A Survey of Aero-Engine Blade Modeling and Dynamic Characteristics Analyses
Abstract
:1. Introduction
2. Mathematical Modeling of Blades
2.1. Lumped-Mass Model
2.2. FE Model
2.2.1. Beam Element
2.2.2. Shell Element
2.2.3. Solid Element
- General three-dimensional models
- 2.
- Three-dimensional model considering friction behavior
- 3.
- Three-dimensional model considering fluid action
2.3. Semi-Analytical Model
2.4. Summary of Rotating Blade Mechanics Models
3. Numerical Solution Methods
4. Dynamic Characteristics
4.1. Vibration Mechanisms and Phenomena
4.2. Modal Characteristics
4.3. Vibration Response
4.3.1. Influencing Factors on Blade Vibration Response
4.3.2. Resonance Behavior
4.3.3. Flutter Phenomenon
4.3.4. Non-Synchronous Resonance
5. Discussion and Prospect
- Enhancing the research of multi-physical field coupling problems. Structural vibration is affected by a variety of factors, including solid mechanics, aerodynamics, heat, and other physical coupling [9,10]. In different coupling situations, the vibration characteristics of the blade have large differences [61]. Future research can enhance the multi-physics field coupled simulation, especially considering the non-constant heat flow under real operating conditions, to improve the realism and accuracy of the simulation.
- More attention needs to be paid to the application of the newest materials for blades. The application of new materials opens up new possibilities in blade design. With a higher strength and lighter weight, they can change the vibration characteristics of blades and improve engine performance. Experiments based on engineering data [90] show that the addition of new materials improves the impact resistance of blades, which provides a strong reference for future research directions. Future research will therefore focus on material properties, component design, and test methods. This understanding will be critical in determining the suitability of these materials for practical use.
- Research should explore data-driven simulation methods. High-dimensional machine learning methods should be used as well as measured data to optimize the simulation model, reduce the computational costs, and improve the computational efficiency and accuracy. Many methods in machine learning are suitable for solving high-dimensional, constrained [126], and multi-objective optimization problems and the key to solving the nonlinear dynamics of blades is currently to reduce the computational complexity. More nonlinear factors, multi-physical field coupling, and other factors can be considered using data-driven models to improve the realism and reliability of the simulation.
- Structural parameters with nonlinear characteristics, such as damping, deflection, and external forces, have a significant effect on the vibration response of a structure. Future research could focus on optimizing these parameters to improve the performance and stability of the structure. In addition, active or semi-active control strategies can be considered to suppress or reduce nonlinear vibrations.
Author Contributions
Funding
Conflicts of Interest
References
- Silva, L.; Grönstedt, T.; Xisto, C.; Whitacker, L.; Bringhenti, C.; Lejon, M. Analysis of Blade Aspect Ratio’s Influence on High-Speed Axial Compressor Performance. Aerospace 2024, 11, 276. [Google Scholar] [CrossRef]
- Nguyen, N.V.; Tyan, M.; Lee, J.-W. A Modified Variable Complexity Modeling for Efficient Multidisciplinary Aircraft Conceptual Design. Optim. Eng. 2015, 16, 483–505. [Google Scholar] [CrossRef]
- Rykaczewski, D.; Nowakowski, M.; Sibilski, K.; Wróblewski, W.; Garbowski, M. Identification of Longitudinal Aerodynamic Characteristics of a Strake Wing Micro Aerial Vehicle by Using Artificial Neural Networks. Bull. Pol. Acad. Sci. Tech. Sci. 2021, 69, 1–9. [Google Scholar] [CrossRef]
- Winfrey, R.C. Elastic Link Mechanism Dynamics. J. Eng. Ind. 1971, 93, 268–272. [Google Scholar] [CrossRef]
- Sadler, J.P.; Sandor, G.N. A Lumped Parameter Approach to Vibration and Stress Analysis of Elastic Linkages. J. Eng. Ind. 1973, 95, 549–557. [Google Scholar] [CrossRef]
- Wang, S.M.; Morse, I.E. Torsional Response of a Gear Train System. J. Eng. Ind. 1972, 94, 583–592. [Google Scholar] [CrossRef]
- Koster, M.P. Vibrations of Cam Mechanisms; Macmillan Education: London, UK, 1974; ISBN 978-1-349-02457-5. [Google Scholar]
- Wu, B.; Lin, J.; Xie, A.; Wang, N.; Zhang, G.; Zhang, J.; Dai, H. Flocking Bird Strikes on Engine Fan Blades and Their Effect on Rotor System: A Numerical Simulation. Aerospace 2022, 9, 90. [Google Scholar] [CrossRef]
- Lethbridge, P. Multiphysics Analysis. Ind. Phys. 2004, 10, 26–29. [Google Scholar]
- Aulisa, E.; Manservisi, S.; Seshaiyer, P.; Idesman, A. Distributed Computational Method for Coupled Fluid Structure Thermal Interaction Applications. J. Algorithms Comput. Technol. 2010, 4, 291–309. [Google Scholar] [CrossRef]
- Lerro, A.; Brandl, A.; Gili, P. Model-Free Scheme for Angle-of-Attack and Angle-of-Sideslip Estimation. J. Guid. Control Dyn. 2021, 44, 595–600. [Google Scholar] [CrossRef]
- Jiang, M.; Wu, J.; Liu, S. The Influence of Slowly Varying Mass on Severity of Dynamics Nonlinearity of Bearing-Rotor Systems with Pedestal Looseness. Shock Vib. 2018, 2018, 3795848. [Google Scholar] [CrossRef]
- Ma, H.; Lu, Y.; Wu, Z.; Tai, X.; Li, H.; Wen, B. A New Dynamic Model of Rotor–Blade Systems. J. Sound Vib. 2015, 357, 168–194. [Google Scholar] [CrossRef]
- Ma, H.; Wu, Z.; Zeng, J.; Wang, W.; Wang, H.; Guan, H.; Zhang, W. Review on Dynamic Modeling and Vibration Characteristics of Rotating Cracked Blades. J. Dyn. Monit. Diagn. 2023, 2, 207–227. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, W.; Zhu, R.; Zhang, L.; Gao, J.; Liao, M. Dynamic Analysis of a Flexible Rotor Supported by Ball Bearings with Damping Rings Based on FEM and Lumped Mass Theory. J. Cent. South Univ. 2020, 27, 3684–3701. [Google Scholar] [CrossRef]
- Chen, Y.; Yanrong, W. A Method for the Resonant Response Evaluation of Blades System with Underplatform Dampers. Vibroeng. Procedia 2014, 4, 164–169. [Google Scholar]
- Laxalde, D.; Thouverez, F.; Sinou, J.-J.; Lombard, J.-P. Qualitative Analysis of Forced Response of Blisks with Friction Ring Dampers. Eur. J. Mech.—A/Solids 2007, 26, 676–687. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Y.; Zhu, W.; Fu, C.; Lu, K. A Comprehensive Study on Seismic Dynamic Responses of Stochastic Structures Using Sparse Grid-Based Polynomial Chaos Expansion. Eng. Struct. 2024, 306, 117753. [Google Scholar] [CrossRef]
- Dalir, M.A. Exact Mathematical Solution for Nonlinear Free Transverse Vibrations of Beams. Sci. Iran. 2020, 27, 1290–1301. [Google Scholar]
- Öchsner, A. Timoshenko Beam Theory. In Classical Beam Theories of Structural Mechanics; Öchsner, A., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 67–104. ISBN 978-3-030-76035-9. [Google Scholar]
- Xiao, L.; Yan, F.; Lu, H. Dynamics of a Cross Beam with a Straight Crack in a Mining Linear Vibrating Screen. Heliyon 2024, 10, e35017. [Google Scholar] [CrossRef]
- Rehfield, L.W. Design Analysis Methodology for Composite Rotor Blades. In Proceedings of the Seventh DoD/NASA Conference on Fibrous Composites in Structural Design, Denver, CO, USA, 17–20 June 1985. [Google Scholar]
- Chandiramani, N.K.; Shete, C.D.; Librescu, L.I. Vibration of Higher-Order-Shearable Pretwisted Rotating Composite Blades. Int. J. Mech. Sci. 2003, 45, 2017–2041. [Google Scholar] [CrossRef]
- Jafari-Talookolaei, R.-A. Analytical Solution for the Free Vibration Characteristics of the Rotating Composite Beams with a Delamination. Aerosp. Sci. Technol. 2015, 45, 346–358. [Google Scholar] [CrossRef]
- Smith, E.C.; Chopra, I. Aeroelastic Response, Loads, and Stability of a Composite Rotor in Forward Flight. AIAA J. 1993, 31, 1265–1273. [Google Scholar] [CrossRef]
- Cesnik, C.E.S.; Hodges, D.H. VABS: A New Concept for Composite Rotor Blade Cross-Sectional Modeling. J. Am. Helicopter Soc. 1997, 42, 27. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Hashemi, M. On Vibration Behavior of Rotating Functionally Graded Double-Tapered Beam with the Effect of Porosities. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 230, 1903–1916. [Google Scholar] [CrossRef]
- Ren, Y.; Yang, S.; Du, X. Modeling and Free Vibration Behavior of Rotating Composite Thin-Walled Closed-Section Beams with SMA Fibers. Chin. J. Mech. Eng. 2012, 25, 1029–1043. [Google Scholar] [CrossRef]
- Griffin, J.H. Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils. J. Eng. Power 1980, 102, 329–333. [Google Scholar] [CrossRef]
- Yang, F.; Yang, Y.; Hu, H.; Guan, F.; Shen, G.; Chen, S.; Bian, Z. Extraction of Features Due to Breathing Crack from Vibration Response of Rotated Blades Considering Tenon Connection and Shroud Contact. Shock Vib. 2019, 2019, 8729620. [Google Scholar] [CrossRef]
- Hu, X.; Cai, L.; Chen, Y.; Li, X.; Wang, S.; Fang, X.; Fang, K. Exploring the Aerodynamic Effect of Blade Gap Size via a Transient Simulation of a Four-Stage Turbine. Aerospace 2024, 11, 449. [Google Scholar] [CrossRef]
- Jie, X.; Zhang, W. Nonlinear vibration analysis of the aero-engine blade. J. Dyn. Control 2019, 17, 205–212. [Google Scholar]
- Xie, F.; Ma, H.; Cui, C.; Wen, B. Vibration Response Comparison of Twisted Shrouded Blades Using Different Impact Models. J. Sound Vib. 2017, 397, 171–191. [Google Scholar] [CrossRef]
- Sun, J.; Lopez Arteaga, I.; Kari, L. General Shell Model for a Rotating Pretwisted Blade. J. Sound Vib. 2013, 332, 5804–5820. [Google Scholar] [CrossRef]
- Han, G.; Chen, Y. Principal Resonance Bifurcation of Bending–Torsion Coupling of Aero-Engine Compressor Blade with Assembled Clearance under Lateral Displacement Excitation of Rotor Shaft. Nonlinear Dyn. 2014, 78, 2049–2058. [Google Scholar] [CrossRef]
- Sinha, S.K.; Zylka, R.P. Vibration Analysis of Composite Airfoil Blade Using Orthotropic Thin Shell Bending Theory. Int. J. Mech. Sci. 2017, 121, 90–105. [Google Scholar] [CrossRef]
- Chen, J.; Li, Q.-S. Vibration Characteristics of a Rotating Pre-Twisted Composite Laminated Blade. Compos. Struct. 2019, 208, 78–90. [Google Scholar] [CrossRef]
- Tuninetti, V.; Sepúlveda, H. Computational Mechanics for Turbofan Engine Blade Containment Testing: Fan Case Design and Blade Impact Dynamics by Finite Element Simulations. Aerospace 2024, 11, 333. [Google Scholar] [CrossRef]
- Tyan, M.; Choi, C.-K.; Nguyen, T.A.; Lee, J.-W. Rapid Airfoil Inverse Design Method with a Deep Neural Network and Hyperparameter Selection. Int. J. Aeronaut. Space Sci. 2023, 24, 33–46. [Google Scholar] [CrossRef]
- Bayoumy, A.H.; Nada, A.A.; Megahed, S.M. A Continuum Based Three-Dimensional Modeling of Wind Turbine Blades. J. Comput. Nonlinear Dyn. 2012, 8, 031004. [Google Scholar] [CrossRef]
- Yeo, H.; Truong, K.-V.; Ormiston, R.A. Comparison of One-Dimensional and Three-Dimensional Structural Dynamics Modeling of Advanced Geometry Blades. J. Aircr. 2014, 51, 226–235. [Google Scholar] [CrossRef]
- Fu, C.; Zhang, K.; Cheng, H.; Zhu, W.; Zheng, Z.; Lu, K.; Yang, Y. A Comprehensive Study on Natural Characteristics and Dynamic Responses of a Dual-Rotor System with Inter-Shaft Bearing under Non-Random Uncertainty. J. Sound Vib. 2024, 570, 118091. [Google Scholar] [CrossRef]
- Kee, Y.-J.; Shin, S.-J. Structural Dynamic Modeling for Rotating Blades Using Three Dimensional Finite Elements. J. Mech. Sci. Technol. 2015, 29, 1607–1618. [Google Scholar] [CrossRef]
- Yuan, J.; Allegri, G.; Scarpa, F.; Rajasekaran, R.; Patsias, S. Novel Parametric Reduced Order Model for Aeroengine Blade Dynamics. Mech. Syst. Signal Process. 2015, 62, 235–253. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.; Kim, K.-H.; Lee, D.-H.; Kang, Y.-S.; Rhee, D.-H. Optimization Framework Using Surrogate Model for Aerodynamically Improved 3D Turbine Blade Design. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: New York, NY, USA, 2014; Volume 45615, p. V02BT45A019. [Google Scholar]
- Noever-Castelos, P.; Haller, B.; Balzani, C. Validation of a Modeling Methodology for Wind Turbine Rotor Blades Based on a Full-Scale Blade Test. Wind Energy Sci. 2022, 7, 105–127. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, D. Crack Modeling of Rotating Blades with Cracked Hexahedral Finite Element Method. Mech. Syst. Signal Process. 2014, 46, 406–423. [Google Scholar] [CrossRef]
- Moore, R.D.; Reid, L. Performance of Single-Stage Axial-Flow Transonic Compressor with Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and with Design Pressure Ratio of 2.05; NASA TP 1659; NASA: Washington, DC, USA, 1980. [Google Scholar]
- Kojtych, S.; Batailly, A. Open NASA Blade Models for Nonlinear Dynamics Simulations. J. Eng. Gas Turbines Power 2024, 146, 011009. [Google Scholar] [CrossRef]
- Poursaeidi, E.; Babaei, A.; Mohammadi Arhani, M.R.; Arablu, M. Effects of Natural Frequencies on the Failure of R1 Compressor Blades. Eng. Fail. Anal. 2012, 25, 304–315. [Google Scholar] [CrossRef]
- Wu, Y.; Xuan, H.; Wu, C.; Mi, D.; Qu, M.; Jin, T. Study on the Forced Torsional Vibration Response of Multiple Rotating Blades with Underplatform Dampers. Aerospace 2023, 10, 725. [Google Scholar] [CrossRef]
- Guo, X.; Ni, K.; Ma, H.; Zeng, J.; Wang, Z.; Wen, B. Dynamic Response Analysis of Shrouded Blades under Impact-Friction Considering the Influence of Passive Blade Vibration. J. Sound Vib. 2021, 503, 116112. [Google Scholar] [CrossRef]
- Li, C.; Chen, Z.; Shen, Z.; She, H. Analysis on Vibration Reduction of a Rotating Dovetailed Blade with Underplatform Damper and Installation Preload. Mech. Based Des. Struct. Mach. 2022, 50, 877–896. [Google Scholar] [CrossRef]
- Liu, Y.; Shangguan, B.; Xu, Z. A Friction Contact Stiffness Model of Fractal Geometry in Forced Response Analysis of a Shrouded Blade. Nonlinear Dyn. 2012, 70, 2247–2257. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, D.; Ma, Y.; Hong, J. Dynamic Modeling and Vibration Characteristics Analysis of the Aero-Engine Dual-Rotor System with Fan Blade Out. Mech. Syst. Signal Process. 2018, 106, 158–175. [Google Scholar] [CrossRef]
- Filsinger, D.; Szwedowicz, J.; Schäfer, O. Approach to Unidirectional Coupled CFD—FEM Analysis of Axial Turbocharger Turbine Blades. In Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; IGTI Scholar Award; General; American Society of Mechanical Engineers: New Orleans, LA, USA, 2001; p. V004T03A047. [Google Scholar]
- Mao, Y.; Qi, D.; Xu, Q. Numerical study on high cycle fatigue failure of a centrifugal compressor impeller blades. J. Xi’an Jiaotong Univ. 2008, 42, 1336–1339. [Google Scholar]
- Zhang, M.; Hao, S.; Hou, A. Study on the Intelligent Modeling of the Blade Aerodynamic Force in Compressors Based on Machine Learning. Mathematics 2021, 9, 476. [Google Scholar] [CrossRef]
- Janeliukstis, R. Continuous Wavelet Transform-Based Method for Enhancing Estimation of Wind Turbine Blade Natural Frequencies and Damping for Machine Learning Purposes. Measurement 2021, 172, 108897. [Google Scholar] [CrossRef]
- Yang, R.; Gao, Y.; Wang, H.; Ni, X. Fuzzy Neural Network PID Control Used in Individual Blade Control. Aerospace 2023, 10, 623. [Google Scholar] [CrossRef]
- Culler, A.J.; McNamara, J.J. Impact of Fluid-Thermal-Structural Coupling on Response Prediction of Hypersonic Skin Panels. AIAA J. 2011, 49, 2393–2406. [Google Scholar] [CrossRef]
- Cai, L.; He, Y.; Wang, S.; Li, Y.; Li, F. Thermal-Fluid-Solid Coupling Analysis on the Temperature and Thermal Stress Field of a Nickel-Base Superalloy Turbine Blade. Materials 2021, 14, 3315. [Google Scholar] [CrossRef]
- Yu, M.; Du, J.; Shao, X.; Lu, J. Analysis on Aerodynamic Stability of Blades by an Efficient Fluid–Structure Coupling Method. J. Aerosp. Eng. 2021, 34, 04021088. [Google Scholar]
- Li, S.; Wang, Y.; Sun, H.; Sun, C.; Zhang, X.; Liu, T. Prestressed Modal Analysis of Wind Turbine Blade Considering Fluid-Solid Coupling. J. Phys. Conf. Ser. 2022, 2173, 012031. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Hao, Z.; Cao, Q. Bifurcation Analysis for Vibrations of a Turbine Blade Excited by Air Flows. Sci. China Technol. Sci. 2016, 59, 1217–1231. [Google Scholar] [CrossRef]
- Reboul, G.; Taghizad, A. Semi-Analytical Modelling of Helicopter Main Rotor Noise. In Proceedings of the 38th European Rotorcraft Forum, Amsterdam, The Netherlands, 4–7 September 2012. [Google Scholar]
- Li, C.; She, H.; Tang, Q.; Wen, B. Research on the FE and Semi-Analytical Solution with the Blade-Casing Rub-Impact Dynamical System. J. Vibroeng. 2015, 17, 3438–3452. [Google Scholar] [CrossRef]
- Bontempo, R.; Manna, M. A Nonlinear and Semi-Analytical Actuator Disk Method Accounting for General Hub Shapes. Part 1. Open Rotor. J. Fluid Mech. 2016, 792, 910–935. [Google Scholar] [CrossRef]
- Gozum, M.M.; Serhat, G.; Basdogan, I. A Semi-Analytical Model for Dynamic Analysis of Non-Uniform Plates. Appl. Math. Model. 2019, 76, 883–899. [Google Scholar] [CrossRef]
- Xi, R.; Wang, P.; Du, X.; Xu, K.; Xu, C.; Jia, J. A Semi-Analytical Model of Aerodynamic Damping for Horizontal Axis Wind Turbines and Its Applications. Ocean Eng. 2020, 214, 107861. [Google Scholar] [CrossRef]
- Guo, X.; Zeng, J.; Ma, H.; Liu, S.; Luo, Z.; Li, C.; Han, Q.; Wen, B. Semi-Analytical Modeling and Experimental Verification of a Flexible Varying Section Disk–Blades System with Elastic Supports. Thin-Walled Struct. 2023, 185, 110563. [Google Scholar] [CrossRef]
- Zhao, H.; Li, F.; Fu, C. An Ɛ-Accelerated Bivariate Dimension-Reduction Interval Finite Element Method. Comput. Methods Appl. Mech. Eng. 2024, 421, 116811. [Google Scholar] [CrossRef]
- Yoo, H.H.; Lee, S.H.; Shin, S.H. Flapwise Bending Vibration Analysis of Rotating Multi-Layered Composite Beams. J. Sound Vib. 2005, 286, 745–761. [Google Scholar] [CrossRef]
- Dai, H. High-Perfo-Rmance Computing Method for Solving Nonlinear Dynamical Systems; China Science Publishing & Media Ltd. (CSPM): Beijing, China, 2022; ISBN 978-7-03-071125-0. [Google Scholar]
- Fu, C.; Zhu, W.; Ma, J.; Gu, F. Static and Dynamic Characteristics of Journal Bearings under Uncertainty: A Nonprobabilistic Perspective. J. Eng. Gas Turbines Power 2022, 144, 071012. [Google Scholar]
- Gerolymos, G.A. Numerical Integration of the Blade-to-Blade Surface Euler Equations in Vibrating Cascades. AIAA J. 1988, 26, 1483–1492. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y. Nonlinear Vibration of Rotating Pre-Deformed Blade with Thermal Gradient. Nonlinear Dyn. 2016, 86, 459–478. [Google Scholar] [CrossRef]
- Gu, X.J.; Zhang, W.; Zhang, Y.F. A Novel Dynamic Model on Nonlinear Vibrations of Functionally Graded Graphene Platelet Reinforced Rotating Pretwisted Composite Blade Considering Subsonic Airflow Excitation and Blade-Casing Rubbing. Compos. Struct. 2023, 315, 116936. [Google Scholar] [CrossRef]
- Robinson, M.T.A.; Wang, Z. The Effect of the TMD on the Vibration of an Offshore Wind Turbine Considering Three Soil-Pile-Interaction Models. Adv. Struct. Eng. 2021, 24, 2652–2668. [Google Scholar] [CrossRef]
- Subrahmanyam, K.B.; Kaza, K.R.V. Vibration Analysis of Rotating Turbomachinery Blades by an Improved Finite Difference Method. Int. J. Numer. Methods Eng. 1985, 21, 1871–1886. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Li, Y. Analysis of Coupled Vibration Characteristics of Wind Turbine Blade Based on Green’s Functions. Acta Mech. Solida Sin. 2016, 29, 620–630. [Google Scholar] [CrossRef]
- Kan, X.; Lu, Y.; Zhang, F.; Hu, W. Approximate Symplectic Approach for Mistuned Bladed Disk Dynamic Problem. Mech. Syst. Signal Process. 2024, 208, 110960. [Google Scholar] [CrossRef]
- Bakhle, M.; Thomas, J.; Reddy, T. Fan Flutter Computations Using the Harmonic Balance Method. In Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, USA, 21–23 July 2008; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2008. [Google Scholar]
- Ferri, A.A.; Heck, B.S. Vibration Analysis of Dry Friction Damped Turbine Blades Using Singular Perturbation Theory. J. Vib. Acoust. 1998, 120, 588–595. [Google Scholar] [CrossRef]
- Zhao, H.; Fu, C.; Zhang, Y.; Zhu, W.; Lu, K.; Francis, E.M. Dimensional Decomposition-Aided Metamodels for Uncertainty Quantification and Optimization in Engineering: A Review. Comput. Methods Appl. Mech. Eng. 2024, 428, 117098. [Google Scholar] [CrossRef]
- Tian, W.; Ren, J.; Zhou, J.; Wang, D. Dynamic Modal Prediction and Experimental Study of Thin-Walled Workpiece Removal Based on Perturbation Method. Int. J. Adv. Manuf. Technol. 2018, 94, 2099–2113. [Google Scholar] [CrossRef]
- Nešić, N.; Cajić, M.; Karličić, D.; Obradović, A.; Simonović, J. Nonlinear Vibration of a Nonlocal Functionally Graded Beam on Fractional Visco-Pasternak Foundation. Nonlinear Dyn. 2022, 107, 2003–2026. [Google Scholar] [CrossRef]
- Hao, Y.X.; Zhang, W.; Yang, J. Nonlinear Oscillation of a Cantilever FGM Rectangular Plate Based on Third-Order Plate Theory and Asymptotic Perturbation Method. Compos. Part B Eng. 2011, 42, 402–413. [Google Scholar] [CrossRef]
- Gu, X.J.; Zhang, W.; Zhang, Y.F. Nonlinear Vibrations of Rotating Pretwisted Composite Blade Reinforced by Functionally Graded Graphene Platelets under Combined Aerodynamic Load and Airflow in Tip Clearance. Nonlinear Dyn. 2021, 105, 1503–1532. [Google Scholar] [CrossRef]
- Miller, S.G.; Handschuh, K.M.; Sinnott, M.J.; Kohlman, L.W.; Roberts, G.D.; Martin, R.E.; Ruggeri, C.R.; Pereira, J.M. Materials, Manufacturing, and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance. In Proceedings of the SAMPE Conference (No. GRC-E-DAA-TN13019), Seattle, WA, USA, 2–5 June 2014. [Google Scholar]
- Li, C.; Li, H.; Wang, C.; Zhang, Z.; Sun, Q. A study of influencing factors on frequencies and mode shapes of acroengine turbine blades. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 2014, 15, 5–9. [Google Scholar]
- Kou, H.; Zhang, J.; Lin, J. Aero engine fan blade vibration characteristic analysis. J. Xi’an Jiaotong Univ. 2014, 48, 109–114. [Google Scholar]
- Yang, F.; Hu, G.; Huang, Y. Designing of Turbocharger Impeller and Modal Analysis. Intern. Combust. Engine Parts 2012, 1, 4–5+12. [Google Scholar]
- Inala, R.; Mohanty, S. Flap Wise Bending Vibration and Dynamic Stability of Rotating Functionally Graded Material Plates in Thermal Environments. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2017, 231, 203–217. [Google Scholar] [CrossRef]
- Wang, C.; Song, S.; Zong, X. Vibration Analysis of Blade-Disc Coupled Structure of Compressor. Front. Energy Power Eng. China 2008, 2, 302–305. [Google Scholar] [CrossRef]
- Li, S.; Wei, W.; Zhang, S. Coupled vibration analysis of compressor blade-disc structure from an aero engine. Sci. Technol. Eng. 2019, 19, 354–361. [Google Scholar]
- Elhami, M.R.; Najafi, M.R.; Tashakori Bafghi, M. Vibration Analysis and Numerical Simulation of Fluid–Structure Interaction Phenomenon on a Turbine Blade. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 245. [Google Scholar] [CrossRef]
- Zhou, C.; Zou, J.; Wen, X.; Sheng, H. Coupled vibrations of gas turbine shrouded blades. J. Harbin Inst. Technol. 2001, 33, 129–133. [Google Scholar]
- Zhao, W.Q.; Liu, Y.X.; Lu, M.W. FEA on Vibration Characteristics of a Shrouded Turbine Blade. Appl. Mech. Mater. 2012, 189, 443–447. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zu, J.W. Nonlinear Dynamics of a Translational FGM Plate with Strong Mode Interaction. Int. J. Struct. Stab. Dyn. 2018, 18, 1850031. [Google Scholar] [CrossRef]
- Huang, W. Free and Forced Vibration of Closely Coupled Turbomachinery Blades. AIAA J. 1981, 19, 918–924. [Google Scholar] [CrossRef]
- Zheng, Y.; Jin, X.; Yang, H. Effects of Asymmetric Vane Pitch on Reducing Low-Engine-Order Forced Response of a Turbine Stage. Aerospace 2022, 9, 694. [Google Scholar] [CrossRef]
- Pan, L.; Yang, M.; Murae, S.; Sato, W.; Kawakubo, T.; Yamagata, A.; Deng, K. Study on aerodynamic excitation of impeller blades in a radial turbine. J. Eng. Thermophys. 2022, 43, 1503–1511. [Google Scholar]
- Jie, X.; Zhang, W. Nonlinear vibration analysis of blisk with two blades. J. Dyn. Control 2019, 17, 136–142. [Google Scholar]
- Man, J.; Xue, B.; Bian, X.; Yan, W.; Qiao, D.; Zeng, W. Experimental and Numerical Investigations on the Dynamic Response of Blades with Dual Friction Dampers. Aerospace 2023, 10, 977. [Google Scholar] [CrossRef]
- Li, C.; Shen, Z.; Zhong, B.; Wen, B. Study on the Nonlinear Characteristics of a Rotating Flexible Blade with Dovetail Interface Feature. Shock Vib. 2018, 2018, e4923898. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, X.; Liang, H.; Li, J.; Jin, C. Nonlinear vibratory characteristics and bifurcations of shrouded blade. Chin. J. Theor. Appl. Mech. 2011, 43, 755–764. [Google Scholar]
- Lee, Y.-B.; Park, J.-S. Effect of Blade Tip Configurations on the Performance and Vibration of a Lift-Offset Coaxial Rotor. Aerospace 2023, 10, 187. [Google Scholar] [CrossRef]
- Wu, L.; Cao, S. Analysis of vibration characteristics of blade under rotor motion. J. Mech. Eng. 2019, 55, 92–102. [Google Scholar]
- Zhang, Y.F.; Niu, Y.; Zhang, W. Nonlinear Vibrations and Internal Resonance of Pretwisted Rotating Cantilever Rectangular Plate with Varying Cross-Section and Aerodynamic Force. Eng. Struct. 2020, 225, 111259. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, L.; Tang, X.; Huang, D.; Zhang, J. Dynamic Response of a Composite Fan Blade Excited Instantaneously by Multiple MFC Actuators. Aerospace 2022, 9, 301. [Google Scholar] [CrossRef]
- Hao, N.; Zhu, L.; Wu, Z.; Ke, L. Softening-Spring Nonlinearity in Large Amplitude Vibration of Unsymmetric Double-Layer Lattice Truss Core Sandwich Beams. Thin-Walled Struct. 2023, 182, 110164. [Google Scholar] [CrossRef]
- Chang, Z.; Hou, L.; Chen, Y. Investigation on the 1:2 Internal Resonance of an FGM Blade. Nonlinear Dyn. 2022, 107, 1937–1964. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, S.; Lei, N.; Gong, X. Internal and combinational resonances of a three-story structure. J. Vib. Shock 2014, 33, 1–3+10. [Google Scholar]
- Ding, R.; Wu, Z. Complex Dynamics of Functionally Graded Plates with Thermal Load in 1:2 Internal Resonance. Sci. China Technol. Sci. 2010, 53, 713–719. [Google Scholar] [CrossRef]
- Al-Bedoor, B.O. Dynamic Model of Coupled Shaft Torsional and Blade Bending Deformations in Rotors. Comput. Methods Appl. Mech. Eng. 1999, 169, 177–190. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.-L.; Yang, X.-D.; Chen, L.-Q. Saturation and Stability in Internal Resonance of a Rotating Blade under Thermal Gradient. J. Sound Vib. 2019, 440, 34–50. [Google Scholar] [CrossRef]
- Luo, G.; Hou, L.; Ren, S.; Chen, S. Saddle-node bifurcation characteristics of asymmetrical Duffing system with constant excitation. J. Vib. Eng. 2022, 35, 569–576. [Google Scholar]
- Sanders, A.J.; Hassan, K.K.; Rabe, D.C. Experimental and Numerical Study of Stall Flutter in a Transonic Low-Aspect Ratio Fan Blisk. J. Turbomach.-Trans. ASME 2004, 126, 166–174. [Google Scholar] [CrossRef]
- Isomura, K.; Giles, M.B. A Numerical Study of Flutter in a Transonic Fan. J. Turbomach.-Trans. ASME 1998, 120, 500–507. [Google Scholar] [CrossRef]
- Huang, X.; He, L.; Bell, D.L. Effects of Tip Clearance on Aerodynamic Damping in a Linear Turbine Cascade. J. Propuls. Power 2008, 24, 26–33. [Google Scholar] [CrossRef]
- Vahdati, M.; Cumpsty, N. Aeroelastic Instability in Transonic Fans. J. Eng. Gas Turbines Power 2016, 138, 022604. [Google Scholar] [CrossRef]
- Jin, Y.; Yuan, X. Numerical analysis of 3D turbine blade’s torsional flutter by fluid-structure coupling method. J. Eng. Thermophys. 2004, 25, 41–44. [Google Scholar]
- Riso, C.; Cesnik, C.E.S. Geometrically Nonlinear Effects in Wing Aeroelastic Dynamics at Large Deflections. J. Fluids Struct. 2023, 120, 103897. [Google Scholar] [CrossRef]
- Riso, C.; Cesnik, C.E.S. Impact of Low-Order Modeling on Aeroelastic Predictions for Very Flexible Wings. J. Aircr. 2023, 60, 662–687. [Google Scholar] [CrossRef]
- Brunton, S.L.; Kutz, J.N.; Manohar, K.; Aravkin, A.Y.; Morgansen, K.; Klemisch, J.; Goebel, N.; Buttrick, J.; Poskin, J.; Blom-Schieber, A.W.; et al. Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning. AIAA J. 2021, 59, 2820–2847. [Google Scholar] [CrossRef]
Model Type | Literature Sources | Applications | Advantages | Limitations | |
---|---|---|---|---|---|
Lumped-mass model | [13,15,16,17] | Lumped-mass model is typically applied to simplified blade dynamic response prediction and preliminary design stages. | Simple principle, high computational efficiency. | Difficult to accurately determine mechanical parameters, can only simulate low-order modes, low modeling accuracy. | |
FE model | One-dimensional models (beam models) | [22,23,24,25,26,27,28,73] | Suitable for simplified modeling of blades for use at the stage of preliminary design and monolithic analysis, usually for low-frequency vibration studies. | The calculations are efficient, suitable for preliminary design and quick analyses, and helpful for the initial understanding of the overall structure. | It does not accurately capture the complex three-dimensional geometry and higher-order vibration modes of the blade and may not be accurate enough for fine vibration analyses when the requirements are high. |
Two-dimensional model (plate/shell models) | [29,30,32,33,34,35,36,37] | More accurate simulation of bending and torsional vibration of blades for mid-frequency vibration studies. | It is suitable for more detailed vibration analysis and provides accurate simulation results for blades with regular geometries. | For some complex blades, such as twisted or multilayered structures, there may still be limitations in the geometry that do not allow for full consideration of three-dimensional effects. | |
Three-dimensional models (solid models) | [40,41,43,44,45,46,47,50,51,52,53,54,55,58,59,64,65] | Suitable for accurate modeling of blades, able to take into account more geometrical, fluid action, and material nonlinear effects. | High accuracy of calculation results, able to take into account complex geometries and anisotropic materials, and suitable for complex structures and high-frequency vibration analysis. | High computational complexity, requires more computational resources, and is not suitable for rapid design and preliminary analysis. | |
Semi-analytical model | [66,67,68,69,70,71] | Semi-analytical models are suitable for dealing with nonlinear effects such as large amplitude vibrations, material nonlinearities, and multiscale problems. | Offering a balance between precision and computational speed. | High difficulty in model development, limited scope of application, high dependence on model accuracy, difficulty in determining parameters. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, F.; Liu, J.; Zhao, H.; Fu, C.; Zhai, W.; Lu, K. A Survey of Aero-Engine Blade Modeling and Dynamic Characteristics Analyses. Aerospace 2024, 11, 638. https://doi.org/10.3390/aerospace11080638
Zhang Y, Wang F, Liu J, Zhao H, Fu C, Zhai W, Lu K. A Survey of Aero-Engine Blade Modeling and Dynamic Characteristics Analyses. Aerospace. 2024; 11(8):638. https://doi.org/10.3390/aerospace11080638
Chicago/Turabian StyleZhang, Yaqiong, Fubin Wang, Jinchao Liu, Heng Zhao, Chao Fu, Weihao Zhai, and Kuan Lu. 2024. "A Survey of Aero-Engine Blade Modeling and Dynamic Characteristics Analyses" Aerospace 11, no. 8: 638. https://doi.org/10.3390/aerospace11080638
APA StyleZhang, Y., Wang, F., Liu, J., Zhao, H., Fu, C., Zhai, W., & Lu, K. (2024). A Survey of Aero-Engine Blade Modeling and Dynamic Characteristics Analyses. Aerospace, 11(8), 638. https://doi.org/10.3390/aerospace11080638