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Abstract: Passive vibration isolation techniques with low-frequency characteristics have been a hot
topic in the aerospace field. A hydraulic inertial vibration isolator is a highly effective type of isolator
for controlling low-frequency vibrations. It typically consists of a main spring, a minor spring, an
inertial mass, and a fluid domain. Due to its multi-domain nature, analyzing the isolation mechanism
of this type of isolator is challenging. The bond graph method is employed to establish the dynamic
model of the isolator. Subsequently, the state equations of the isolator are derived, and the energy
equations of both the mechanical and the fluid parts of the isolator are obtained. Based on this,
the energy transfer characteristics between the mechanical and fluid domains inside the isolator
under external excitation are discussed. The time-domain response of the forces transmitted to
the foundation is analyzed. It is shown that the anti-resonance frequency occurs when the forces
transmitted to the foundation generated by the main spring and the fluid pressure are equal to that
of the minor spring. To verify the proposed method’s correctness, a prototype of the isolator is
designed and a carefully designed experiment is conducted. The acceleration transmissibility of the
isolator is used to conduct a comparative study. The results show that the theoretical results are in
good agreement with the experimental results. To depict the dynamic characteristics of the isolator
under large amplitude vibration, the nonlinear dynamic model of the isolator is developed, and
the corresponding force transmissibility of the isolator is formulated. The energy flow between the
mechanical and the fluid domains under this condition is also analyzed. The results indicate that the
energy flow responses exhibit a similar change tendency to the force transmissibility. However, the
peak of the energy ratio between the mechanical subsystem and the fluid is the same as the linear
condition, suggesting that this value is determined by the amplification ratio of the isolator. This
research provides enhanced physical insight to understand the dynamic characteristics of this type of
isolator and will help to shorten the design cycle of the isolator.

Keywords: hydraulic inertial isolator; bond graph; acceleration transmissibility; energy transfer;
multi-energy-domain

1. Introduction

Reducing vibration in the low-frequency range has become a hot topic in recent years.
One type of band-stop vibration isolator is formed by anti-resonance frequencies. One
method to achieve an anti-resonance frequency is by using the dynamic anti-resonance
vibration isolator (DAVI). The development of this new type of vibration isolator stemmed
from the stringent requirements for the stiffness and mass of isolators used in the aerospace
industry. Anti-resonance occurs when the inertial force generated by the leveraged mass
cancels the spring force. The introduction of the lever allows the isolator to use a small
mass to generate a large inertial force. This superiority has made the isolator widely used
in the aerospace industry [1–3].
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To broaden the bandwidth of the DAVI, many scholars had conducted extensive
research. Long [4] demonstrated that by coupling the DAVI with a nonlinear vibration
absorber, the numerical and experimental results show that the proposed isolator can
increase its stopband width. Deng [5] designed a tunable lever-type anti-resonant isolator
by adding a electromagnetic spring between the isolator mass and its base. The results
show that a broad stop-band can be obtained by altering the current in the electromagnetic
spring. Yan [6] proposed a new lever-type vibration isolator with an eddy current. The
theoretical and experimental studies show that the new isolator can improve the vibration
suppression performance compared to traditional DAVI. He also introduced an electro-
magnet shunt damping [7] between the main mass and the inertial mass to improve the
isolation performance of the traditional DAVI. Yilmaz [8] designed a self-tuning adaptive
DAVI by introducing an elastic-fin-type actuator under the payload mass hinge, and the
experimental results validate its effectiveness. However, there are some drawbacks for
the mechanical type of the DAVI. Due to the introduction of the lever, a large space is
required to install it. Furthermore, the forces transmitted to the foundation by the spring
and the inertial mass do not act on the same point. This leads to a dynamic moment on the
foundation, which deteriorates the vibration isolation.

To overcome the drawbacks, some hydraulic types of DAVI has been developed.
Braun [9] presented a fluid-type DAVI, essentially composed of two different sectional
bellows, where the ratio between the two sectional areas is equivalent to the lever ratio of
the mechanical DAVI. The prototype of the isolator is manufactured and the experimental
is conducted; the results show good agreement with the theoretical results. Halwes [10]
utilized the hydraulic fluid as the vibration absorber mass, resulting in a compact arrange-
ment. Building on this isolator, Plooy [11] employed two adjustable air springs positioned
at the two ends of the isolator to make its isolation frequency tunable. Liu [12] used a
hydraulic cylinder and a small bellow to design the fluid-type DAVI and proposed a new
mathematical model to predict its isolation performance. Gao [13] proposed a novel bellow-
type hydraulic inertia-based DAVI; the numerical and experimental results show good
agreement. The numerical and experimental results of the fluid-type DAVI show that they
can provide the same level of isolation performance as the mechanical-type DAVI, but in a
more compact size.

However, the dynamic modelling of the fluid-type DAVI is more challenging than
its mechanical counterpart. According to the references [9,11,13–15], there are mainly two
different methods to establish the dynamic equations of the isolator. One approach is to
simplify the fluid-type DAVI to a lumped parameter model and then use D‘Alembert’s
principle or Lagrange’s equations to derive the dynamic model. The other approach
is to use the fluid–structure interaction (FSI) finite element analysis (FEA) method to
simulate the fluid–structure interaction process during vibration. The former lumped
parameter model cannot reflect the energy transfer process between the structure and the
fluid inside it during the vibration process. The finite element fluid–structure method is
computationally intensive, requires high computer specifications, and involves complex
parameter settings. Therefore, it is necessary to seek compromises between an accurate and
a detailed representation of this multi-domain field analysis.

The bond graph method [16–19] is a modeling technique that visually represents
energy flow within a dynamic system. It utilizes elements such as inertia, a capacitor, a
resistor, and energy conservation to depict the system’s behavior. This method is charac-
terized by its emphasis on connectivity, ensuring a consistent model representation across
different energy domains. It also aids in identifying appropriate state variables and resolv-
ing system causality issues. Additionally, the bond graph method facilitates the generation
of the system’s state equations in a straightforward manner. The bond graph method, by
supporting and encouraging multidisciplinarity and object-oriented modeling, offers a
flexible foundation for constructing and exploring models of different complexities. Up
to now, to the authors’ knowledge, no one has used this method to model the dynamic
behavior of the fluid-type DAVI.
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Considering thickness effects and out-of-plane loads (including torsion), a mechani-
cal DAVI [20] exhibits nonlinear characteristics, which necessitates the construction of a
nonlinear dynamic model [21–23] for analysis. As mentioned, the rubber ring is usually
used as the main source of stiffness in the hydraulic DAVI. It is well known that under
large deformation, the rubber [24] exhibits nonlinear characteristics. Therefore, nonlinear
computational methods have been developed to predict the dynamic characteristics of
these nonlinear systems. In the frequency domain, the harmonic balance method [25,26] is
typically used to calculate the amplitude–frequency responses of the nonlinear systems. In
the time domain, the Runge–Kutta method [27] and the Newmark-β method [28] are used
to obtain the time responses of the nonlinear structures. These methods are effective when
the main system is in the single energy domain; however, they become ineffective when
the system spans multiple energy domains. Conversely, the bond graph method, by using
state equations, can establish the nonlinear dynamic model of a multi-domain system in a
unified form. Therefore, the bond graph method is used in this paper to investigate the
nonlinear effects of the hydraulic DAVI due to a rubber ring.

In this study, a fluid-type of DAVI, composed of a hydraulic cylinder with a small
bellow inside, is taken as an example to use the bond graph method to establish its dynamic
model. The remainder of this paper is organized as follows: In Section 2, the coupled
model of the fluid-type DAVI is established. Section 3 formulates the force transmissibility
of the isolator and derives the power and energy flow between the mechanical part and
fluid during the vibration process. Section 4 describes the construction of a prototype
isolator and the experimental verification of the method presented in this paper. Section 5
investigates the nonlinear effects of the hydraulic DAVI under large amplitude vibration.
Finally, Section 6 provides some concluding remarks.

2. Fluid–Structure Interaction Modeling

Figure 1 shows the diagram of the hydraulic DAVI. It can be seen that the isolator is
mainly composed of a main mass, a rubber ring, a hydraulic cylinder, and a small bellow
with inertial mass. The interior of the isolator is filled with incompressible liquid. The
effective cross-sectional area ratio between the cylinder and the bellow is the amplifier ratio
acting as the lever ratio of the mechanical-type DAVI. The rubber ring acts as the main
stiffness of the isolator, and it is also used to seal the incompressible fluid inside.
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Figure 1. Schematic model of the hydraulic anti-resonance vibration isolator.

2.1. Mechanical Subsystem Modeling

As mentioned earlier, the mechanical part of the isolator can be divided into two parts:
one represented by subsystem 1, consisting of the main mass M, a rubber ring characterized
by its stiffness K1 and damping Br1, and the other denoted as subsystem 2, composed of an
inertial mass mis, and a small bellow characterized by its stiffness K3 and damping Br3.

Figure 2 shows the flowchart of the bond graph modeling process for mechanical
subsystem 1. In Figure 2a, a 1¯junction is shown such that any bonds that are connected
to this junction will have the velocity VM, and a second 1¯junction is shown such that any
bonds connected to it will have the reference velocity of zero. The main mass is a inertia
I that has the absolute velocity, VM, so the I element is attached to that 1¯junction. The
harmonic force, Se, is modeled as an effort source in the bond graph (any force that is
a known input to a system, whether time varying or constant, is modeled as an effort
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source in a bond graph). Since this force is moving at the velocity VM, the effort source Se
is attached to the 1¯junction representing this velocity. A flow source S f equal to zero is
attached to the reference 1¯junction to enforce that the velocity is zero.
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For step 2, shown in Figure 2b, 0¯junctions are used to establish the relative velocity
across the rubber ring VM − Vre f , attached to the corresponding capacitor and resistor.
Thus, the complete model of mechanical subsystem 1 is constructed. However, there are
some simplifications that could be carried out for this model. The flow source S f could
be removed because it is a zero-power bond. The relative velocity is established using a
single 0¯junction, and then a 1¯junction is used to ensure that any bond attached to that
1¯junction will have the relative velocity, VM − Vre f . Since both the C and R elements have
this relative velocity, they both get attached to the 1¯junction, as shown in Figure 2c.

Similarly, the bond graph model for mechanical subsystem 2 can be established using
the aforementioned method, as shown in Figure 3.
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2.2. Hydraulic Subsystem Modeling

The incompressible fluid in the isolator is characterized by its liquid damping Br2, and
the volume flexibility C21 and C22 represent the volumetric compliance of the rubber ring
and the small bellow, respectively.

Figure 4 shows the flowchart of the bond graph modeling process for the hydraulic
subsystem. The compliance of the rubber ring and the bellow generates pressures P1
and P2, respectively, in the dynamic response of the net flow. These pressures and the
corresponding compliance are displayed in Figure 4a. The elements are inserted as shown
in Figure 4b. The resistance effect is inserted directly between the pressures P1 and P2 by
the 1¯junction.
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2.3. Mechanical–Hydraulic Coupling

The aim of this section is to couple the hydraulic part and the mechanical part of the
isolator.

A hydraulic piston transducer can be used for coupling by the bond graph theory. The
bond graph model of the hydraulic piston transducer is shown in Figure 5.
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In the figure, m1 represents the effective cross-sectional area of the hydraulic cylinder,
and m2 represents the effective cross-sectional area of the bellows. The physical meaning is
represented by these two transducers −TF− as follows:

F1 = m1 · P1, m1 · V1 = Q1, F1 · V1 = P1 · Q1
P2 = 1

m2
· F2 , 1

m2
· Q2 = V2 , P2 · Q2 = F2 · V2

(1)

where F1 and V1 are the force and velocity on the lower surface of the main mass, respec-
tively. F2, and V2 are the force and velocity on the upper surface of the inertial mass, P1 and
Q1 are the pressures and flow rates of the liquid in the vicinity of the lower surface of the
main mass, and P2 and Q2 are the pressures and flow rates of the liquid in the vicinity of
the upper surface of the inertial mass.

Coupling the mechanical and hydraulic subsystems through transducers m1 and
m2, and adding causality according to the bond graph theory, a bond graph model of
the hydraulic DAVI was established as shown in Figure 6. The red numbers in Figure 6
represent the serial numbers of the bonds.
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where ( )te  and ( )tf  are effort and flow variables, respectively; 0R , 0I , and 0C  are the 
resistor, the inertia, and the capacitor, respectively. 

Based on the power flow principle of the bond graph and the power-energy charac-
teristics of the common effort junction and common flow junction, the equations of state 
for 2p , 3p , 4q , 5q , 6q , 7q  can be derived as 

8 1
2 2 4 5

2 4 5

1R mp Se p q q
I C C

= − − −
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16 2
3 3 6 7

3 6 7

1R mp p q q
I C C

= − + −  (8)

Figure 6. Bond graph model of the coupled mechanical-liquid system.
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3. Dynamic Modeling and Energy Flow Analysis
3.1. Dynamic Modeling

Based on the bond graph model, a dynamic model of the vibration isolator system is
derived. The first step is to determine the state variables X

X =
[
p2 p3 q4 q5 q6 q7

]T (2)

where p2 and p3 are the momentum of the main mass and inertial mass, q4 and q7 are the
relative displacements due to the stiffness of the rubber ring and bellows, and q5 and q6 are
the volume of liquid due to the volumetric flexibility of the rubber ring and bellows.

Based on the bond graph theory, the system dynamics model can be represented as

.
X = AX + BSe (3)

where
.
X is the first-order derivative of the system state variable X, and A and B are the

coefficient matrices of the system. Se is the input force acting on the upper end of the
main mass.

The bond graph method is a modeling technique based on the principle of energy
conservation. Its most fundamental components include a capacitor, inertia, and a resistor.
The physical meaning of the capacitor, inertia, and resistor is expressed as

f(t) =
p(t)
I0

(4)

e(t) =
q(t)
C0

(5)

e(t) = R0 f(t) (6)

where e(t) and f(t) are effort and flow variables, respectively; R0, I0, and C0 are the resistor,
the inertia, and the capacitor, respectively.

Based on the power flow principle of the bond graph and the power-energy character-
istics of the common effort junction and common flow junction, the equations of state for
p2, p3, q4, q5, q6, q7 can be derived as

.
p2 = Se − R8

I2
p2 −

1
C4

q4 −
m1

C5
q5 (7)

.
p3 = −R16

I3
p3 +

m2

C6
q6 −

1
C7

q7 (8)

.
q4 =

1
I2

p2 (9)

.
q5 =

m1

I2
p2 −

1
C5R12

q5 +
1

C6R12
q6 (10)

.
q6 = −m2

I3
p3 +

1
C5R12

q5 −
1

C6R12
q6 (11)

.
q7 =

1
I3

p3 (12)

where
.
p2 and

.
p3 are the inertial forces of the main and inertial masses,

.
q4 and

.
q7 are the

relative velocities of the rubber ring and the bellows, and
.
q5 and

.
q6 are the liquid flow rates

due to the volumetric flexibility of the rubber ring and the bellows.
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Equations (7)–(12) are the six state equations for this system. Since this system is linear,
the final step is to place these equations into the standard matrix form of Equation (3); thus,
the coefficient matrix A is obtained as

A =



R8
I2

0 − 1
C4

−m1
C5

0 0
0 − R16

I3
0 0 m2

C6
− 1

C7
1
I2

0 0 0 0 0
m1
I2

0 0 − 1
C5R12

1
C6R12

0
0 −m2

I3
0 1

C5R12
− 1

C6R12
0

0 1
I3

0 0 0 0


(13)

The coefficient matrix B is expressed as

B =
[
1 0 0 0 0 0

]T (14)

3.2. Identification of the Viscous Damping

Due to the complex nature of damping, it is generally unknown in advance. In this
paper, the half-power bandwidth method is used to identify the damping of the isolator.

According to the vibration theory, generally, the dynamic model of a vibration system
can be written as a matrix form as

M
..
x + C

.
x + Kx = F (15)

where M =

[
M 0

0 mis

(
m1
m2

)2

]
, C =

[
Br1 + Br2 −Br2

−Br2 Br2 + Br3

(
m1
m2

)2

]
, x =

[
q4
q7

]
, F =

[
Se
0

]
,

K =

K1 +
m2

1
C21+C22

− m2
1

C21+C22

− m2
1

C21+C22

m2
1

C21+C22
+ K3

(
m1
m2

)2

.

According to the given data, the modal shapes Φ and modal frequencies of the isolator
are cleared. Then, the modal mass, modal stiffness, and modal damping can be obtained as

M = ΦTMΦ =

[
m1r 0

0 m2r

]
(16)

K = ΦTKΦ =

[
k1r 0
0 k2r

]
(17)

C = ΦTCΦ =

[
br1r 0

0 br2r

]
(18)

According to the definition of the half-power bandwidth method, one can obtain

ζir =
brir

2mirwir
= wib−wia

2wir
brir = (wib − wia)mir (i = 1, 2)

(19)

where ζir, wir, mir, and brir correspond to the damping ratio, mode frequency, mode mass,
and mode damping of the i-th mode of the isolator, respectively.

Once the imaginary part of the frequency response function is given, Br1, Br2, and Br3
in the mechanical domain can be obtained by Equations (18) and (19). Since Br2 belongs to
the hydraulic subsystem, it requires transformation according to Equation (20).

Br|H =
Br|M
m2

1
(20)
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where Br|H is the hydraulic damping coefficient, and Br|M is the mechanical damping
coefficient.

3.3. Force Transmissibility Characteristics

Generally, force transmissibility is used as a quantity to evaluate the isolation perfor-
mance of the isolator. Based on Equation (3), it can be denoted as

T = 20Log10

(
Amp(FFT(Ft))

Amp(FFT(Se))

)
(21)

where Ft denotes the forces transmitted to the base of the isolator, and Amp stands for their
amplitudes.

The Ft contains the reaction force generated by the rubber ring, including its elastic
force FK1 and damping force FBr1, the hydraulic force FP and its corresponding damping
force FBr2, the small bellow elastic force FK3 and its corresponding damping force FBr3.
According to Equation (2) to Equation (12), these forces can be obtained, and then Ft can be
determined as

Ft = FK1 + FBr1 + FP + FBr2 + FK3 + FBr3
= q4

C4
+ R8 ·

.
q4 +

q6
C6
(m1 − m2) + R12

( .
q5 −

.
q6
)
+ q7

C7
+ R16 ·

.
q7

(22)

3.4. Power and Energy Modeling

This subsection analyses the energy flow in the isolator under external excitation force
Se. From the bond graph model of the isolator, it can be seen that the energy flows unidi-
rectionally from the mechanical subsystem 1 to the hydraulic subsystem to the mechanical
subsystem 2. The energy of the mechanical subsystem 1 is fed by Se, and the energy of the
hydraulic subsystem and mechanical subsystem 2 is fed by the transducers m1 and m2.

According to the energy flow characteristics of the vibration isolator system, from the
perspective of effort and flow variables, the power models of the mechanical and hydraulic
subsystems can be deduced as

PM1 = PSe = Se · f2 =
Se · p2

I2
(23)

PH = e9 · f9 = m1e10 · f2 =
m1 · p2 · q5

I2 · C5
(24)

PM2 = e15 · f15 = m2e14 · f3 =
m2 · p3 · q6

I3 · C6
(25)

where PM1 and PM2 are the power of mechanical subsystem 1 and mechanical subsystem 2,
and PH is the power of the hydraulic subsystem.

By integrating power over time, the energy of the vibration isolator subsystems can be
obtained as

EM1 =
∫

PM1dt =
∫ Se · p2

I2
dt (26)

EH =
∫

PHdt =
∫ m1 · p2 · q5

I2 · C5
dt (27)

EM2 =
∫

PM2dt =
∫ m2 · p3 · q6

I3 · C6
dt (28)

where EM1 and EM2 are the energy of mechanical subsystem 1 and mechanical subsystem
2, and EH is the energy of the hydraulic subsystem.

4. Numerical Simulations and Experimental Verification

To verify the accuracy of the constructed model, a prototype of the hydraulic DAVI is
designed, and it is shown in Figure 7. The parameters of the isolator are listed in Table 1.
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Table 1. The first set of parameters of the isolator.

Parameters Values

M (kg) 10.3
mis (kg) 0.28

K1 (N/m) 3.9 × 105

K3 (N/m) 1.72 × 104

C21 (m5/N) 2.099 × 10−10

C22 (m5/N) 9.8 × 10−11

m1 (m2) 0.0106
m2 (m2) 0.002

4.1. Test of the Transmissibility of the Isolator

Figure 8 shows the photograph of the experimental setup for the transmissibility
testing of the hydraulic DAVI. The test setup can be divided into three parts: the excitation
system, the data acquisition system, and the object under test.
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The excitation system includes a signal generator, a power amplifier, and an electro-
magnetic vibration table. LMS SCADA is used as the signal generator, the random signal
is used, and the excitation frequency range is 20~100 Hz. The electromagnetic vibration
table is V8-640, and its useful frequency range is 5–2300 Hz. The vibration amplitude can
be changed by adjusting the voltage of LMS; 0.5 V is settled here.

The data acquisition system includes a PC, an LMS data acquisition device, and
two acceleration sensors placed on the main mass and base of the vibration isolator. In
this test, the sampling frequency of the LMS is set to 400 Hz. The acceleration sensor
model is HD-YD-213, which has an operating voltage of 18–28 V, a reference sensitivity of
10.31 mV/m·s−2, a frequency range of 0.5–6 kHz, and a maximum allowable acceleration of
500 m·s−2. The ratio of the signals measured by the two accelerometers is the acceleration
transmissibility of the isolator. Since the base excitation is harmonic and the system is
deemed linear, the transmissibility calculated by Equation (21) is equivalent to the acceler-
ation transmissibility obtained from the test. Figure 9a shows the transmissibility of the
isolator, and Figure 9b gives the imaginary part of the frequency response function. Based
on the result, the half-power bandwidth method shown in Equation (15) to Equation (20) is
used to obtain the damping of the isolator. The viscous damping coefficients of the isolator
are given in Table 2.
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Figure 9. (a) Transmissibility of the isolator with the first set of parameters; (b) imaginary part of the
frequency response function.

Table 2. The first set of damping parameters of the isolator.

Parameters Values

Br1 (N·s/m) 174.079
Br2 (N·s/m5) 6.02 × 104
Br3 (N·s/m) 4.979

According to the parameters given in Tables 1 and 2, substituting these values into
Equation (21), the acceleration transmissibility of the isolator can be obtained, as shown
in Figure 10a. It can be observed that the result calculated by Equation (21) is in good
agreement with the test result. Two peaks occur at 34.4 Hz and 58.7 Hz, and one anti-
resonance peak occurs at 49 Hz. For simplicity, these three peaks are referred to as resonance
frequency 1, resonance frequency 2 and anti-resonance frequency. The design principle
of the hydraulic DAVI is to match the anti-resonance frequency with the line spectrum
vibration frequency of the object. The frequency band where the transmissibility is less
than 0 is generally considered the effective operating range of the isolator. Therefore, under
the first set of parameter conditions, the effective operating range of the isolator prototype
is approximately between 43.2 and 54.8 Hz.
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Figure 10. Experimental and theoretical transmissibility of the isolator with (a) parameter set 1;
(b) parameter set 2; (c) parameter set 3; (d) parameter set 4.

To further verify the accuracy of the proposed model, a comparative analysis was
conducted between the test values and the theoretical predictions of the acceleration
transmissibility of the isolator under different parameter conditions. The parameters
are listed in Table 3. By substituting the values from Table 3 into Equation (21), the
theoretical acceleration transmissibility of the isolator for different parameter combinations
is calculated, and the corresponding test results are provided. The comparison results
presented as Figure 10b–d. As shown in the figure, the numerical results are in good
agreement with the test results, indicating the accuracy of the proposed bond graph model.
However, discrepancies between theoretical and experimental results remain at the anti-
resonance and resonance positions. These discrepancies can be attributed to various factors.
The main stiffness of the isolator is provided by the rubber ring. As is well known, its
stiffness and damping characteristics are difficult to predict. In this study, the volume
flexibility of the isolator is mainly attributed to the rubber ring. This makes the predicting
of the precise value of the volume flexibility challenging, and furthermore, this value
may change during the vibration process. Both of these have a significant impact on its
isolation performance.
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Table 3. The other sets of parameters of the isolator.

Parameters Set 2 Set 3 Set 4

M (kg) 10.3 10.3 10.3
K1 (N/m) 3.9 × 105 5.4 × 105 5.9 × 105

Br1 (N·s/m) 257 282 270
C21 (m5/N) 2.099 × 10−10 1.364 × 10−10 9.0152 × 10−11

Br2 (N·s/m5) 1.87 × 105 6.14 × 105 7.48 × 105

C22 (m5/N) 1.248 × 10−10 1.248 × 10−10 1.248 × 10−10

K3 (N/m) 2.43 × 104 2.43 × 104 2.43 × 104

Br3 (N·s/m) 14 13 14
mis (kg) 0.54 0.54 0.54
m1 (m2) 0.0106 0.0106 0.0106
m2 (m2) 0.0038 0.0038 0.0038

4.2. Analysis of Energy Flow and Dynamic Characteristics of the Isolator

The aim of this section is to analyze the characteristics of the energy flow between
the mechanical part and the fluid part of the isolator during the vibration process. Using
Equation (26) to Equation (28), to ensure the steady state is achieved through the responses
of the isolator, the time parameter t in the equations is taken as 10 s, and the amplitude of
Se is 1 N. The results are illustrated in Figure 11. It can be seen that EM1, EH , and EM2 have
similar trends, all showing two peaks occurring at 34.4 Hz and 58.7 Hz, which are consistent
with the acceleration transmissibility of the isolator. The minimum energy occurs at 49 Hz,
coinciding with the anti-resonance frequency of the isolator. The response curves of EH and
EM2 are nearly identical. Furthermore, the difference between EM1 and EH is much larger
than that between EH and EM2. The area between the three curves represents the energy
dissipation by the corresponding damping. Thus, from the figure, it can be concluded that
the energy is mainly dissipated by the rubber ring, while the energy dissipated by the fluid
and metal bellow can be neglected. The results also indicate that the damping of the fluid
and metal bellow can be neglected. The ratio between EM2 and EM1, that is, EM2/EM1,
represents the energy transfer rate. The results are depicted in Figure 12. It can be observed
that a resonance occurs at about 52.2 Hz. At this frequency, about 95% of the input energy
flows into mechanical subsystem 2, which is hereinafter referred to as resonance frequency
3 for simplicity.
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Figure 12. Energy transfer ratio.

To clearly reflect the vibration characteristics of the isolator at the resonance and
anti-resonance frequencies, the time-domain responses of the main and inertial masses can
be obtained using integral Equations (9) and (12). The time-domain responses can reach the
steady state within 5 s. In this paper, 8–8.1 s are selected to extract the steady-state response
of the system, and the results are shown in Figure 13.
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Figure 13. Displacement response of the isolator at (a) resonance frequency 1; (b) anti-resonance
frequency; (c) resonance frequency 3; (d) resonance frequency 2.

The amplitude of q4 and q7 are denoted as Amp(q4) and Amp(q7), respectively. Ac-
cording to the definition, the ratio between Amp(q4) and Amp(q7) denotes the amplification
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ratio or lever ratio of the isolator. Figure 13 depicts the time-domain responses of these
two amplitudes at different characteristic frequencies. As observed from Figure 13, it is
obvious that the ratio value is changing under different characteristic frequencies. This is
attributed to the fact that the volumetric stiffness of the isolator is finite, not infinite. As a
result, the lever ratio of the isolator is not a constant value. The relationship between the
ratio and the frequency in the low-frequency range is shown in Figure 14. When analyzed
in conjunction with Figure 12 in the original manuscript, it can be observed that the lever
ratio of the isolator exhibits a similar trend to the energy transmission ratio, peaking at
52.2 Hz. It is evident that there is a resonance at about 52.2 Hz, which is slightly higher than
the anti-resonance frequency of the isolator. This phenomenon indicates that at different
frequencies, the proportion of internal energy transfer within the system can be character-
ized by the ratio of the vibration amplitudes of the main mass and the inertial mass. From
Figure 13b,c it can be seen that at the anti-resonance frequency and resonance frequency 3,
the amplitude of the inertial mass is much larger than that of the main mass, and from
Figure 13c it is also observable that the phase of the main mass leads the inertial mass by
90. This means that at this frequency, the inertial mass resonates, which indicates that the
energy is transferred to the inertial mass at this frequency. Further, from Figure 13a,d, it can
be inferred that the main mass and the inertial mass vibrates in phase, and at resonance
frequency 2 the main mass and the inertial mass vibrate out of phase.
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To further explore the isolation mechanism of the fluid type isolator using Equation (22),
the time history of the forces generated by the rubber ring, small bellow, and the inner fluid
pressure can be depicted in Figure 15. It can be deduced that, at the isolation frequency, the
force generated by the inner fluid almost cancels the elastic forces generated by the rubber
ring and small bellow. The net force transmitted to the base is primarily the damping force.
From the figure, it can be observed that the amplitudes of the damping forces are small and
can therefore be neglected. Hence, it can be concluded that the anti-resonance frequency
band occurs when the elastic forces of the isolator and the hydraulic pressure are in balance.
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5. Extension to Nonlinearity

The above analysis is based on the fact that the vibration isolator is a linear system
under small amplitude excitation. However, under large deformation, the isolator exhibits
nonlinear characteristics due to the rubber ring.

The force–displacement curve of the rubber ring was measured by MTS 793. The
testing results can be fitted with a continuous restoring force P(x) through the polynomial
fitting method. P(x) is expressed as Equation (29). The testing and fitting results are shown
in Figure 16.

P(x) = B1x + B3x3 (29)

where B1 and B3 are the coefficients of the first-order and third-order polynomials, respectively.
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According to the restoring force for polynomial nonlinear stiffness, Equation (7) is
replaced by Equation (30). Correspondingly, the dynamical model of the system is replaced
by Equation (31)

.
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I2
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.
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(31)

where C41 = 1/B1, C43 = 1/B3; i =2, 3; j =4, 5, 6, 7.
Due to the nonlinear effects, the equation of force transmissibility should be trans-

formed to

T = 20Log10

(
RMS(FFT(FN))

RMS(FFT(Se))

)
(32)

where FN denotes the nonlinear forces transmitted to the base of the isolator. According to
Equation (30), FN can be expressed as

Ft = FK1 + FBr1 + FP + FBr2 + FK3 + FBr3

= ( q4
C41

+
q3

4
C43

) + R8 ·
.
q4 +

q6
C6
(m1 − m2) + R12(

.
q5 −

.
q6) +

q7
C7

+ R16 ·
.
q7

(33)

Figure 17 gives the transmissibility of the isolator when the system is extended to be
nonlinear, i.e., the rubber ring has polynomial stiffness characteristics. The amplitude of Se
is taken as 100, 200, 300 N in order, and the other parameters are given in Tables 1 and 2.
It can be observed that the resonance and anti-resonance peaks move towards lower
frequencies due to the polynomial stiffness of the rubber ring. The isolation frequency
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band is significantly broadened, and the anti-resonance peak is obviously dropped. As
the excitation amplitude increases, the first resonance peak gradually moves to the high-
frequency direction.
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where NF  denotes the nonlinear forces transmitted to the base of the isolator. According 
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Figure 17 gives the transmissibility of the isolator when the system is extended to be 
nonlinear, i.e., the rubber ring has polynomial stiffness characteristics. The amplitude of 
Se  is taken as 100, 200, 300 N in order, and the other parameters are given in Table 1 and 
Table 2. It can be observed that the resonance and anti-resonance peaks move towards 
lower frequencies due to the polynomial stiffness of the rubber ring. The isolation fre-
quency band is significantly broadened, and the anti-resonance peak is obviously 
dropped. As the excitation amplitude increases, the first resonance peak gradually moves 
to the high-frequency direction. 
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Figure 17. Transmissibility of the isolator when the system is extended to be nonlinear.

The introduction of nonlinear stiffness does not alter the structure of the bond graph
model of the isolator depicted in Figure 6. This indicates that the energy flow routes within
the isolator remain unchanged. Consequently, the energy model of the isolator under
nonlinear conditions can still be represented by Equations (26)–(28).

The energy flow characteristics and the energy transfer ratio of the nonlinear isolator
when the excitation amplitude is equal to 100 N are shown in Figures 18 and 19, respectively.
It can be observed that the introduction of nonlinearity does not alter the energy flow
characteristics of the system. The input energy of the system, i.e., EM1, follows the same
trend as the force transmissibility of the vibration isolator. From Figure 19, it can be found
that the frequency at which the maximum energy transfer ratio occurs is consistent with
that of the linear system, suggesting that this value is determined by the amplification ratio
of the isolator.
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Figure 18. Internal energy flow characteristics of the isolator when the system is extended to
be nonlinear.
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Figure 19. Energy transfer ratio of the isolator when the system is extended to be nonlinear.

6. Conclusions

This paper employs the bond graph theory to model the dynamic behavior of the
hydraulic DAVI and discuss the energy transfer between the mechanical components and
the fluid inside the isolator. A prototype of the isolator is fabricated to verify the theoretical
results. Additionally, the nonlinear dynamic characteristics of the hydraulic DAVI under
large amplitude vibration are investigated. The primary findings can be listed as follows:

(1) The theoretical model of the mechanical subsystem and the fluid subsystem has been
established using the bond graph method. Then, the mechanical–hydraulic coupling
model is obtained by this method. The force transmissibility of the isolator is derived
based on this model, and the force transmissibilities of the isolator under various
parameters are calculated. The results are verified by a carefully designed experiment.
The vibration transmissibility of the isolator is predicted by a dynamic model deduced
from the bond graph model. Experiments are conducted to validate the model.

(2) The energy transfer between the mechanical part and its inner fluid part has been
computed. The results show that the attenuation between the main mechanical system
to the hydraulic subsystem is much larger than that between the fluid part and the
sub-mechanical part. This illustrates that the energy dissipated by the rubber ring is
much larger than that of its inner fluid. Furthermore, the damping of the fluid and
the metal bellow can be neglected.

(3) Around the isolation frequency, the inertial mass resonates; therefore, it can be inferred
that at the anti-resonance frequency, the energy is transferred to the inertial mass.

(4) Due to the finite volumetric stiffness of the isolator, its amplification ratio is not
constant but varies with the external excitation frequency.

(5) Based on the time-domain responses of the force transmitted to the base, it was found
that anti-resonance occurs when the internal fluid pressure counteracts the elastic
forces transmitted to the base of the isolator.

(6) Under large deformations, the nonlinear stiffness from the rubber ring significantly
alters the dynamics of the isolator, which reduces the resonance and anti-resonance
frequencies and broadens the vibration isolation frequency band.
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