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Abstract: A servicing spacecraft motion control approach for the problem of on-orbit truss structure
assembly is developed in this paper. It is considered that a cargo container with a rod set and servicing
spacecraft are in orbit initially. The assembly procedure is based on spacecraft free-flight motion
between the structure’s specified points. The spacecraft is equipped with two robotic manipulators
capable of attaching to the structure and holding rods. In addition, the spacecraft can repulse from
the structure with a given relative velocity using a manipulator, so the spacecraft and the structure
receive impulses. The repulsion velocity vector is calculated in order to reach the structure target
point to deliver and install the rod into the truss structure, or to reach the cargo container and take a
rod. The problem of searching the repulsion velocity is formulated as an optimization problem with
constraints, taking into account the limited value of the repulsion velocity, collision avoidance with
structure, restrictions on the angular velocity and translational motion of the structure in the orbital
reference frame. This problem is solved numerically with an initial guess vector obtained analytically
for simplified motion cases. The application of the proposed control scheme to the assembly of
a truss-based antenna is demonstrated. It is shown that the servicing spacecraft is successfully
transferred between the structure points by means of manipulator repulsion. Main features and
limitations of the assembly problem using a spacecraft with two manipulators are discussed.

Keywords: on-orbit assembly; formation flying; truss structure; motion control; numerical simulation;
optimization

1. Introduction

An application of on-orbit assembly for new space systems is expected to become a
trend. It allows building large structures in near-Earth orbit to improve the characteristics
of scientific, communication, or observation missions. The size of the on-Earth assembled
space structure is limited by the dimensions of the launcher payload volume, so many
modern spacecrafts enlarge their size by deployable elements. However, any joints are
greatly affected by launch vibrations and, after the launch, they can be out of order in
orbit. These problems can be overcome by large structure on-orbit assembly; a current
state-of-the-art in this field is analyzed in [1]. The space structure components can be
delivered to the orbit by several launches and then assembled, increasing the overall size
of the resulting space object. An additional advantage discussed in [2] is that the on-orbit
assembled orbital structure is not exposed to on-the-ground conditions such as the on-Earth
gravitational stress effect and air/oxygen influence on the structure materials.

Telescope or reflector mirrors are not limited in dimensions if their modules are
transferred into orbit using several launch vehicles. This concept makes many project
planning tasks feasible, as discussed in [3]. Furthermore, some new mission ideas such as
telescope reflector elements acting as a solar sail [4] are being developed. As discussed in [1],
deploying strategies should be classified based on economic advantage. Different strategies
are presented in [5] and evaluated economically in [6]. One of the approaches of on-orbit
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assembly considers modules capable of docking that are placed by the launchers in close
orbits [7,8]. For example, paper [9] proposes a space telescope that can be reconfigured,
consisting of two 3U CubeSats capable of autonomous docking, undocking, and re-docking
with a small central “15U” class microsatellite. Another approach of on-orbit assembly
considers modules to be transferred from cargo container (CC) to the target position of
the structure to be assembled [3]. In paper [10], a space solar power plant assembled by
such an approach is proposed. The first approach implies onboard propulsion in order to
control modules orbital motion, while the CC-based on-orbit assembly approach could
rely on fuelless module motion control methods, such as using methods installed on the
CC manipulators. The assembling space structure can be truss-based as for the OSAM-2
Mission [11], which involves the on-orbit 3D printing of a lattice truss to deploy solar
cells on it. Another method to transfer modules or rods of the truss structure from the CC
to the target position is to use a servicing spacecraft (SS). A review on the variety of SS
applications is provided in [12].

The problem of the SS’s autonomous control is one of the most challenging in space-
flight dynamics, since it usually implies docking to space objects. In the case of active
space debris removal missions, the SS’s relative motion control is aimed at docking to
non-cooperative tumbling objects as in [13], which requires taking into account the object
chaotic attitude motion. One of the approaches considered in the literature is to use robotic
manipulators to perform the docking. The dynamics of spacecraft manipulators for the
on-orbit assembly problem have been sufficiently investigated in many papers, particu-
larly in [14–19]. So, in this paper, the problem of manipulator control is not considered;
it is assumed that this separate task can be solved. A small SS for the on-orbit assembly
is considered due to the trend of spacecraft miniaturization for modern space missions.
Miniature manipulators [20,21], gas thrusters, and ion thrusters [22,23] are now available
for CubeSat-type satellites, providing the necessary element basis for SS’s motion control.
Several CubeSat-based in-orbit servicing missions are under development nowadays, for
example, the SpEye mission for the demonstration of proximity operations capabilities of a
nanosatellite [24].

This paper presents a new approach for SS’s motion control in the problem of truss
structure (TS) assembly. The proposed approach is based on the use of manipulators for
repulsion and catching, so the motion of SSs between TS points can be considered as
free flight. The main advantage of this approach is that it does not require an onboard
propulsion system to perform the SS’s transfers; the on-orbit assembly requires renewable
energy with solar panels’ electrical power for repulsion and catching by manipulators.
The proposed approach takes into account collision avoidance with the TS during the free
flight. The SS transfer problem can be considered as boundary problem with restrictions,
as in paper [25]. Two numerical search algorithms to solve this problem were applied.
Since these algorithms are sensitive to the initial guess vector, simplified motion cases
were considered, allowing to analytically calculate the repulsion velocity vector required
for transfer.

The rest of the paper has the following structure. In Section 2, the problem statement
and main assumptions are formulated. In Section 3, translational and attitude motion
equations used in the paper are presented. In order to solve the SS transfer problem,
the change in initial conditions due to repulsion is analytically derived in Section 4. The
solution of the boundary problem for the planar motion case is provided in Section 5.
For the spatial motion case, this problem is to be solved only numerically; two search
algorithms are described in Section 6. Furthermore, finally, in Section 7, a demonstration
example of antenna-like truss structure assembly is shown.

2. Problem Statement

The objects considered in this paper are the following: a CC with a set of rods, an
installing platform placed on the CC, a TS to be assembled using rods and an SS with two
manipulators. It is assumed that, using manipulators, the SS is capable of repelling from
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the CC or TS with the required velocity and to move relative to the structure during the
free flight. Another function of the manipulator is to hold one rod and fix it to the TS. These
objects are presented in Figure 1.

Figure 1. Considered objects: (1) cargo container, (2) installing platform, (3) truss structure, and
(4) servicing spacecraft

It is assumed that the common center of mass of the considered objects are in a circular
Earth orbit at the initial time. During the assembly process, TS rods must be transferred
from their initial position in the CC to their target position (rod installation point) in a
predetermined sequence and fixed on the TS. The CC, installation platform, and TS are all
considered as a single unified rigid body (UB) during the SS’s free motion. When the SS is
fixed to the CC or TS, it is also a part of the UB.

During the free motion, the SS is considered as a point mass, even if the SS holds a rod.
The attitude motion of the SS is not considered in this paper. It is assumed that, during the
motion, the SS’s center of mass remains outside the UB convex hull, as shown in Figure 2.
Additionally, it is assumed that the attitude control system is capable of maintaining the rod
perpendicular to the normal position of the UB convex hull, which prevents the collision of
the rod with the UB, as shown in Figure 2.

Figure 2. Angular motion of SS with rod: (1,2) two positions of servicing spacecraft with rod,
(3) united body, and (4) united body convex hull

The considered objects’ motion is described using the following reference frames:

• The structure reference frame (SRF) Ax̃ỹz̃ is fixed to the CC, point A is the defined
point of the CC, and the axes are a right-handed triad. The coordinates of the TS rods’
edge points, of the CC’s center of mass, and of the installing platform’s position are
defined in SRF and they are assumed to be constant. The SS’s start point is defined
by the radius-vector rSRF

0 in SRF; the SS’s target point rSRF
1 for the SS’s free motion

remains constant in SRF during the flight.
• The body reference frame (BRF) Cx̃ỹz̃ axes are aligned with the SRF axes, although

BRF’s origin point C is located at the UB center of mass.
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• The inertial reference frame (IRF) CEXYZ origin CE is located in the Earth’s center
of mass, the Z-axis is directed along the Earth’s rotation axis, the X-axis is directed
towards the vernal equinox, and the Y-axis completes the right-handed triad.

• The orbital reference frame (ORF) Oxyz has its origin O at the system common center
of mass at an initial time, and point O moves along the circular orbit with radius Rorb.
During the motion, the the system’s common center of mass can deviate from point O.
The z-axis of ORF is co-directed with the local vertical direction and the y-axis aligns
with the orbital angular momentum; the x-axis completes the right-handed triad.

The transition between these reference frames is described by the following rotation
matrices:

A : IRF → BRF,
U : IRF → ORF,
S : ORF → BRF.

If the SS is located at a certain point rSRF
0 on the UB, it is assumed that the UB and SS

move as a single rigid body. It is assumed that a set of initial state parameters, denoted by
X, is known before the SS’s repulsion time t−0 . The parameter set X is defined as follows:

X = [ωIRF
UB (t−0 ), rORF

UB (t−0 ), υORF
UB (t−0 ), A(t−0 ), U(t−0 )]

T ,

where ωIRF
UB is the UB’s angular velocity vector expressed in IRF, rORF

UB is the UB’s center
of mass’s radius-vector in ORF, and υORF

UB is the UB’s center of mass’s velocity vector in
ORF. These defined initial conditions and repulsion velocity vector υSRF

0 expressed in
SRF determine the further angular and transnational motion of the UB and free motion
trajectory of the SS’s center of mass. Hence, X and υSRF

0 define the final SS trajectory end
point rSRF

f at given time t f . The mathematical problem considered in this paper is to find

such a repulsion velocity vector υSRF
0 that leads the SS’s trajectory end point rSRF

f to the

target point rSRF
1 with a defined acceptable error ε:

υSRF
0 : ∆r = |rSRF

f − rSRF
1 | < ε, (1)

where ε can be defined as the length of the SS’s manipulator capable of catching the final
TS point.

This problem statement is formulated for a single SS transfer between two UB points.
On-orbit TS assembly can be implemented by a sequence of such SS transfers between the
CC’s initial point and rods’ installation points. For each transfer problem to be solved, the
UB’s initial conditions are different; during the assembly, the UB’s mass distribution is
changing, and additional constraints on the SS’s relative trajectories are to be addressed in
order to avoid collision.

3. Equations of Motion

In this paper, the translational motion of the UB’s center of mass and the SS’s center of
mass are considered in the ORF. The attitude motion of the UB is also considered relative
to ORF. The problem of the SS’s attitude motion can be separated from the translational
motion and it is out of scope of this paper.

The motion of the UB or the SS’s center mass’s position vector rORF = [x, y, z]T is
described by the Clohessy–Wiltshire Equations [26]:

r̈ORF =

ẍ
ÿ
z̈

 =

 −2ω0ż
−ω2

0y
3ω2

0z + 2ω0 ẋ

, (2)
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where ω0 =
√

µ

R3
orb

is the orbital angular velocity, µ is the Earth gravitational parameter,

and R3
orb is the circular orbit radius. This system of differential equations has the following

solution:

rORF =

C4 − 3C1ω0(t − t0) + 2C2 cos (ω0(t − t0))− 2C3 sin (ω0(t − t0))
C5 sin (ω0(t − t0)) + C6 cos (ω0(t − t0))

2C1 + C2 sin (ω0(t − t0)) + C3 cos (ω0(t − t0))

, (3)

where C1 −C6 are the trajectory parameters, which depend on the initial conditions defined
by rORF(t0) and ṙORF(t0) as follows:

C1 = 2z(t0) +
ẋ(t0)
ω0

, C2 = ż(t0)
ω0

,

C3 = −3z(t0)− 2ẋ(t0)
ω0

, C4 = x(t0)− 2ż(t0)
ω0

,

C5 = ẏ(t0)
ω0

, C6 = y(t0).

These equations are valid for small distances relative to the ORF origin.
The attitude motion of the UB is described by Euler’s dynamical equations and

kinematic relations expressed in attitude quaternions:

Jω̇BRF + [ωBRF × JωBRF] = mBRF
ex , (4)

Λ̇ =
1
2

Λ ◦ ωBRF, (5)

where J is the UB’s inertia tensor calculated in BRF, ωBRF is the absolute angular velocity
expressed in BRF, mBRF

ex is the external torque, and Λ is the attitude quaternion. In this
paper, external torque is a gravitational torque [27]:

mex = mgrav = 3
µ

|rUB|5
rUB × JrUB,

where rUB is the radius-vector from Earth’s center to the UB’s center of mass written in BRF.
During the SS’s free-flight motion and when the SS is fixed at the UB, the inertia tensor

J remains constant in SRF and BRF, though at time moments when the SS repels and catches
the UB, the J changes instantly due to the changed mass distribution. The tensor J can be
calculated as sum of the UB modules’ inertia tensors Jk. Rods can be approximated as line
segments with the following elements Jk

ij, of the inertia tensor:

Jk
ij =

∫ r2

r1

(δijr2 − rirj)dm = mk

∫ 1

0
(δijr2 − rirj)dτ, r = rk

1τ + rk
2(1 − τ).

where rk
1 and rk

2 are the vectors of the kth rod ends in BRF, i, j = 1, 2, 3, mk is the kth rod mass,
and δij is the Kronecker delta. Since the UB’s center of mass changes its position during
the assembly, the inertia tensor is calculated in SRF. According to the Huygens–Steiner
theorem, the elements of J are translated into BRF as follows:

JBRF
ij = JSRF

ij − mUB

(
|rSRF

UB |2δij − rSRF
UB, ir

SRF
UB, j

)
,

where mUB is the UB’s mass, and rSRF
UB is the vector between the centers of SRF and BRF.

4. Initial Conditions after the SS’s Repulsion

The translational motion Equation (2) and attitude motion Equations (4) and (5)
define the SS and the UB’s trajectories if the initial conditions are specified. When the SS
repulses from the UB or catches the TS target point, it sets new initial conditions for motion
equations and it changes the UB’s mass distribution. The SS repulsion’s velocity vector
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υSRF
0 is considered as an input parameter for achieving the required SS trajectory relative to

the UB.
It is assumed that the SS’s repulsion and capture using manipulators occurs instantly.

The control of the manipulator motion during the repulsion to achieve the desired velocity
υSRF

0 of the SS’s center of mass relative to the UB is not considered in this paper. It is
required to find such a repulsion velocity vector υSRF +

SS in order to obtain the desired SS
trajectory to get into the neighborhood of the target point rSRF

1 , i.e., to solve the problem (1).
The initial conditions for motion in Equation (2) are to be specified in ORF, though

the position of the SS at the time of repulsion and repulsion velocity are defined in SRF.
Thus, first, the SS and the UB’s centers of mass after repulsion should be expressed in ORF.
Second, the SS’s initial velocity after the repulsion is to be calculated in ORF taking into
account the UB’s angular velocity. Furthermore, the UB’s initial velocity taking into account
the influence of the SS’s repulsion is to be corrected. Furthermore, finally, the UB’s angular
velocity after the repulsion as an initial condition for the attitude motion of Equation (4)
should be defined.

In this section, subscripts ()− and ()+ denote variables before and after the SS’s
repulsion, respectively. Let rSRF −

UB be the radius-vector of the UB’s center of mass C−
UB

with attached SS, and the radius-vector of the SS before the repulsion is denoted as rSRF −
SS .

After the SS’s repulsion, the UB’s center of mass C+
UB radius-vector changes to rSRF +

UB . It is
assumed that the SS’s radius-vector immediately after the repulsion rSRF +

UB is the same as
before the repulsion, i.e., rSRF −

UB = rSRF +
UB . In this paper, the SS and UB’s center of mass’s

trajectories are expressed in ORF. The radius-vectors of the UB and SS in ORF are defined
by the following equations:

rORF +
UB = rORF −

UB + ST(rSRF +
UB − rSRF −

UB ), (6)

rORF +
SS = rORF −

UB + ST(rSRF +
SS − rSRF −

UB ). (7)

where rORF −
UB is the UB’s center of mass defined in ORF before the repulsion. Here, the

SS’s position in SRF does not change instantly because of repulsion rSRF −
SS = rSRF +

SS , but
the UB’s center of mass is changed rSRF −

UB ̸= rSRF +
UB due to the SS’s separation from the UB.

The scheme of the system before and after the repulsion is presented in Figure 3.

Figure 3. Scheme of system before and after servicing spacecraft’s repulsion.

To calculate the instant change in velocities of the centers of mass due to the SS’s
repulsion, it is assumed that, during the short time of repulsion, the external forces do not
change the momentum of the whole system, so the momentum conservation law is used.
The momentum of the system expressed in ORF before the repulsion and after is as follows:
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(mSS + mUB)υ
ORF −
UB = mSSυORF +

SS + mUBυORF +
UB , (8)

where mSS is the mass of the SS and mUB is the mass of UB without the SS, and υORF −
UB

and υORF +
UB are the UB’s center of mass’s velocity vectors defined in ORF right before the

repulsion and immediately after the repulsion, respectively. Since the ORF is a non-inertial
reference frame, the effect of the non-inertial forces is also neglected due to the short time
period of the repulsion. The velocities of the UB and SS’s centers of mass in ORF is the sum
of the instant velocity of the corresponding UB points before the repulsion and relative
velocity due to the SS’s repulsion. Since the UB is rotating with an angular velocity vector
ωORF −

UB before the repulsion, and the UB’s center of mass changes its position, angular
velocities υORF +

UB and υORF +
SS are defined as follows:

υORF +
UB = υORF −

UB + [ωORF −
UB × (rORF +

UB − rORF −
UB )] + ∆υORF +

UB , (9)

υORF +
SS = υORF −

UB + [ωORF −
UB × (rORF +

SS − rORF −
UB )] + ∆υORF +

SS , (10)

where ∆υORF +
UB is the change in the UB’s center of mass’s velocity due to the SS’s repulsion,

and ∆υORF +
SS is the vector of SS’s repulsion velocity defined in ORF. Substituting (9) and

(10) into (8) and taking into account the relation between the vectors of the UB’s center of
mass before rORF −

UB and after the repulsion rORF +
UB ,

rORF −
UB =

mSSrORF +
SS + mUBrORF +

UB
mSS + mUB

, (11)

the following relation between the change in the UB’s center of mass’s velocity ∆υORF +
UB

and the SS’s repulsion velocity ∆υORF +
SS can be obtained:

∆υORF +
UB = − mSS

mUB
∆υORF +

SS . (12)

The problem considered in the paper (1) is formulated to obtain the SS’s repulsion
velocity υSRF +

SS in SRF; it can be obtained by the transition of ∆υORF +
SS into SFR using a

transition matrix S as follows:
υSRF +

SS = S∆υORF +
SS .

The SS’s repulsion also results in the UB’s angular velocity change. To calculate the
UB’s angular velocity after the repulsion ωORF +

UB , it is assumed that the external torques
and torques due to non-inertial forces in ORF have no influence on the total angular mo-
mentum change of the system during the short repulsion time, so the angular momentum
conservation law can be applied. Angular momentum in ORF is the sum of the UB’s
angular momentum and the momentum of the center of mass’s impulses relative to the
ORF. The following relation using the angular momentum conservation law written in ORF
is obtained:

ST J−SωORF −
UB + [rORF −

UB × (mSS + mUB)υ
ORF −
UB ] = (13)

= ST J+SωORF +
UB + [rORF +

SS × mSSυORF +
SS ] + [rORF +

UB × mUBυORF +
UB ],

where J− is the UB’s (with attached SS) inertia tensor before the repulsion, and J+ is the
UB’s (without SS) inertia tensor after the repulsion. Since, in (13), all the values are written
in ORF, the inertia tensor originally calculated in BRF is translated to ORF by ST JS. Thus,
the angular velocity after the repulsion ωORF +

UB can be obtained from (13) as follows:

ωORF +
UB = (ST J+S)−1

 ST J−SωORF −
UB + [rORF −

UB × (mSS + mUB)υ
ORF −
UB ]−

−[rORF +
SS × mSSυORF +

SS ]− [rORF +
UB × mUBυORF +

UB ]

. (14)
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Thus, the UB and SS’s center of mass’s positions (6) and (7), the UB and SS’s velocities
(9) and (10), and the UB’s angular velocity (14) all depend on the SS’s repulsion velocity
υSRF +

SS . These initial conditions after the repulsion define the SS’s trajectory relative to the
UB in SRF. So, the problem (1) of finding the SS’s repulsion vector υSRF +

SS to achieve the TS
target point rSRF

1 can be formulated as boundary problem.
The change in the motion state parameters after the SS captures the TS target point

is calculated using the same momentum and angular momentum conservation laws. The
expressions for the UB’s center of mass’s position, velocity, and angular velocity are not
provided in the paper for brevity. The initial conditions after the capture depend on the SS’s
relative velocity before the capture; it defines the UB’s attitude and translational motion.
Thus, UB’s motion parameters are also can be controlled by the choice of the SS’s repulsion
velocity υSRF +

SS in the sequential order of the SS’s repulsion and capturing during the
assembly process.

5. Planar Motion Case

First, we consider an approach to solve the problem (1) in a simplified motion case
for a demonstration of the proposed on-orbit assembly scheme. Furthermore, the results
of this section are later used as the initial guess for the numerical search algorithms in the
spatial motion case.

The Clohessy–Wiltshire Equation (2) allows the separation the out-of-plane motion
along the y-axis from the motion in the orbital plane Oxz. In this section, several assump-
tions are made about the system’s motion:

• The position vectors of the SS’s center of mass rSRF
SS and the UB’s center of mass rSRF

UB
have zero values for their y-axis components;

• The angular velocity ωORF
UB of the UB has zero values for its x- and z-axis components;

• Gravitational torque is not considered;
• The inertia tensor J is reduced to a single y-axis moment of inertia Iy;
• The time duration of the SS’s free flight after the repulsion t f − t0 is fixed.

So, such a system’s motion is a plane-parallel motion in orbital plane Oxz. The consid-
ered planar motion is not a common motion case, it is just a particular example, allowing
to simplify the calculations of the repulsion velocity’s first guess for the spatial motion.

In this case, the final deviation of the trajectory point rSRF
f = [x f , 0, z f ]

T at time t f from

the target point rSRF
1 = [x1, 0, z1]

T in the TS only has two components ∆x and ∆z:

∆rSRF = [∆x, 0, ∆z]T = rSRF
1 − rSRF

f .

As the result of the integration of motion Equations (2), (4) and (5), the deviation
components ∆x and ∆z depend on a set of initial conditions X, the mass of the SS mSS,
the mass of the UB mUB, and the moment of inertia Iy. This dependence is derived by
analytically taking into account the change in the UB’s translational velocity (12) and change
in the UB’s angular velocity (14). In the planar motion case, the SS’s repulsion velocity
vector υSRF +

SS = [υx
0 , 0, υz

0]
T also has only two nonzero components. The dependence of ∆x

and ∆z on υx
0 and υz

0 has the following form:

∆x = x1 + A1 cos B − A2 sin B, ∆z = z1 + A1 sin B + A2 cos B, (15)

where

A1 = a1υx
0 + a2υz

0 + a3, A2 = a4υx
0 + a5υz

0 + a6, B = b1υx
0 + b2υz

0 + b3.

Here, a set of coefficients ai and bi are calculated using the parameter set X and mass-
inertial parameters mSS, mUB, and Iy. Analytical expressions of ai and bi are omitted from
the text since they are too bulky. The value of the parameter B is a final increment of the
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UB’s angle after the SS’s free relative motion between the given time of repulsion t0 and
time of the SS attaching to the UB t f :

B =
∫ t f

t0

ωydt,

where ωy is an angular velocity of the UB after the SS’s repulsion, which is assumed to be
constant since no external torques are taken into account in this section.

For the simplified case of motion considered, the problem (1) can be reformulated to
find the exact solution that implies a zero-valued final trajectory deviation:

{υx
0 , υz

0} : ∆x = 0, ∆z = 0. (16)

Even for this simplified case, the problem (16) cannot be solved in explicit form because
Equation (15) is nonlinear with respect to the repulsion velocity components υx

0 and υz
0.

So, the solution of problem (16) is to be found numerically. However, using additional
assumptions, the approximate solutions can be found analytically.

For example, if it is assumed that the UB’s rotation angle is small during the SS’s
free motion, the value of parameter B can be considered as zero in (15). Equation (15) is
simplified to the following equation:

∆x ≈ A1 + x1, ∆z ≈ A2 + z1.

In this case, the approximate solution of the (16) is as follows:

υx
0 ≈ a2(a6 + z1)− a5(a3 + x1)

a1a5 − a2a4
, υz

0 ≈ a4(a3 + x1)− a1(a6 + z1)

a1a5 − a2a4
. (17)

If coefficients ai are significantly larger than coordinates x1 and z1, the approximate
solution can be found from A1 = 0 and A2 = 0 and it can be further simplified:

υx
0 ≈ a2a6 − a3a5

a1a5 − a2a4
, υz

0 ≈ a3a4 − a1a6

a1a5 − a2a4
. (18)

A particular example of a parameter set X of initial conditions is demonstrated in
Figure 4. The value of the separation velocity components υx

0 and υz
0 is limited by the

5 cm/s in this example. This limitation of velocity components is based on the next simple
evaluation. If it is supposed that the manipulator produces a force of F = 0.1 N along an
acceleration trace of L = 50 cm, and pushes the SS loaded with a rod with a total weight of
m = 35 kg, then the velocity of the repulsion can be calculated according to the following
expression obtained under the assumption of constant acceleration:

υ =

√
2LF
m

≈ 5.3 cm/s.

The maximum length of the manipulator is defined as 1 m, so it is assumed that the
acceptable final trajectory deviation must be less than this value. Using the dependence
(15) of the trajectory deviation, components ∆x and ∆z on the separation velocity from
the value of the final position deviation ∆r = |∆r| can be calculated on a grid of υx

0 , υz
0 ∈

[−5; 5] cm/s for the specified parameters. Figure 4 shows a heatmap of ∆r and points
of numerically obtained grid solution (with a resolution of 0.01 cm/s) and approximate
solutions calculated using (17) and (18). For this particular case, the error of the repulsion
velocity guesses are about 1 cm/s for (17) and about 1.5 cm/s for (18).
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Figure 4. Example of distribution of final position deviation value ∆r.

For a numerical study of the accuracy of approximate solutions (17) and (18), the
random initial conditions and random initial and final points are considered; its standard
deviation values are presented in the right side of Table 1. The resulting values of parame-
ters ai, bi, x1, and z1 for random initial conditions are presented in Figure 5. Particularly,
it can be seen that the assumption used for solution (18) that the coefficients ai are signif-
icantly larger than coordinates x1 and z1 is correct. For each parameter values, the final
deviation value ∆r is calculated. The results of the calculations are presented as boxplots in
Figure 6. Here, the boxplot (a) shows the error of final position calculation and the boxplot
(b) provides the deviation of the repulsion velocity calculated by the approximate solution
from the grid search solution. Inside the box, there are 50% of the simulations results, below
and under the box are 25%, and the red line is a mean value. The obtained accuracy of
several meters is unacceptable to use it for the SS’s repulsion velocity calculation. However,
this accuracy is considered acceptable as the initial guess for the numerical search of the
solution (1) for the spatial motion case. As it can be concluded from Figure 4, the maximum
value of the final position error can be up to 1200 m, and guess solutions (18) and (17)
reduce this error by 102 times.

Figure 5. Values of motion parameters ai, bi, x1, and z1.
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Figure 6. Boxplots of variation of the final position deviation (a) and of repulsion velocity error
(b) (Nsamples = 100).

Table 1. Numerical simulation parameters.

Parameter Value Value of Vectors Standard Deviation

mSS 20 kg υORF −
UB 10−2 m/s

mUB 650 kg rORF −
UB 10 m

I−y 5600 kg·m2 rSRF
0 ,rSRF

1 10 m
t f − t0 4000 s rSRF

UB 5 m
Rorb 7000 km ωORF −

UB 10−4 rad/s

In the case where the SS’s repulsion velocity is limited by some feasible value, which
can be implemented by the SS’s manipulator, no solution could be found to the problem (1).
It can be demonstrated in the planar motion case. Distributions of the final position
deviation ∆r in the repulsion velocity domain {υx

0 , υz
0} ∈ [−5; 5] cm/s for three values of

UB’s initial angular velocities are presented in Figure 7. The left two cases in Figure 7
with UB’s initial angular velocities of 10−4 rad/s and 10−3 rad/s are solutions of the
problem (16), while the right figure presents the case with an initial angular velocity of
7 × 10−3 rad/s, where the minimum of ∆r corresponds to deviation of 40 m, which is
unacceptable and the problem has no solution in this case.

Figure 7. Solution existence depending on the united body’s angular velocity ω.
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6. Assembly in Spatial Motion Case

In a common spatial motion case, it is impossible to obtain the final trajectory deviation
∆r in an analytical form as for the planar motion case (15), because the dynamical Euler
Equation (4) has no analytical solution except for the three known attitude motion cases—
the Euler, Lagrange, and Kovalevskaya cases. Since, in this study, the gravity-gradient
torque is taken into account in the UB’s attitude motion equation, and the inertia tensor is
arbitrary and it changes during the assembly, it does not meet requirements of any of these
three special attitude motion cases. Thus, the ∆r dependence on the SS’s repulsion velocity
υSRF +

SS can be obtained only by the numerical integration of the attitude and translational
motion equations.

6.1. Constrained-Motion Parameters

In common motion case, the following set of additional requirements and constraints
for the problem (1) is considered for taking into account the practical aspects of TS assembly:

• The SS’s trajectory must not intersect the UB’s elements to avoid collision with them
except for the target point rSRF

1 .
• Since, at a high UB angular velocity, the problem (1) could have no solution in the

limited domain of the repulsion velocity values as it has been demonstrated in the
planar motion case, the value of the UB’s angular velocity ωORF

UB after the TS’s capture
should not exceed an acceptable value.

• To maintain the UB’s attitude in ORF in the vicinity of its initial attitude during the
assembly, it can be additionally demanded that the UB’s attitude deviation after the
TS’s capture should be inside the limited domain. It is reasonable to place initially the
UB in the vicinity of the stable gravitational equilibrium attitude position and stay in
this vicinity during the assembly.

• During the assembly, the UB’s center of mass can significantly deviate from the origin
of the ORF moving along the circular orbit. In order to prevent possibly undesirable
deviation from the initial orbit, the UB’s center of mass’s position rORF

UB and velocity
υORF

UB must be kept within prescribed limits.

In order to address these limitations during the assembly, in this work, the following
vector c of the UB’s motion-constrained parameters is taken into account in the numerical
search of the problem (1)’s solution:

c =
[
|rORF

UB |, |υORF
UB |, |ωORF

UB |
]T

. (19)

To meet the requirements of the SS’s relative trajectory to prevent the collision with
the TS, the following approaches are proposed:

• Approach 1. During the numerical search of the repulsion velocity, the final position
deviation ∆r is calculated using the integration of the attitude and translational motion
equations. At each integration point of the SS’s center of mass’s position, the minimum
distance with the UB’s points approximated by a grid is calculated. If this distance
is less than the defined characteristic size of the SS, it is assumed that the trajectory
intersects the UB. At this point rSRF

c , the integration of the motion equations stops and
the deviation is calculated as ∆r = rSRF

c − rSRF
1 . If |∆r| > ε; then, it is assumed that the

trajectory collides with UB’s elements and the numerical search continues. If |∆r| < ε,
then it is assumed that solution of the problem (1) is found.

• Approach 2. Another approach is to consider a continuous function g to describe the
trajectory intersection with the UB’s elements. Function g is used to define the hyper-
quadratic potential field in the vicinity of the structure; this approach for structure
assembly was proposed in [28]. Function g is positive if the SS is outside the UB’s
elements, and negative if the SS is inside. Since the UB consists of a container and a
set of rods, which can be considered as elongated bodies, the following function g is
used to describe the potential field for a cylinder:



Aerospace 2024, 11, 635 13 of 24

g =


d
2 (
√

ρ2
y + ρ2

z − 1), −1 < ρx < 1,
l
2 (|ρx| − 1), else i f ρ2

y + ρ2
z < 1,

d
2 (
√

ρ2
y + ρ2

z − 1) + l
2 (|ρx| − 1), else,

(20)

where d is a rod diameter, l is the rod length, and ρx, ρy, and ρz, are dimensionless
projections of the position vector rSS onto the rod-fixed reference frame. A schematic
heatmap of the g function for a cylinder is shown in Figure 8. In this example, the
length of the cylinder is 2 m and its diameter is 1 m; the boundaries of the rod are
represented by blue lines in Figure 8. With defined UB element positions in SRF, a
sum of the functions gi corresponding to each element forms a final potential field of
the UB. If the SS’s trajectory does not intersect the UB, each function gi must remain
strictly positive or be higher than some positive value to prevent the collision. These
functions can also be included in the vector of constrained parameters c in (19) for a
numerical search of the SS’s repulsion velocity.

Figure 8. Heatmap of function g; the boundaries of the rod are represented by blue lines.

6.2. Target Function for the Numerical Search

For a numerical search of the SS’s repulsion velocity υ0 = υSRF +
SS taking into ac-

count constrained-motion parameters, the original problem (1) is reformulated using the
following target function Φ(υ0):{

υ0 : Φ(υ0) = ∆r2 → min,
cmax

i − ci ⩾ 0, i = 1. . .N,
(21)

where υ0 ∈ D, D ∈ R3 is a feasible region of velocity vector υ0, ∆r is final trajectory
deviation vector ∆r = rSRF

1 − rSRF
f , c = [c1, . . . cN ]

T is vector of constrained variables,

and cmax = [cmax
1 , . . . cmax

N ]T is the vector of maximal acceptable values of the constrained
parameters. The problem (21) can then be transformed into an unconditional problem
using the barrier or penalty function introduced in [29]:

Φbarrier(υ0, c) = Φ(υ0)− µ
N

∑
i=1

log
(

1 − ci
cmax

i

)
,
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Φpenalty(υ0, c) = Φ(υ0)− µ
N

∑
i=1

(
1 − ci

cmax
i

)
+

,

where µ > 0 is a small positive parameter and ( )+ represents the rectified linear unit
(ReLU) function. However, the Φbarrier function is undefined if the constraints are not
fulfilled, which may cause the non-convergence during the minimization of the function.
The Φpenalty function highly depends on parameter µ and it only counts constraints in the
constraint-violation area. These features may lead to a local minimum of the function that
is not the solution of the problem (1). Thus, a new function is required that is characterized
by the given functions’ advantages, but does not have their shortcomings. That is why, in
this paper, the following barrier function is proposed:


Φ∗(υ0, c) = Φ(υ0)− µ ∑m

i=1 log(εi),

εi =

1 − ci
cmax

i
+ δ ci

cmax
i

, (1 − ci
cmax

i
) ⩾ 0,

δe
1− ci

cmax
i , (1 − ci

cmax
i

) < 0,

(22)

where δ is the hyperparameter that connects the function Φ∗(υ0) defined in the constraint-
fulfilled domain with the function Φ∗(υ0) defined in the constraint-violated domain. In
the case where δ ≪ 1, the function Φ∗(υ0) represents a penalty function in the constraint-
violated domain. An example of the logarithm argument function ε( ci

cmax
i

) and the function

Φ∗( ci
cmax

i
) dependence on the ratio ci

cmax
i

using different values of δ is shown in Figure 9.

From the figure, it can be concluded that the function Φ∗( ci
cmax

i
) is smooth and the gradient

minimization methods can be applied for the numerical solution search.

Figure 9. Example of dependence ε( ci
cmax

i
) and Φ∗( ci

cmax
i

) on ratio ci
cmax

i
for several δ values.

6.3. Repulsion Velocity’s Initial Guess

The performance of many numerical minimization methods strongly depends on the
initial guess. Gradient-based methods are prone to converge to a local minimum when
searching the parameter area where the initial guess vector is defined. So, this aspect of
numerical search is of high importance in this work. This paper proposes two approaches
to calculate an initial guess for the SS’s repulsion velocity υ∗

0 using the following simplified
motion cases:

(1) The planar motion case described in Section 5 is used for the initial guess υ∗
0 =

[υx
0 , 0, υz

0]
T’s calculation according to (18).
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(2) In the spatial motion case, under the assumption that the UB’s position and attitude
are fixed in ORF, the following initial guess υ∗

0 = [υx
0 , υ

y
0 , υz

0]
T using the solution (3) of

the Clohessy–Wiltshire Equation (2) is calculated according to [25]:

υx
0 =

ω0
(
(6∆tω0z0 + x1 − x0) sin(∆tω0) + (14z0 − 2z1)(cos(∆tω0)− 1)

)
−3∆tω0 sin(ω0∆t)− 8 cos(ω0∆t) + 8

,

υ
y
0 =

ω0(−y0 cos(ω0∆t) + y1)

sin(ω0∆t)
,

υz
0 =

ω0
(
(3∆tω0z0 + 2x1 − 2x0) cos(∆tω0)− 3∆tω0z1 + 2x0 − 2x1 + 4(z1 − z0) sin(∆tω0)

)
−3∆tω0 sin(ω0∆t)− 8 cos(ω0∆t) + 8

,

(23)

where rORF
0 = [x0, y0, z0]

T is the SS’s start point, rORF
1 = [x1, y1, z1]

T is the SS’s target point,
and ∆t = t − t0 is defined time of the SS’s free flight. It can be concluded from (23) that
the selection of the flight time ∆t strongly affects the SS’s repulsion velocity and, as a
sequence, it affects the SS’s trajectory. Furthermore, it follows from (23) that the flight time
multiplication to half of the orbital period ∆t = πk/ω0, k = 1, 2, 3, . . . , n is unacceptable; it
leads to infinite repulsion velocity and it means that there is no solution to the boundary
problem. In this paper, for an acceptable initial guess search, a set of SS’s flight times
is considered ∆t = [∆t1, . . . , ∆tk]T ; for each ∆ti, the repulsion velocity Υ = [υ1

0, . . . υk
0] is

calculated using (23) and the trajectory collision avoidance requirement is roughly checked.
It is assumed that the forbidden zone for the trajectory is a sphere with a diameter with
endpoints rORF

0 and rORF
1 . The SS’s trajectory with repulsion velocity υi

0 can be roughly
considered as a set of SS’s positions ri

j with m points. The repulsion velocity υi
0 is specified

as being invalid if the following inequality is true:

∃j :
∣∣∣∣ri

j −
1
2
(rORF

0 + rORF
1 )

∣∣∣∣ < 1
2

∣∣∣rORF
0 − rORF

1

∣∣∣, j = 1, . . . , m. (24)

This condition corresponds to the case when the SS’s radius-vector from the sphere cen-
ter is less than the sphere radius. Using (24), the repulsion velocity for the acceptable initial
guess in terms of preliminary rough collision avoidance requirements and corresponding
flight time ∆t is selected.

6.4. Numerical Search Algorithms

Two numerical search algorithms were used in this paper to solve problem (21) de-
pending on the proposed above approaches to address the SS’s collision avoidance aspect:

• Algorithm 1. For the case of using Approach 1 from Section 6.1, when the numerical
integration stops when the SS’s trajectory intersects the UB’s element during the search
for the solution, and when the vector of constrained parameters c from (19) is short (it
does not include the g functions), then Newton’s method was used in this paper to
solve the problem (21). Newton’s method iteratively calculates the repulsion velocity
using the following formula [30]:

υ0
i+1 = υ0

i −
(∂∇Φ

∂υ0

∣∣∣
υ0=υ0 i

)−1
∇Φ

∣∣∣
υ0=υ0 i

, (25)

where i is the iteration number of the method, and ∇Φ is the gradient vector of the target
function (22):

∇Φ =

[
∂Φ
∂υx

0
,

∂Φ
∂υ

y
0

,
∂Φ
∂υz

0

]T

.

The iterative procedure stops if the norm of the difference of two sequential values of
υ0

i+1 is less than the defined small value ευ0 :
∣∣υ0

i+1 − υ0
i
∣∣<ευ0 .
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• Algorithm 2. For the case of using the Approach 2 from Section 6.1, when the functions
g (20) are added to the vector of constrained parameters c to address the collision
avoidance, the trust region [30] method from the Python library “scipy” was used.
This method is based on a subset of the objective function region that is approximated
using a model quadratic function. If an appropriate approximation of the objective
function is found within the trust region, then the searching region is expanded;
conversely, if the approximation is poor, then the region is contracted. The criterion
for appropriate approximation is the improvement of the objective function value.

Both algorithms were used for the numerical search for the problem’s solution. Al-
gorithm 1 is faster than Algorithm 2, though Algorithm 1 is more sensitive to the initial
velocity guess. The main reason that Algorithm 2 runs significantly slower is that the solu-
tion for the problem Φ(υ0) → min (21) is searched on the boundary of fulfilling constraints
cmax

i − ci ⩾ 0. So, the more computationally complex Algorithm 2 is used for the repulsion
velocity search if Algorithm 1 fails to find a valid solution.

7. On-Orbit Assembly Example

We consider an example of the large truss-based structure on-orbit assembly using the
proposed approach for fuelless control of the servicing spacecraft motion. As described in
Section 2, it is assumed that, initially, in orbit, there is a CC with a set of rods, installing
a platform placed on the CC; the TS is to be assembled using rods and an SS with two
manipulators. The structure to be assembled is the antenna-like construction presented in
Figure 10.

Figure 10. Large space truss structure to be assembled.

The main parameters of the considered system and parameters of the algorithms are
provided in Table 2. The initial circular orbit height of the UB is 800 km, which corresponds
to an orbital period of about 5700 s. It is assumed that the SS is initially attached to the CC.
During the assembly process, the motion of the system is influenced by the central gravity
field and by the repulsion and capturing of the SS. The effects of any orbital disturbances
such as the second harmonic of Earth’s gravity field, aerodynamic forces, solar pressure,
etc., are neglected. Initially, the UB is stabilized in ORF; the axes of BRF coincide with
ORF’s axes.
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Table 2. Main system parameters.

Variable Value

The SS’s mass 20 kg
The UB’s initial mass 650 kg

Number of rods 78
Length of rods 5–10 m

Linear mass density of rods 1 kg/m
Maximum SS repulsion velocity υBRF

0 0.05 m/s
max|ωORF

UB | 0.001 rad/s
max|rORF

UB | 500 m
max|υORF

UB | 0.1 m/s
Radius of collision avoidance zone around rods 30 cm

Manipulator capture radius 50 cm
Maximum motion time tmax

f 104 s

7.1. Acceptable Repulsion Velocity Restriction

For the proposed assembly method, it is the most important to estimate the required
maximum value for the SS’s repulsion velocity to perform the rod transfers. This value
can be estimated using the simplified motion cases described above. In Equation (23), for
the calculation of the initial guess for the repulsion velocity, the x- and z-components of
repulsion velocity have same denominator. Furthermore, the same denominator is applied
to the x- and z-components of repulsion velocity in Equation (18) for the planar motion case.
Values of the denominator (23) for the x- and z-components depending on transfer time are
represented in Figure 11. Transfer time regions’ near-zero value of the denominator requires
an extremely large repulsion velocity and should be avoided by choosing an appropriate
transfer time. Additionally, the y-component denominator (23) is zero during one-half
of the orbital period. Thus, transfer time regions with high denominator values should
be chosen.

Figure 11. Repulsion velocity of x- and z-components’ denominator in (23) depending on trans-
fer time.

Examples of the required repulsion velocity values (23) and (18) according to simplified
cases for randomly generated one hundred transfers between structure points are shown
in Figures 12 and 13. Blue boxplots correspond to formulas (23), and yellow boxplots
correspond to formulas (18). Half of the results are inside the box and the horizontal
line is the median value of the required repulsion velocity. Figure 12 demonstrates the
repulsion velocities’ boxplots for transfers between points with a structure of an overall size
of L = 20 m, which corresponds to the structure’s overall size of the antenna-like structure
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considered in this section. For comparison, Figure 13 presents the repulsion velocities’
boxplots for the transfers with a structure of an overall size of L = 100 m. It can be noticed
that the short transfer time when the denominator is small results in higher values of the
repulsion velocities. In the case of a time transfer of 3000 s, the values of the repulsion
velocities are also high because this is close to the half of the orbital period and close to
the zero-value of the denominator for the y-component’s velocity in (23). For the other
cases of time transfer, the required repulsion velocity is less than the value of 5 cm/s for
the structure with a characteristic size of L = 20 m, and 20 cm/s for L = 100 m.

Figure 12. Repulsion velocity values at fixed motion time for randomly generated transfers between
points of the structure with characteristic size L = 20 m.

Figure 13. Repulsion velocity values at fixed motion time for randomly generated transfers between
points of the structure with characteristic size L = 100 m.

Thus, in this example of space structure assembly, the repulsion velocity is restricted
by the reasonable value of 5 cm/s, though, in practice, this restriction is the result of the
choice of a particular SS’s manipulators and its parameters.

7.2. Simulation of the Assembly Process

The assembly process consists of a sequence of predetermined transfers of the SS
between the UB’s points. Initially, the SS is located at the CC, it takes the rod, and then
repulses from the UB using the manipulator. When the SS’s trajectory is in the vicinity of
the target point, the SS’s manipulators capture the UB; then, the SS installs the rod to the
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structure and repulses by manipulator to transfer to the initial point at the CC to take the
next rod. Then, the cycle is repeated until the structure is fully assembled.

Figure 14 presents an example of the SS’s position deviation from the target point
during the SS’s motion (top plot) and the values of the constrained-motion parameters (19)
divided by their maximum values ci/cmax

i (bottom plot). The vector of the constrained-
motion parameters includes the value of the UB’s angular velocity ωORF

UB , and the UB’s
center of mass’s position rORF

UB and velocity υORF
UB ; their maximum values are provided in

Table 2. In Figure 14, red vertical dashed lines indicates time points of the SS’s repulsion
and catching by the UB. The catching is performed when the SS’s position deviation is
less than the length of the manipulator capture radius of 0.5 m. The SS and the UB’s
free-flight motion takes place between the repulsion and catching points. As can be seen
from Figure 14, at the time moments of the SS’s repulsion from the UB and catching by the
UB, the UB’s angular and translational velocities change simultaneously according to (12)
and (14). The change in the UB’s angular velocity is caused by oscillations of the UB in the
vicinity of the gravity-stable orientation.

The repulsion velocities for the presented transfers are found using the two algorithms
described above of numerical search. Figure 15 presents an example of the convergence
process of reducing the SS’s final position deviation vs. the number of required iterations
in the case where Algorithm 1 is used to solve the problem using an initial velocity guess
calculated for simplified cases. Algorithm 1 stops when the ∆r(t) is less than the manip-
ulator’s capture radius of 0.5 m, or when the difference between the two values of the
repulsion velocities

∣∣υ0
i+1 − υ0

i
∣∣ < ευ0 is less than ευ0 = 10−4 m/s. In most cases presented

in Figure 15, Algorithm 1 successfully finds the repulsion velocity with ∆r(t) < 0.5 m
taking into account the collision avoidance aspect according to Approach 1 described in
Section 6.1. However, in some cases, Algorithm 1 fails to find a solution as is shown by
the red line in Figure 15: the ∆r(t) is more than the manipulator’s capture radius and the
repulsion velocity is converged. In that case, Algorithm 2 is used to solve the problem
(21). An example of the convergence process of Algorithm 2 is presented in Figure 16. It
requires many more iterations, though, since it uses the more complicated Approach 2 to
take into account the collision avoidance with the structure, it finds solution to the transfer
problem more steadily. It can be noted from Figure 16 that the position error decreases
insignificantly from 10 to 45 iterations. It can be explained by the slow convergence rate of
the trust region method in the area close to the violation of condition gi ≥ 0 (20) related to
structure collision avoidance.

Figure 14. The SS’s deviation from the target point ∆r(t) (top) and the relative values ci/cmax
i of the

constrained-motion parameters (19) (bottom) during the SS’s motion.
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Figure 15. A set of examples of final position deviation during the numerical search by Algorithm 1.
Each colored line corresponds to different example.

Figure 16. An example of final position deviation during the numerical search by Algorithm 2.

Figure 17 presents the SS’s position deviation from the target points during several
transfers. Furthermore, in Figure 18, the relative constrained-motion parameters during
multiple transfers are shown. From Figure 18, it can be seen that the relative constrained
values do not exceed the value of 1, so the relative constrained values are not violated.
However, the SS’s repulsion impulses and the change of the UB’s mass distribution may
lead to the significant deviation of the UB from the gravity-stabilized attitude and result in
an increase of the angular velocity.
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Figure 17. The SS’s deviation from the target point ∆r(t) during multiple transfers.

Figure 18. Relative values ci/cmax
i of the constrained-motion parameters (19) during multiple transfers.

Intermediate assembly stages are shown in Figures 19 and 20. In these figures, the
CC, the SS, trajectories of the SS, and a set of the installed rods are presented. In Figure 19,
most of the rods are still inside the CC, and the symmetry axis of the cylindrical CC with a
minimal inertia moment is almost aligned with the local vertical axis z of ORF. So, the UB’s
attitude is in the vicinity of the gravity-gradient stabilization equilibrium. After a while,
the mass distribution is changed, and the attitude of the UB due to SS’s repulsion is also
changed significantly according to Figure 20.

Figure 19. Intermediate stage of assembly: cargo container, servicing satellite, and its trajectories
during the transfers.
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Figure 20. Demonstration of attitude change of the assembling structure.

Figure 21 shows the values of the calculated SS’s repulsion velocities during the
assembly process. It can be concluded that, due to slightly increasing UB’s angular ve-
locity, the maximal values of the SS’s repulsion velocity also steadily increase, though
they do not exceed the limit of 5 cm/s. It means that the estimations of the maximum
repulsion velocity obtained using the simplified motion cases (see Figure 12) are valid for
the considered example.

Figure 21. Repulsion velocity values during the space structure assembly.

8. Conclusions

This paper proposed a new approach to the problem of the space structure construc-
tion using the servicing spacecraft with two manipulators. With these manipulators, the
servicing spacecraft is able to move between the structure points using repulsion and
catching. In the case of planar motion, the boundary problem was solved analytically using
simplifying assumptions. In the spatial motion case, the repulsive velocity was searched
for using numerical minimization techniques, taking into account a set of restrictions on
the motion parameters and considering collision avoidance of the servicing spacecraft with
the space structure. A numerical example demonstrated the successful construction of the
particular antenna-like truss structure. However, it should be noted that, in the case of a
complex truss-based structure or at a high angular velocity of the structure, the acceptable
repulsion velocity for the rod transfers could not be found in a feasible region of velocity
vector. In this case, the servicing spacecraft would need to be equipped with onboard
propulsion and the repulsion by manipulator can be considered as a means for reducing
the fuel consumption. This case will be considered in further studies by the authors.
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