceptual skills, there are questions designed to assess
concentration. The entire questionnaire can be found in Appendix A. It also comprehends
two tests (see Appendices A.2 and A.3). As each test is weighted in the same way as each
of the 75 questions, the two tests play a minor role. Since the influence of the tests (as well
as the individual questions) is an open research question, we opted for more questions and
fewer tests due to the time constraints of the complete A/B test setup.

4.2. Transformation Model

As illustrated in Figure 2, each participant is represented by task scores combined
with auxiliary information; Specifically, the data for each participant consisted of 26 KPIs,
6 NASA TLX scores, and 8 SASHA_Q scores. The auxiliary information included 77 scores,
of which 75 scores were from the psychological questionnaire and 2 scores were from the
additional psychological tests focused on assessing concentration, cognitive and perceptual
abilities. Combining the task results and the auxiliary information resulted in 117 values
per participant. An overview of how the samples are split into the respective components
is given in Table 2.

Due to the different ranges of the KPIs and questionnaire responses, normalisation
was required. All 117 samples were normalised to the interval between zero and one using
the equation

xnorm =
x − min

max−min
. (1)
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Table 2. Each test participant and the corresponding test results consist of 117 values. This table
shows how they are allocated to the different components of the test.

Component Number of Values

KPIs 26
NASA TLX questionnaire 6
SASHA_Q questionnaire 8
Psychological questionnaire (auxiliary information) 77

For continuous variables, such as the KPIs, min and max refer to the minimum and
maximum across all tasks and subjects for the specific variable. For discrete variables, such as
the questions of the psychological questionnaire, the NASA TLX or the SASHA_Q question-
naire, min and max refer to the minimum and maximum allowed values for the questionnaire.
In addition, continuous variables were padded by 10% of their respective min-max range.

The model itself is based on multiple linear regression (MLR) that is carried out
with p = 19 independent variables; one independent variable per student, with one
student removed due to incomplete test results. If Yi is the score vector of the ATC i (with
117 dimensions as listed in Table 2) and Xj is the score vector of the non-expert student j,
then the MLR model consists of the weights βi,j and the errors εi according to the equation

Yi =
19

∑
j=1

βi,j · Xj + εi (2)

In general, Equation (2) cannot be solved because it is overdetermined. This is exactly
the purpose of auxiliary information. Instead of an exact solution, which is not desirable for
numerical reasons and not expected for modelling reasons, a least squares approximation
is used. Normal equations and Cholesky decomposition give least squares estimates for
the student weights β̂ij and the offsets ε̂i, (i = 1, . . . , 8 and j = 1, . . . , 19).

The predictions are now calculated by multiplying the results of Task 2 of the non-
expert students by the previously calculated weights and adding them together to predict
the results of each individual expert.

As the predictions are calculated on normalised data and are therefore in normalised
form, denormalisation must be applied. Denormalisation is the reverse process of normali-
sation and is achieved with the following equation:

xdenorm = xnorm · (max−min) + min, (3)

where min and max are the same minima and maxima used in the normalisation process.
The quality of fit of the standard MLR models is assessed by the coefficient of determina-

tion R2. This coefficient, introduced by Wright [52], generally indicates how well the regression
model explains the data. More specifically, R2 can be interpreted as the proportion of variance
in the data that is explained by the regression model. Thus, an R2 value of 0.75 would indicate
that 75% of the variance in the data can be explained by the regression model.

The entire transformation model can be evaluated using the quality of fit using the coeffi-
cient of determination; for predictions based on such a model, confidence intervals are provided
by Olive [53]: the 100(1 − δ)% confidence interval for a prediction ŷi is calculated via

ŷi ± tn−p−1,1− δ
2
σ2

√
1 + xT

i (XTX)−1xi (4)

using the t-distribution, the estimated variance σ2 of the errors εi, and the input values xj.

5. Results

To illustrate and demonstrate the new approach, we repeated an A/B test of an earlier
user study involving air traffic controllers.
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5.1. “Virtual Airspace and Tower”

In the specific example of repeating the user interface A/B test from the previous
“Virtual Airspace and Tower (VAST)” project [42], the application of the new method is as
follows: Task 1 and the psychological test (auxiliary information) were completed by both
the expert ATCs and the non-expert students. After the values were normalised, the model
parameters were determined using the normal equation and the Cholesky decomposition.
Table 3 shows the model parameters. This table also includes statistics such as the minimum
(min), maximum (max), mean, standard deviation (std.-dev.), and variance of the weights
(ε̂, β̂1, β̂2, . . . , β̂19) for each model.

Table 3. The least squares estimates ε̂, β̂1, . . . , β̂19 represent the multiple linear regression (MLR)
models to represent the results of experts by the results of non-experts.

Model ATC 1 ATC 2 ATC 3 ATC 4 ATC 5 ATC 6 ATC 7 ATC 8

ε̂ 0.1354 0.1043 0.1536 0.2074 0.3021 0.2366 0.1571 0.1873
β̂1 −0.2409 −0.0143 −0.1072 −0.1475 −0.0673 0.0317 −0.0244 -0.0591
β̂2 0.2460 0.1327 0.3101 −0.1876 −0.1702 0.1251 0.1803 −0.0831
β̂3 0.3458 −0.0361 0.0436 −0.0904 −0.0125 0.0149 0.1451 0.0362
β̂4 0.0775 −0.1603 0.0008 0.2113 −0.0302 −0.2141 −0.0226 0.0626
β̂5 −0.0026 0.0228 −0.0076 −0.0375 −0.0083 0.0658 0.0059 0.1014
β̂6 0.1586 0.0884 0.1352 0.1280 0.0482 0.2448 0.0550 0.0855
β̂7 0.0254 0.0143 −0.1737 −0.2004 −0.1000 0.0210 −0.1031 0.0233
β̂8 −0.0843 −0.0230 −0.1020 0.2365 −0.1196 −0.0099 −0.1451 0.1066
β̂9 −0.1471 −0.0164 0.0134 0.0755 0.1821 −0.0203 −0.0790 −0.0756
β̂10 −0.3673 −0.2102 −0.2407 −0.2007 −0.4335 −0.3134 −0.3361 −0.2876
β̂11 −0.0477 −0.0983 0.0192 −0.1371 −0.0023 −0.0976 −0.1815 −0.1058
β̂12 0.1427 0.0039 0.1100 0.1477 −0.0613 0.2395 0.1955 0.2445
β̂13 0.0050 0.1125 −0.0561 −0.0608 0.2664 −0.0121 −0.0247 −0.0120
β̂14 0.2883 0.3799 0.2121 0.0107 0.3367 0.1448 0.4769 0.0188
β̂15 0.1091 −0.0761 0.0741 −0.0498 0.1446 −0.1154 −0.1304 0.0282
β̂16 −0.1307 0.0401 0.0447 0.2868 −0.0672 0.0309 −0.0749 0.1060
β̂17 0.2900 0.3036 0.3321 0.4234 0.2471 0.4114 0.4032 0.3903
β̂18 −0.0467 0.0720 −0.1378 0.2000 0.2054 −0.0058 0.1979 0.0681
β̂19 0.1927 0.2922 0.2627 0.1321 0.0921 0.0819 0.1585 0.0749

min −0.3673 −0.2102 −0.2407 −0.2007 −0.4335 −0.3134 −0.3361 −0.2876
max 0.3458 0.3799 0.3321 0.4234 0.3367 0.4114 0.4769 0.3903

mean 0.0428 0.0435 0.0385 0.0389 0.0236 0.0327 0.0366 0.0380
std.-dev. 0.1859 0.1485 0.1564 0.1787 0.1772 0.1596 0.1962 0.1361
variance 0.0345 0.0220 0.0244 0.0319 0.0314 0.0254 0.0385 0.0185

Inspection of the Table 3 reveals a visually uniform distribution of weights in the range
[−0.5, 0.5] with no gross outliers, although no range has been enforced by any constraints.
The minimum weight, β̂10 = −0.43356191, corresponds to ATC 5, while the maximum
weight, β̂14 = 0.47690763, belongs to ATC 7. Since the selection of non-experts is not
limited to people who are as similar as possible to the experts, negative weights also occur.
This may lead to invalid values in the prediction and extrapolation of future test results,
but it does not restrict the selection of non-experts in any way: an advantage that may
justify a possible extrapolation error that does not necessarily occur. If this is not desired,
non-experts with negative coefficients—such as β̂10—should be removed.

In statistics, the coefficient of determination R2 is used to determine the quality of fit
of a model. Specifically, R2 is the proportion of variation in the dependent variable that can
be predicted by the independent variables. In this way, it provides a measure of how well
the observed results are replicated by the model, based on the proportion of total variation
in the outcomes explained by the model. Table 4 shows how well each ATC’s test results
can be described by the model of non-experts.

Pearson’s correlation coefficients are calculated between the dependent variable y
and the independent variables (x1, x2, . . . , x19), denoted as ry,x1 , ry,x2 , . . . , ry,x19 . In ad-
dition, the correlations between the independent variables themselves are calculated
(rx1,x2 , rx1,x3 , . . . , rx18,x19 ). The correlation matrix illustrates these coefficients (see Figure 3),
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where the first column of the correlation matrix shows the correlations between the de-
pendent variable y and each independent variable, while the remaining columns show the
Pearson correlation coefficients between all independent variables.

Table 4. The coefficients of determination R2 and R2
adj can be interpreted as the proportion of variance

in the data that is explained by the regression model. The adjusted R2
adj takes the model size into

account; the not-adjusted coefficient of determination R2 automatically increases when additional
variables are added to the model.

Coefficient of
Determination ATC 1 ATC 2 ATC 3 ATC 4 ATC 5 ATC 6 ATC 7 ATC 8

R2 0.6136 0.6555 0.5458 0.4499 0.5154 0.5124 0.5397 0.5546
R2

adj 0.5379 0.5880 0.4569 0.3421 0.4205 0.4169 0.4495 0.4673

Figure 3. This matrix shows the Pearson’s correlation coefficients between dependent and
independent variables.

In Figure 3, the highest correlation between the dependent variable y and the inde-
pendent variables can be seen for x17 with ry,x17 = 0.57. Furthermore, x3 and x14 have
correlations with the dependent variable greater than 0.5. Notably, x10 is the only inde-
pendent variable that has a negative correlation with y as ry,x10 = −0.15. Among the inde-
pendent variables, the highest correlation coefficient is observed between x12 and x15 with
rx12,x15 = 0.66. Other independent variables with correlation coefficients greater than 0.6
include rx2,x12 = 0.6 and rx3,x9 = 0.61; the only negative correlation is observed between
x10 and x13 with a value of rx10,x13 = −0.046. The five smallest correlations in absolute
terms are (in decreasing order) rx3,x5 = 0.071, rx9,x10 = 0.069, ry,x5 = 0.068, rx10,x13 = −0.046,
and rx3,x10 = 0.034.

The model listed in Table 3 is used to transform the results of Task 2 from the non-
expert students to the expert ATCs.

5.2. Transformation Results

The results of the transformation are summarised and listed in Table 5. To illustrate
the quality of the transformation, the ATCs also performed Task 2 (observation), and these
averaged results are compared with the averaged predictions using the transformation
model (prediction) including and excluding the correction using auxiliary information.
To facilitate comparison between the KPIs, the relative errors of the normalised values
(according to Equation (1)) are also given. As the relative errors depend on the size of the
range interval, i.e., the minimum and maximum values of all test results by ATCs and
non-ATCs, the listed percentages are sensitive to outliers. Nevertheless, it makes sense
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to normalise the data in order to be able to compare the error values of the individual
categories, which can differ by orders of magnitude.

Table 5. The transformation model uses the non-expert (student) results to predict the expert (ATC)
results. Compared to the real test results of the experts in Task 2, the transformation model achieves an
accuracy with a relative error of less than 1% in 1 out of 26 KPIs, a relative error between 1% and 5% in 9
out of 26 KPIs, a relative error between 5% and 10% in 5 out of 26 KPIs and a relative error greater than
10% in 11 out of 26 KPIs. The main concept of the transformation model is based on auxiliary information.
To illustrate its power, the transformation results based on a linear model without auxiliary information
have been included as well.

KPI Observation Without Aux. Info. With Aux. Info. Improvement
Prediction Error Prediction Error

Taken over (#) 9.750 10.597 14.2% 9.565 3.1% +11.1%
Taken over (%) 0.886 0.963 14.2% 0.870 3.1% +11.1%
Time until takeover total (mm:ss) 172.625 −275.687 19.9% 521.359 15.5% +4.4%
Time until takeover/plane (mm:ss) 17.750 −39.838 21.4% 59.750 15.6% +5.8%
Landings 1 (#) 4.000 5.573 32.5% 3.874 2.6% +29.8%
Landings 2 (#) 0.500 1.648 95.8% 0.796 24.7% +71.1%
Landings 3 (#) 1.625 2.114 13.6% 1.232 10.9% +2.7%
Calculated Landings (#) 4.656 6.830 37.7% 4.483 3.0% +34.7%
Optimum Landings (%) 0.80 1.115 32.4% 0.775 2.6% +29.8%
Calculated Optimum Landings (%) 0.776 1.155 34.6% 0.764 1.1% +33.5%
Time deviation to landing total (mm:ss) −73.875 −17.069 6.3% 14.316 9.8% −3.5%
Time deviation to landing/plane (mm:ss) −10.250 15.990 6.9% 2.711 3.4% +3.5%
Distance deviation to landing total (km) 4.929 4.545 0.3% 8.494 3.0% −2.7%
Distance deviation to landing/plane
(km) 2.392 0.857 4.0% 2.122 0.7% +3.3%

Height not landed total (ft) 46,901.500 57,265.587 25.6% 50,987.712 10.1% +15.5%
Height not landed/plane (ft) 6671.031 9012.775 52.6% 7111.841 9.9% +42.7%
Distance not landed total (km) 132.568 156.490 10.3% 171.081 16.6% −6.3%
Distance not landed/plane (km) 18.904 25.167 29.7% 23.018 19.5% +10.2%
Distance not landed/plane (%) 0.868 0.761 11.9% 0.835 3.7% +8.2%
Conflicts (#) 0.375 −2.346 28.4% 1.315 9.8% +18.6%
Instructions/plane (#) 5.924 4.149 28.4% 4.460 23.4% +5.0%
Instructions total (#) 57.250 46.359 20.6% 42.990 27.0% −6.4%
NASA TLX Average ([0, 100]) 37.396 34.796 2.8% 54.647 18.5% −15.7%
NASA TLX Average (%) 0.626 0.723 2.8% 0.521 11.2% −15.7%

mental 56.562 20.909 35.8% 65.717 9.2% +26.6%
physical 31.250 85.875 54.6% 51.462 20.2% +34.4%
temporal 37.188 37.900 0.7% 66.266 29.1% −28.4%
performance 27.500 41.185 13.7% 44.414 16.9% −3.2%
effort 47.188 29.451 17.7% 71.225 24.0% −6.3%
frustration 24.688 1.848 22.8% 37.308 12.6% +10.2%

SASHA Q Average ([0, 5]) 3.438 4.012 43.0% 3.507 5.2% +37.8%
SASHA Q Average (%) 0.688 0.802 43.0% 0.701 5.2% +37.8%

manageable 4.750 6.664 38.3% 3.531 24.4% +13.9%
next steps 4.625 6.562 38.8% 3.768 17.2% +21.6%
heavy focus 2.125 2.174 1.0% 3.052 18.5% −17.5%
find info 2.500 −1.420 78.4% 1.116 27.7% +50.8%
valuable info 3.375 5.508 42.5% 3.771 7.9% +34.6%
attention 3.000 3.940 18.8% 4.179 23.6% −4.8%
understanding 3.500 3.431 1.3% 4.172 13.4% −12.0%
awareness 3.625 3.866 4.8% 2.979 12.9% −8.1%

The transformation model deliberately allows for negative coefficients (see Table 3); if all
non-experts with negative weights had been removed (as discussed above), the number of
subjects would have been significantly reduced. Only 5 of the 19 non-experts have consistently
positive weights. As already mentioned, this increases the likelihood of semantically unrea-
sonable values in the extrapolation/prediction (e.g., a negative prediction when in reality
only semi-positive values are meaningful and possible). Nevertheless, the transformation
model is convincing. It shows improvements over models without auxiliary information.
The improvement column lists the average improvement (reduction in errors) in percentage
points of the relative errors through the use of auxiliary information. The use of auxiliary
information improves the prediction results by reducing the error by 12% on average.

In the intended application scenario of the transformation model—replacing unavail-
able or difficult-to-reach air traffic controllers in the test with an alternative target group for
cost and/or organisational reasons—the real observations are not known. The proposed
interpretation of an A/B test prediction can be based on the confidence intervals (see
Equation (4)): In an A/B test setting, the relevant question is whether version A or version
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B is better. If the test results (KPIs) of the ATCs in Task 1 t1 and their prediction for Task 2 t2
differ, the confidence interval t2 ± con f (δ) can be determined depending on the confidence
level δ in such a way that a separation t1 ̸∈ t2 ± con f (δ) with maximum delta is ensured.
This view allows the test question to be answered in terms of how confident you can be
that one version (A or B) is better than the other and that the test result is not random. Such
a representation is shown in the appendix in Tables A1 and A2.

The results presented in “Design and Evaluation of a Tool to Support Air Traffic
Control with 2D and 3D Visualizations” [42] could not be reproduced completely; in this
repeated study, the A/B Test showed significant differences between Task 1 (2D) and Task
2 (3D) according to Mann–Whitney-U-tests only for

• Distance not landed/plane % [U = 59, p-value = 0.003],
• Distance not landed total (km) [U = 7, p-value = 0.007],
• Distance not landed/plane (km) [U = 8, p-value = 0.010].

Inspecting the KPIs in the Tables A1 and A2 reveals four KPIs showing high-confidence
percentages across all models, namely “Landings 2”, “Distance not landed total (km)”,
“Distance not landed/plane (km)” and “Distance not landed/plane (%)”.

Unfortunately, this study suffers from the same problem that it seeks to solve: the
statistical tests could not be carried out to the necessary extent with ATC subjects. Despite
the severe limitation of having only eight ATC participants, the transfer model was able
to show that the essential statements of the A/B test could be generated with the non-
expert students.

6. Conclusions

The aim of this new approach was to test the feasibility of involving non-experts in the
evaluation process of expert software, focusing specifically on whether a transformation
model could be constructed to predict test results for ATCs using students’ test results.
Using auxiliary information in the form of a newly developed psychological questionnaire,
we constructed a novel transformation model from the students’ Task 1 results to the Task 1
results of each ATC. We then predicted Task 2 results for each ATC based on the students’
Task 2 results.

Using multiple linear regression to create the transformation model, we achieved
accurate predictions for the majority of the defined KPIs for Task 2 for the ATCs using
the students’ Task 2 performance. In other words, the first research question, whether
it is possible to perform a meaningful user test without the relevant user group, can be
answered in the affirmative. The errors of the averaged predictions were generally small,
with the majority of KPIs showing errors of less than 10% and all KPIs showing errors of
less than 30%. The examination of the quality of fit revealed coefficients of determination
between 45% and 66%. On average, the coefficients of determination resulted in 54.8% of
the variance in the dependent variable being accounted for by the independent variables,
underlining the predictive power of the approach. This example answers the second
research question about the expected errors.

The selection of the questionnaire remains an open question; to the best of our knowl-
edge, we suspect that the questionnaire is only dependent on the field of application (air
traffic management). This is an example of constructive error correction for error mini-
mization. However, further research is needed to confirm this hypothesis. Furthermore,
the number of auxiliary questions is an open research question. On the one hand, a com-
parison of models with and without auxiliary information indicates that the prediction
improves when some auxiliary information is used. In our example, the prediction im-
proved by 12% on average (see Table 5). On the other hand, the auxiliary information and
the KPIs to be predicted are part of the same transformation model. As the number of
auxiliary questions increases, the impact of the KPIs on the transformation will diminish,
potentially reducing the prediction accuracy. The optimal number of additional questions
and tests is unknown and remains an open research question. Furthermore, all questions
and tests are used with a uniform weight in the transformation model, despite the pos-
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sibility that some questions may be more important than others. It is also unclear which
questions are the most important ones.

A notable restriction of this study was the limited size of the test pool. Ideally, the pro-
posed approach would be validated with a larger pool involving more ATCs and students.
However, this is limited by the availability of ATCs for testing purposes—the very limita-
tion that this approach aims to alleviate. Even if the error cannot be avoided, it can at least
be limited by confidence intervals; i.e., you do not have to blindly trust the transformation
model. This answers the third research question about error quantification.

In summary, our results highlight the potential of the presented approach to improve
the evaluation process of expert software by involving non-experts in the testing phase.
By developing and validating a novel transformation approach that incorporates auxiliary
information from a newly developed psychological questionnaire, we have demonstrated
the ability to predict the performance of ATCs based on students’ test scores. The approach
allows testing with non-experts, while ATCs are only needed at the beginning to build the
transformation model. However, as shown in Figure 1, we recommend involving experts
in testing at key milestones and, at the end of the software development process, validating
the end result.

The new approach not only avoids the challenge of obtaining a sufficient number of
ATCs for testing but also increases the frequency of testing while ensuring that a wider
range of perspectives are incorporated into the evaluation process. With this approach,
more tests can be performed for the same financial value, resulting in better-tested and more
user-centred software, in line with the push for user-centred design by EuroControl [3].
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Appendix A. Auxiliary Information

Appendix A.1. Questionnaire

The following questions were presented to the test participants with the answer
options of agreement and disagreement according to the scale:

1. not true at all
2. do not agree
3. rather disagree
4. disagree a little
5. neither
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6. somewhat agree
7. rather agree
8. quite true
9. very true
10. completely agree

The original questionnaire was written in the German language; the following ques-
tions are a translation that is as close to the original as possible:

1. I tend to be spontaneous.
2. I enjoy getting to know other people.
3. I enjoy giving presentations to large groups.
4. I prefer to create a cosy seclusion at home rather than going out and socialising.
5. I am an optimist.
6. In my work, I try to plan ahead as much as possible.
7. I face challenges with optimism.
8. I prefer to solve problems at work independently rather than as part of a team.
9. My favourite job is one where I can take on a high level of responsibility.
10. I really enjoy monotonous professional activities.
11. I usually make my decisions impulsively and on instinct.
12. I adapt my work activities immediately according to the situation at hand.
13. I am easily persuaded by others.
14. I like to be the centre of attention.
15. I always work purposefully to achieve my work results.
16. To cope with more difficult tasks, I seek the approval of a colleague to be on the safe side.
17. Mastering an unfamiliar professional task causes me discomfort and anxiety.
18. If necessary, I can assign clear tasks in a work context.
19. I can concentrate on monotonous tasks over a longer period of time.
20. I am depressed after challenging tasks at work.
21. I am able to communicate easily in stressful situations.
22. A stressful job is unimaginable for me.
23. People who have achieved more professionally than I have are enviable.
24. I am very resilient in my job.
25. I have a passion for collecting.
26. It makes me uncomfortable if I don’t have a situation under control.
27. I’m good with numbers.
28. I can relax after strenuous activities with exercise.
29. I find some traffic rules nonsensical.
30. I don’t follow rules that don’t make sense to me in certain life situations.
31. Standardised work processes are important to me.
32. I love rituals.
33. I see stressful situations as a kind of obstacle for me.
34. I see challenging situations as an opportunity.
35. My abilities unfold in situations that trigger stress.
36. Complex work situations should be dealt with as part of a team.
37. I am able to recognise patterns and structures in certain situations or activities where

others do not see them.
38. I relax when I do sport.
39. Music is a form of relaxation for me.
40. I have to work to earn a living, but I wouldn’t do it if I didn’t have to.
41. I enjoy learning something new.
42. I take regular breaks from strenuous activities.
43. I am a creative person.
44. I play at least one musical instrument well.
45. I put other people’s needs before my own.
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46. I avoid conflicts.
47. I often forget what I wanted to do a few minutes ago.
48. I get angry quickly if something doesn’t fulfil my wishes.
49. I’m not allowed to show emotions at work.
50. Sometimes I tend to let my feelings run wild.
51. I have suffered from illnesses for no apparent reason.
52. I tend to carry out tasks quickly, but with mistakes
53. I always stand behind the decisions I make.
54. I have high expectations of myself.
55. It is very important to me that I am always committed.
56. I can change work steps quickly if necessary.
57. I often experience the feeling of losing control in my everyday life.
58. It wouldn’t be a problem for me to work a lot of overtime.
59. In difficult situations, I take a solution-orientated approach.
60. I don’t want others to realise when I can’t do something.
61. I like working alone.
62. I can easily prioritise my work.
63. I can reduce stress by using relaxation techniques.
64. I am able to concentrate on work processes despite a heavy workload.
65. I take my anger out on bystanders.
66. As soon as I get too stressed at work, I take a coffee or smoke break to relax again.
67. I find it very easy to listen.
68. If necessary, I can easily manage a clear division of tasks.
69. I find it very difficult to make a short-term decision under great pressure.
70. Treating colleagues respectfully and appropriately in the workplace is not particularly

relevant to me.
71. A job where you have to speak English is out of the question for me.
72. I am able to empathise with the feelings and sensitivities of another person.
73. After a stressful day, I prefer to relax with my family or friends.
74. I can’t switch off after a stressful day.
75. I am very good at dealing with criticism.

Appendix A.2. Psychological Test #1

Indicate the frequency of occurrence of the target motif by marking (crossing out) the
target motif. You have 20 s to complete this task.
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       Target motif 

        

 
 
 

         

         

         

         

         

         

         

         

         

         

         

         

         
  

Appendix A.3. Psychological Test #2

Please identify and mark (using a highlighter!) all “ä” letters in a maximum of 20 s. Make
sure you do not make any mistakes and process as many correct characters as possible.
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Appendix B. Detailed Transformation Results
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Table A1. Thetransformation model is able to calculate a prediction of the result for each KPI and for each ATC. To interpret the result—to decide which version is
better in an A/B test—the confidence level is determined that the test result prediction of one version being better than the other is not a coincidence.

KPI T1 Obs. ATC 1 ATC 2 ATC 3 ATC 4

Mean T2 Pred. ± Conf. % T2 Pred. ± Conf. % T2 Pred. ± Conf. % T2 Pred. ± Conf. %

Taken over # 10.125 9.557 0.491 20.0 9.561 0.51 25.0 9.089 1.033 45.0 9.648 0.33 10.0
Taken over % 0.92 0.869 0.045 20.0 0.869 0.046 25.0 0.826 0.094 45.0 0.877 0.03 10.0

Time until takeover total 209.625 432.808 189.579 20.0 411.18 196.767 25.0 408.771 168.424 20.0 738.025 461.484 35.0
Time until takeover/plane 20.75 50.38 28.65 25.0 43.49 18.78 20.0 48.038 25.453 25.0 88.283 64.108 40.0

Landings 1 4.5 3.699 0.755 35.0 3.777 0.721 40.0 3.632 0.776 40.0 4.582 0.141 <1.0
Landings 2 0.125 0.642 0.487 65.0 0.437 0.288 50.0 0.43 0.275 45.0 1.171 1.034 85.0
Landings 3 1.5 1.167 0.325 20.0 0.829 0.635 45.0 1.465 0.071 <1.0 1.983 0.441 20.0

Calculated Landings 4.938 4.24 0.624 25.0 4.148 0.734 35.0 4.135 0.79 35.0 5.551 0.502 15.0
Optimum Landings 0.9 0.74 0.151 35.0 0.755 0.144 40.0 0.726 0.155 40.0 0.916 0.028 <1.0

Calculated Optimum Landings 0.898 0.719 0.162 35.0 0.701 0.177 45.0 0.703 0.19 45.0 0.945 0.03 5.0
Time deviation to landing total −223.25 110.315 321.609 70.0 45.174 265.277 70.0 109.627 318.146 75.0 −51.637 160.295 30.0

Time deviation to landing/plane −48.875 54.504 100.055 55.0 6.061 49.343 35.0 51.515 99.209 60.0 −32.404 11.186 5.0
Distance deviation to landing total −4.259 18.135 20.773 40.0 9.171 12.57 30.0 15.233 18.455 40.0 3.855 6.731 10.0

Distance deviation to landing/plane −0.841 6.894 7.259 40.0 1.263 1.43 10.0 5.483 5.575 35.0 −1.389 1.174 <1.0
Height not landed total 42,327.0 56,172.602 13,038.33 65.0 50,691.314 7719.965 50.0 51,405.661 8314.942 50.0 45,807.772 2352.338 10.0

Height not landed/plane 6512.208 7489.741 924.834 45.0 7061.755 490.422 30.0 6977.802 436.547 25.0 6781.833 262.61 10.0
Distance not landed total 101.135 194.77 90.121 75.0 180.968 74.336 75.0 186.313 80.065 75.0 120.001 13.133 10.0

Distance not landed/plane 15.501 25.367 9.359 80.0 24.337 8.72 85.0 24.288 8.315 80.0 17.804 1.835 15.0
Distance not landed/plane % 1.09 0.747 0.316 70.0 0.749 0.325 80.0 0.768 0.313 75.0 1.06 0.026 5.0

Conflicts 0.125 1.784 1.494 35.0 −0.032 0.17 <1.0 1.726 1.535 40.0 2.698 2.344 40.0
Instructions/plane 5.057 4.758 0.259 10.0 4.515 0.432 20.0 4.631 0.347 15.0 4.657 0.352 10.0
Instructions total 51.125 45.374 5.561 25.0 43.516 7.566 40.0 42.745 8.149 40.0 43.166 7.545 25.0

NASA TLX Average [0, 100] 45.729 55.132 7.68 20.0 55.324 7.971 25.0 54.879 8.586 25.0 58.59 10.419 20.0
NASA TLX Average % 0.543 0.528 0.019 <1.0 0.481 0.048 15.0 0.489 0.052 15.0 0.559 0.026 <1.0

SASHA Q Average [0, 5] 3.578 3.44 0.122 20.0 3.372 0.18 35.0 3.404 0.165 30.0 3.807 0.208 25.0
SASHA Q Average % 0.716 0.688 0.024 20.0 0.674 0.036 35.0 0.681 0.033 30.0 0.761 0.042 25.0
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Table A2. Continuation of Table A1.

KPI T1 Obs. ATC 5 ATC 6 ATC 7 ATC 8

Mean T2 Pred. ± Conf. % T2 Pred. ± Conf. % T2 Pred. ± Conf. % T2 Pred. ± Conf. %

Taken over # 10.125 9.74 0.312 10.0 9.787 0.276 10.0 9.299 0.671 20.0 9.84 0.278 10.0
Taken over % 0.92 0.885 0.028 10.0 0.89 0.025 10.0 0.845 0.061 20.0 0.895 0.025 10.0

Time until takeover total 209.625 602.965 370.135 30.0 384.841 160.485 15.0 676.498 464.453 35.0 515.786 272.442 25.0
Time until takeover/plane 20.75 70.214 44.453 30.0 41.674 19.274 15.0 76.202 47.332 30.0 59.721 32.72 25.0

Landings 1 4.5 3.475 0.968 35.0 4.125 0.356 15.0 3.606 0.875 30.0 4.095 0.359 15.0
Landings 2 0.125 0.791 0.625 65.0 0.989 0.765 80.0 0.811 0.665 65.0 1.097 0.87 85.0
Landings 3 1.5 0.957 0.524 25.0 1.55 0.091 <1.0 0.55 0.921 40.0 1.356 0.092 5.0

Calculated Landings 4.938 3.955 0.968 30.0 4.883 0.139 <1.0 4.07 0.852 25.0 4.884 0.14 <1.0
Optimum Landings 0.9 0.695 0.194 35.0 0.825 0.071 15.0 0.721 0.175 30.0 0.819 0.072 15.0

Calculated Optimum Landings 0.898 0.686 0.208 35.0 0.835 0.051 10.0 0.692 0.188 30.0 0.831 0.051 10.0
Time deviation to landing total −223.25 −53.14 151.513 30.0 6.59 208.498 45.0 −2.038 219.912 40.0 −50.365 159.027 35.0

Time deviation to landing/plane −48.875 −23.235 21.192 10.0 0.531 47.592 25.0 −12.772 33.968 15.0 −22.507 18.874 10.0
Distance deviation to landing

total −4.259 3.764 6.362 10.0 8.23 11.355 20.0 7.751 10.198 15.0 1.813 5.666 10.0

Distance deviation to
landing/plane −0.841 1.542 2.223 10.0 2.146 2.961 15.0 1.786 2.367 10.0 −0.748 0.988 <1.0

Height not landed total 42,327.0 48,251.071 5644.19 25.0 51,279.231 8235.991 40.0 54,466.841 11,311.126 45.0 49,827.201 7168.135 35.0
Height not landed/plane 6512.208 6713.634 123.847 5.0 7290.622 674.502 30.0 7565.874 956.702 35.0 7013.468 445.983 20.0
Distance not landed total 101.135 165.186 59.31 45.0 178.581 74.21 60.0 190.649 89.316 60.0 152.18 46.292 40.0

Distance not landed/plane 15.501 22.011 6.221 50.0 24.008 7.667 65.0 25.484 9.227 65.0 20.842 4.904 45.0
Distance not landed/plane % 1.09 0.9 0.176 35.0 0.835 0.232 50.0 0.708 0.349 60.0 0.913 0.156 35.0

Conflicts 0.125 1.622 1.343 25.0 0.268 0.234 <1.0 0.647 0.281 5.0 1.805 1.447 30.0
Instructions/plane 5.057 3.859 1.022 30.0 4.6 0.443 15.0 4.089 0.899 25.0 4.571 0.446 15.0
Instructions total 51.125 39.481 10.169 35.0 45.467 5.014 20.0 39.389 10.828 35.0 44.784 5.048 20.0

NASA TLX Average [0, 100] 45.729 48.628 2.436 5.0 48.433 2.155 5.0 60.58 13.195 25.0 55.611 8.771 20.0
NASA TLX Average % 0.543 0.565 0.025 <1.0 0.606 0.044 10.0 0.404 0.135 25.0 0.536 0.022 <1.0

SASHA Q Average [0, 5] 3.578 3.395 0.156 20.0 3.607 0.034 <1.0 3.257 0.299 35.0 3.775 0.175 25.0
SASHA Q Average % 0.716 0.679 0.031 20.0 0.721 0.007 <1.0 0.651 0.06 35.0 0.755 0.035 25.0
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Table A3. The tests NASA TLX and SASHA Q each consist of individual subtests. Their predictions and partial results are listed separately in this table.

Item T1 Obs. ATC 1 ATC 2 ATC 3 ATC 4

Mean T2 Pred. ± Conf. % T2 Pred. ± Conf. % T2 Pred. ± Conf. % T2 Pred. ± Conf. %

NASA TLX Average [0, 100] 45.729 55.132 7.68 20.0 55.324 7.971 25.0 54.879 8.586 25.0 58.59 10.419 20.0
NASA TLX Average % 0.543 0.528 0.019 <1.0 0.481 0.048 15.0 0.489 0.052 15.0 0.559 0.026 <1.0

mental 61.562 54.651 6.39 15.0 80.49 18.898 50.0 61.33 1.881 0.0 72.7 8.668 15.0
physical 27.5 54.237 25.672 50.0 41.614 12.05 30.0 54.56 25.581 55.0 52.677 23.356 35.0
temporal 43.437 59.155 13.463 30.0 69.937 24.429 60.0 68.516 23.575 55.0 79.218 32.096 50.0

performance 48.75 62.723 13.38 30.0 30.149 17.166 45.0 48.466 1.931 0.0 37.793 8.896 15.0
effort 58.75 60.221 2.078 0.0 82.274 23.218 60.0 67.816 7.466 20.0 80.29 20.457 35.0

frustration 34.375 45.881 11.194 25.0 32.282 1.815 5.0 35.715 1.955 0.0 38.059 2.985 5.0
SASHA Q Average [0, 5] 3.578 3.44 0.122 20.0 3.372 0.18 35.0 3.404 0.165 30.0 3.807 0.208 25.0

SASHA Q Average % 0.716 0.688 0.024 20.0 0.674 0.036 35.0 0.681 0.033 30.0 0.761 0.042 25.0
manageable 4.625 3.814 0.693 30.0 3.169 1.399 65.0 3.328 1.213 55.0 3.712 0.777 25.0
next steps 4.5 3.839 0.566 25.0 3.696 0.77 40.0 3.423 1.07 50.0 4.258 0.151 5.0

heavy focus 2.375 4.08 1.634 65.0 2.841 0.455 25.0 3.106 0.699 35.0 2.108 0.147 5.0
find info 3.0 1.457 1.439 60.0 0.678 2.066 85.0 1.817 1.145 55.0 1.764 1.21 40.0

valuable info 3.375 3.832 0.441 20.0 4.025 0.553 30.0 3.398 0.097 0.0 3.872 0.446 15.0
attention 3.625 3.488 0.109 5.0 4.431 0.754 40.0 3.541 0.097 0.0 5.861 2.227 65.0

understanding 3.5 3.834 0.315 15.0 4.295 0.723 40.0 4.177 0.673 35.0 5.195 1.532 50.0
awareness 3.625 2.833 0.786 35.0 2.916 0.649 35.0 2.759 0.808 40.0 3.739 0.147 0.0
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Table A4. Continuation of Table A3.

KPI T1 Obs. ATC 5 ATC 6 ATC 7 ATC 8

Mean T2 Pred. ± Conf. % T2 Pred. ± Conf. % T2 Pred. ± Conf. % T2 Pred. ± Conf. %

NASA TLX Average [0, 100] 45.729 48.628 2.436 5.0 48.433 2.155 5.0 60.58 13.195 25.0 55.611 8.771 20.0
NASA TLX Average % 0.543 0.565 0.025 <1.0 0.606 0.044 10.0 0.404 0.135 25.0 0.536 0.022 <1.0

mental 61.562 64.309 2.716 5.0 64.225 2.402 5.0 61.912 2.892 0.0 66.116 2.419 5.0
physical 27.5 33.004 3.043 5.0 56.379 25.778 45.0 61.749 31.025 45.0 57.472 29.319 50.0
temporal 43.437 47.043 2.804 5.0 61.226 15.273 30.0 78.648 32.302 50.0 66.389 20.959 40.0

performance 48.75 45.145 2.787 5.0 33.949 12.544 25.0 50.711 2.967 0.0 46.371 2.482 0.0
effort 58.75 80.333 19.336 35.0 61.934 2.358 5.0 69.523 8.562 15.0 67.407 7.162 15.0

frustration 34.375 36.06 2.821 0.0 23.72 10.092 20.0 48.359 12.146 20.0 38.39 2.513 5.0
SASHA Q Average [0, 5] 3.578 3.395 0.156 20.0 3.607 0.034 <1.0 3.257 0.299 35.0 3.775 0.175 25.0

SASHA Q Average % 0.716 0.679 0.031 20.0 0.721 0.007 <1.0 0.651 0.06 35.0 0.755 0.035 25.0
manageable 4.625 3.419 1.047 35.0 4.02 0.516 20.0 2.741 1.864 55.0 4.046 0.52 20.0
next steps 4.5 3.097 1.367 45.0 4.52 0.126 0.0 2.925 1.455 45.0 4.384 0.127 0.0

heavy focus 2.375 3.179 0.707 25.0 2.587 0.123 5.0 3.62 1.242 40.0 2.896 0.501 20.0
find info 3.0 0.203 2.542 75.0 0.641 2.249 75.0 1.007 1.965 60.0 1.359 1.473 55.0

valuable info 3.375 3.477 0.14 0.0 3.863 0.373 15.0 3.531 0.149 5.0 4.173 0.766 30.0
attention 3.625 3.198 0.421 15.0 4.103 0.373 15.0 4.016 0.298 10.0 4.793 1.044 40.0

understanding 3.5 3.87 0.268 10.0 3.906 0.357 15.0 3.803 0.286 10.0 4.297 0.734 30.0
awareness 3.625 2.838 0.707 25.0 3.419 0.123 5.0 1.991 1.601 50.0 3.333 0.248 10.0
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