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Abstract: Orbital flybys have been extensively studied for spacecraft missions, resulting in effective
mathematical and physical models. However, these models’ applicability to natural encounters
involving asteroids has not been explored. This paper examines the applicability of two such theories,
patched conics (PC) and the Keplerian map (KM), to asteroid encounters. A review of the two
methods will be provided, highlighting their assumptions and range of applicability. Simulations
of asteroid–asteroid encounters will then be performed to evaluate their effectiveness in these
scenarios. The simulation parameters are set by collecting data on actual asteroid–asteroid encounters,
hereby presented, generally characterised by high close approach distances and small masses of the
perturbing bodies, if compared to those used to build the flyby theories. Results show that the PC
theory’s effectiveness diminishes with increasing approach distances, aligning with its assumptions.
Moreover, the prediction of the model is better in the geometric configurations where the flyby
has major effects on the orbital energy change. The KM theory has shown good effectiveness for
encounters occurring outside the sphere of influence of the perturbing body, even for very high
distances. This research investigates flyby models’ strengths and weaknesses in asteroid encounters,
offering practical insights and future directions.

Keywords: asteroids; review; orbital mechanics; flyby; patched-conics; circular restricted three-body
problem; statistics

1. Introduction

As of July 2024, more than 1.3 million asteroids have been discovered in the Solar
System (www.minorplanetcenter.net/mpc/summary), with approximately 95% in the main
belt. The presence of these asteroids is not only known to influence the motion of other
planets and asteroids [1–3] but it also justifies the possibility of flybys among asteroids.
Flybys are also confirmed by the presence of asteroid families generated by impacts among
minor planets, and by the theories that prove these to be responsible for the dynamical
evolution of the asteroids in the solar system [4–6]. A flyby occurs when the trajectories
of two bodies, orbiting around a common centre of mass, come close enough that the
Keplerian trajectory of at least one of the two bodies is modified by the gravitational
perturbation of the other.

Close approaches (CA) between solar system objects occur regularly, such as the
near misses of near earth objects (NEOs) with Earth. CAs between minor bodies and
planets are also recognised as significant contributors to the mechanisms of solar system
formation [7,8] and already in the 19th century, Laplace and Tisserand began observing
and studying encounters between comets and Jupiter [9]. The 1976 work by Opik [10]
was aimed at studying collisions and close encounters among planetesimals in the solar
system, highlighting that the rare events of collisions and spontaneous near misses provide
a unique opportunity to investigate the mechanisms of solar system formation.

Aerospace 2024, 11, 647. https://doi.org/10.3390/aerospace11080647 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace11080647
https://doi.org/10.3390/aerospace11080647
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0009-0005-2244-7051
https://orcid.org/0000-0002-7058-0413
https://orcid.org/0000-0001-7895-8209
https://orcid.org/0000-0002-2866-180X
https://doi.org/10.3390/aerospace11080647
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace11080647?type=check_update&version=1


Aerospace 2024, 11, 647 2 of 25

The outcome of flybys can be studied with numerical simulations of n-body gravi-
tational system,s a method that tends to be complex and computationally heavy, since it
involves direct numerical propagations.

Over the course of space exploration, orbital flybys have emerged as a technique
for spacecraft trajectory design, enabling missions to navigate through the solar system,
reaching paths otherwise unfeasible with the current engine allowances. These manoeuvres,
also known as gravity assists, leverage the gravitational pull of celestial bodies to alter a
spacecraft’s trajectory and achieve desired destinations. Mathematical models have been
developed to describe and optimise flybys applied to space mission design, with proper
assumptions and simplifications, to reduce the number of parameters involved and chase
analytic and more immediate solutions to the flyby problems.

The first foundations of a gravity assist manoeuvre for interplanetary travel were
laid back in 1918 by the Soviet author Yuri Vasilievich Kondratyuk [11]. However, in this
document, only the suggestion of a close approach as a potential manoeuvre to gain or
lose velocity was proposed without providing any mathematical or physical interpretation
of the problem. Nevertheless, this can be considered the first work that recognised the
significance of a third body in orbital motion, following the pioneering works on the
restricted three-body problem by Poincaré in the late 19th century [12].

The first mathematical models can be dated to 1924–1925 when another soviet engi-
neer, Friedrich A. Tsander [13], presented equations to evaluate the energy and velocity
change following a planar flyby. These formulas used parameters still employed today:
velocity of approach of the small body, heliocentric velocity of the perturbing body, and
deflection angle of the small body’s planetocentric trajectory resulting from the encounter.
Furthermore, he was among the first to assume the deflection to occur in a single point [13],
a concept still used in the PC theory. A more comprehensive historical account on the
first studies on the gravity assist performed before the advent of the actual interplanetary
missions can be found in a previous review [14].

Eventually, the PC theory was presented in 1961 by Micheal Minovitch [15], with the
purpose of solving the issues encountered by Battin [16] in describing the three-dimensional
hyperbolic trajectory for flybys around Mars. The set of parameters employed for trajectory
determination, namely the six orbital elements, was too intricate to include the gravita-
tional fields of both the Sun and the target planet. Minovitch used instead the dynamical
quantities, position and velocity vectors, as parameters, which proved to be more useful in
a three-dimensional frame and allowed him to have equations for analytical solution of the
three-body problem [17].

The key idea was to break the trajectory into three legs, each dominated by a different
centre of gravity and characterised by a conic section, that can be jointed together to
obtain the overall trajectory. Upon this concept, this approach took the name of patched
conics. In this way, Minovitch provided a description of the physical mechanism of
energy exchange during a close encounter, and was also able to present a formula for the
computation of the energy change.

The theory has been expanded over the years, mainly to account for the complex
encounter geometries [18] and to provide a more rigorous geometrical description of the
flyby trajectory and its outcomes [10]. Graphical and analytical techniques that simplify the
search for feasible and effective transfer trajectories, such as the Tisserand Map [19], have
also been successfully proposed. However, as the understanding of celestial mechanics
deepened, researchers recognised the limitations of the two-body approximation and
sought more accurate mathematical models.

The limitations of the PC theory primarily stem from its fundamental assumptions.
The flyby is assumed to follow a hyperbolic trajectory, but in many cases, such as in distant
and slow flybys, the assumptions break down [20] and the combined influence of both the
Sun and the secondary body must be taken into account.

In this context, the restricted three-body problem (RTBP) represented a step forward
in the description of the physics involved in the scenario where a small body is subject to
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the gravitational action of two massive bodies [21]. A popular application is the circular
restricted three-body problem (CRTBP) [22], where the two primaries are in a circular orbit
around their centre of mass. In the context of the elliptical restricted three-body problem
(ERTBP) [22], an additional level of complexity is introduced by considering the primaries
in an elliptical orbit.

These methods require numerical integration of a simplified set of equations of motion
for the general solution. However, efforts have been dedicated to achieving even greater
levels of simplification, striving to shift from numerical to more analytically driven ap-
proaches. Among these, methods that integrate the PC theory in the CRTBP to refine the
problem’s parameters have been proposed [23–25]. Others have expanded the Tisserand
maps to the patched-CRTBP, resulting in what is known as the Tisserand–Poincaré (T–P)
Map [23]. In 2007, Ross and Scheers proposed the KM method [26–28], a semi-analytical
tool that describes encounter outcomes occurring far from the secondary body. Another
semi-analytical tool is the Flyby map [29], derived from the KM and the T–P map.

The developed models have proven to work well in spacecraft mission design, or for
describing the outcomes of encounters involving solar system planets or the Moon, but their
range of applicability in close encounters involving asteroids has not been investigated
in depth. These are characterised by masses smaller than the planets, and orbits with
inclinations and eccentricities different from the typical planetary ones.

In this paper, the PC and KM theories will be reviewed and tested on flybys among
asteroids, to evaluate their range of applicability and outcomes. The selection of these two
theories is motivated by the fact that they allow for the solution of a flyby, without recurring
to the explicit propagation of the equations of motion. PC and KM also allow for analytical
and semi-analytical solutions of the direct flyby problem. Another advantage of the revised
methods is that they reduce the parameters used for the description of CEs and explain the
mechanism of energy exchange with the geometrical and physical features involved.

Their performance in the test cases will be assessed in two ways: considering an
inverse flyby solution scenario, where the PC theory is used to obtain the perturbing mass
over approach distance ratio given the pre and post flyby orbital states, and the relative
error in the prediction of the orbital energy change following a CE for both PC and KM.

In Section 2, data concerning several asteroid encounters will be collected, presented,
and analysed. Section 3 will review the flyby methods, while in Section 4 these will be
tested against the conditions of a typical asteroid–asteroid encounter.

2. Dynamical Characterisation of Asteroid Encounters

Dynamical data of asteroid encounters serve as a basis for understanding their physical
and geometrical characteristics, and for realistic simulation setup. The scope of this section
is to provide an overview of the physical conditions in which asteroid flybys typically
occur. Statistical analyses on these data are hereby presented, to link the dynamic outcomes
of flybys with their geometrical features. Ultimately the collected data will be used as a
baseline for the simulations presented in Section 4.

The selected database consists of CAs identified on the basis of the difference in the
residuals ∆(res) of the orbit determination (OD) performed, with the software Find_Orb
(www.projectpluto.com/find_orb.htm (accessed on 1 July 2024)), with and without con-
sidering these 300 asteroids, as described in a previous work [30]. The observations
for the OD are taken from the ESA Neo Coordination Centre (NEOCC) database (https:
//neo.ssa.esa.int/ (accessed on 1 July 2024)) for all the asteroids, both numbered and
unnumbered. This enables the identification of asteroids that have experienced a flyby
with one of the 300 most massive asteroids, and the signature used to assess the strength
of the CA is the ∆(res) between the perturbed and unperturbed solutions of the OD. This
methodology allows the identification of the flyby epoch, the perturbing body and, through
the Horizon-JPL ephemerides, the state vectors of the bodies at encounter.

www.projectpluto.com/find_orb.htm
https://neo.ssa.esa.int/
https://neo.ssa.esa.int/
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In this section, the encounter parameters will be collected and analysed in terms
of relative distances and velocities and approach geometries. In total, over 11,500 close
encounters have been found.

2.1. Role of the Encounter Distance

As a metric to compare the encounter distances, we use the Hill’s radius, RH , as
a representation of the size of a body’s sphere of influence (SOI), i.e., the region where the
perturbing asteroid’s gravitational influence is assumed to be stronger than that of the Sun.

The absolute frequency distribution of the recorded CA distances, relative to RH , is
shown in Figure 1. The graph represents only the encounters within a distance of 200 Hill’s
radii. These are approximately 5500 out of the total events recorded. The plot shows that
encounters take place at every distance, with most of them being within the range between
10 and 40 RH . The long distances observed from these data allow us to exclude the effect
of the asphericity of the perturbing asteroid on the overall perturbation of the flyby. This
effect diminishes as 1/rn, with n > 2 [31], and the distances we deal with in these cases are
long enough to neglect this effect. Moreover, we are considering dimensions much greater
than the radii of the asteroids, which is the typical distance at which asphericity becomes
prominent over other major perturbations [32].

Figure 1. Bar chart of the absolute frequency of the encounter distances with respect to the perturbing
body’s Hill’s radius. The plot includes only the encounters between 1 and 200 RH . The bins for the
bar chart have a uniform span of 2 rP/RH .

Only 19 encounters where located inside the SOI of the perturbing asteroid, suggesting
that very close encounters in a natural and random scenario are rather rare.

Data show that, even for high encounter distances, the flyby has a measurable effect
on the RMS residuals, even if, as per Figure 2, distance has an effect on this parameter.
The scatter plot shows that the ∆(res) is higher for encounters closer to the perturbing
body. Indeed, the encounter distance, as will be shown later, is an important parameter for
assessing the effect of a flyby.

The plot in Figure 2 contemplates only single encounters, i.e., cases where an asteroid
has one and only one close approach with one of the 300 perturbing asteroids in the model.
Only 1700 resulted to be single encounters. In these cases, the effect of the flyby on the
residuals is direct while, on the contrary, when multiple encounters occur, the impact of
each flyby is challenging to disentangle.

For a similar reason, in cases where the ∆(res) is very high, exceeding 1′′ ÷ 2′′, it is
possible that the cause of the residual change is not solely due to the encounter, but rather
a continuous gravitational influence from one of the more massive asteroids such as Ceres
or Vesta.
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Figure 2. Relationship between the ∆(res) of the detected single encounters and the encounter
distance, relative to the Hill’s radius, RH .

2.2. Role of the Relative Inclination

The relative inclination, in the context of a flyby, is the angle between the perifocal
planes of the perturbed and perturbing bodies, as shown in Figure 3. This transformation
gains importance in asteroids, as they in general do have an inclination with respect
to the ecliptic. Especially for the 300 most massive asteroids, the average inclination is
10.9 deg with a standard deviation σ = 6.4 deg, so the inclination of the perturbing body
and the orientation of its perifocal plane have to be accounted for when evaluating the
relative inclination.

Figure 3. Representation of the relative inclination between two different orbits. irel is the inclination
that one orbit has with respect to the perifocal plane of the other object, so this was taken as the new
reference frame instead of the ecliptic.

This can be calculated analytically from the osculating Keplerian orbital elements of
the two bodies using geometric relations and transformation between the two orbits as:

irel = cos−1[sin i1 sin i2 cos(Ω1 − Ω2) + cos i1 cos i2] (1)

where i and Ω are, respectively, the inclination and the right ascension of the ascending
node (RAAN), and the subscripts 1 and 2 indicate the two different bodies.

In the particular cases when the inclination of the secondary i2 is small, the trigono-
metric expression inside the square brackets can be simplified:

irel = i22 − i2 sin i1
(
sin(2Ω1) + (sin(2Ω2)

)
+ 2(1 − cos i1) (2)

A geometrical formula derived by Opik [10] relates irel with the relative velocities at
encounter, in the context of two intersecting orbits, for analysing flybys or collisions. This
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relationship is valid for the special case where the perturbing body is circular with a unit
semimajor axis, i.e., in the Jacobi normalised units. Under these assumptions, according to
Opik’s geometrical formulation, the relative velocity, U, normalised with respect to the
perturbing body’s circular velocity, reads:

U =
√

3 − T =

√
3 − 1/a∗ − 2

√
a∗ (1 − e2) cos irel (3)

where T is the Tisserand parameter [33] and a∗ is the normalised semimajor axis of the
perturbed body.

In Figure 4, the values for relative inclination and normalised relative velocity, U, for
the detected cases are shown. It should be noted that a normalisation has to be performed
for the values collected in the real-case scenario involved in Equation (3). Semimajor axes
are reported as a∗ = a/rS, with rS being the distance between the Sun and the perturbing
body at the moment of the encounter. The relative velocity at encounter, vP, is normalised to
obtain U = vP/vre f , with vre f =

√
µSUN/rS pseudo-circular velocity at encounter. µSUN

is the Sun’s gravitational parameter.

Figure 4. Relationship between the relative inclination, irel , and the normalised relative velocity, U.

The region for high inclinations and low U is void, as per the natural domain of
Equation (3). An example of limiting curve has been superimposed to the plot, representing
the (irel − U) relationship for the encounter with a circular orbit with a = 1. Although this
only represents a very particular case, the majority of the points are above the red line.
For those below the line, the reason has to be found in values of eccentricities of both the
perturbing and perturbed body different from zero.

This trend can be explained by considering the velocity vectors of the two bodies.
When the magnitudes are equal, a greater inclination usually implies a larger angle be-
tween the two vectors, resulting in a greater difference vector. Similarly, eccentricity also
contributes to an increase in relative velocity.

2.3. Relative Velocity

Another factor known to play a role in the outcome of a flyby is the relative velocity
encounter between the perturbed and the perturbing bodies. In general, this has an effect on
the time spent close to the SOI of the perturbing body. A slower flyby allows for more time
for the gravitational perturbation to act on the perturbed body and get a major deflection.
A faster flyby, on the other hand, will lower the time spent close to the perturbing body,
reducing the effect of the flyby itself.
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The relative velocity has an upper limit, due to the relative inclinations and differences
in eccentricity. From the perspective of a simulation, the relative velocity should be limited
in order to avoid, especially at low relative inclinations, the generation of unfeasible orbits,
either too eccentric or even with hyperbolic heliocentric trajectories.

A lower limit should stand in order to ensure the escape from the perturbing body.
The escape velocity from a body depends on its mass, mP, and the distance from its centre
of mass, and can be expressed as [34]:

vE =

√
2

mP G
rP

(4)

The relative velocity, at the moment of the minimum approach distance, should be
greater than vE. This is expected from the analysis of real cases.

Considering the big encounter distances and the low masses involved in the cases
of interest, Equation (4) will likely provide a very low threshold, easy to satisfy. This is
shown in Figure 5, where the relative velocity and the approach distances are plotted
compared to the curve of the escape velocity as a function of the distance. In order to
represent in the same graph encounters with objects with different masses and semimajor
axes, the quantities have been normalised accordingly, having on the x-axis rP/rS and on
the y-axis U/

√
µ, with µ = mP/mSUN being the mass parameter of the perturbing body.

Figure 5. Relationship between the relative velocity and the encounter distance, compared with the
escape velocity, vE/

√
µ (red line). The y-axis is in logarithmic scale.

The escape condition is always satisfied, as expected. Moreover, in this normalisation
the velocity has a downwards trend with the encounter distance.

2.4. Geometrical Parameters in the Planetocentric Frame

In this section, the geometrical encounter parameters are collected and investigated,
to see if a correlation between the intensity of the flyby and the directions of approach can
be found. These values can also be used as a dataset for simulation setups. The reference
frame used is a planetocentric frame (XYZ), centred in the perturbing body, the X-axis in
the Sun-body direction, with the Sun on the negative axis, the Y-axis in the direction of
motion that the perturbing body would have if it moved on a circular trajectory, and the
Z-axis parallel to the momentum vector, in order to complete the right-handed frame.
The radius of the minimum approach point, rP, and the relative velocity vector in that
point of the trajectory, vP, can be referred to this reference frame through proper geometric
transformations. Once the quantities in the heliocentric-ecliptic (I JK) frame and the orbital
elements of the perturbing body, indicated with the subscript P, are know, one can apply
the proper rotation matrices to find the vectors in the XYZ frame:
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rP,XYZ = L3(ωP + νP)L1(iP)L3(ΩP) rP,I JK

vP,XYZ = L3(ωP + νP)L1(iP)L3(ΩP) vP,I JK

where L3(•) and L1(•) are rotation matrices about the local z and x axes, respectively. ΩP
and ωP are the right ascension of the ascending node and the argument of periapsis of the
perturbing body’s orbit, and νP is its true anomaly at the moment of encounter.

These vectors can be represented in a tridimensional set of polar coordinates [18,35],
as shown in Figure 6. The three angles used in the representation are defined as:

β = sin−1
(

rP,Z

||rP||

)
(5)

α = atan2(rP,Y, rP,X) (6)

γ = sin−1
(

vP,Z

||vP|| cos β

)
(7)

where rP,• and vP,• represent the direction of the respective vectors in the indicated
(X, Y, Z) directions.

Figure 6. Geometric representation of the planetocentric frame.

The angles used for representing rP, α, β, and γ, derived from the detected cases,
and their relationships are illustrated in Figures 7 and 8. Upon analysing the scatter plot
in Figure 7, one can observe fewer occurrences where β = ±π/2, indicating encounters
happening directly above or below the perturbing body. Similarly, the same pattern is
observed when α = 0 or α = ±π, signifying cases of encounters parallel to the perturbing
body’s direction of motion.

This plot encompasses all the encounters identified through the ∆(res) method. Con-
sidering the stochastic nature of the analyses, one would anticipate a random distribution of
encounters across various parameter ranges. However, the observed distribution deviates
from this expectation, revealing regions with notably fewer occurrences. This anomaly sug-
gests that encounters characterized by these specific geometrical parameters may indeed
exist in our real-case dataset. The rarity of recorded instances in these regions implies that
encounters with such parameters tend to be too faint to be reliably detected with the ∆(res)
signature method.

The same can be seen, even if less evidently, in Figure 8 for γ = 0.
The angle γ is the parameter that defines how much the relative velocity is tilted with

respect to the plane of the perturber. This links γ to the relative inclination. The latter is
confirmed by Figure 9, where the values of irel are plotted against the respective values of
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γ angle. Their relationship is easily readable, with higher γ corresponding to higher values
in irel . Hence, eventually in the context of simulations, relative inclinations and γ angles
have to be tuned accordingly.

Figure 7. α and β angles for the analysed encounters.

Figure 8. γ and β angles for the analysed encounters.

Figure 9. Relationship between γ and irel .
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However, from the analysis of Figure 4 it was said that the relative inclination should be
related to the normalised relative velocity, U, so that one would expect the same relationship
between γ and irel to be valid also for γ and U. The latter is shown in Figure 10.

Figure 10. Relationship between γ and U.

From this plot, one can say that higher values of U can take place only in the presence
of high values of γ. The points are more uniformly distributed than in the previous plot,
especially in the region around γ = 0. Indeed, γ and U are not physically related, while
the drivers for irel are both γ and U. For low γ values, no matter how much the velocity
is, the relative inclination will always be low, while, on the contrary, it is possible to lower
down U to get low irel for high γs.

Furthermore, from the values in Figure 10 we can assume U ranging typically between
0.05 and 0.38.

3. Flyby Theories

In the following paragraphs, the technical contents of PC and KM will be revised, together
with their assumptions, limitations, mathematical foundations, and relevant reference systems.

3.1. Patched Conics

The PC theory, also known as the linked conics approach [34], is an analytical method
used to model flyby trajectories. It simplifies the three-body problem, breaking it down into
a series of two body problems modelled by conics of simpler mathematical interpretation.
It involves three bodies: a small massless particle, that experiences the flyby, a perturbing or
secondary body, and a primary; the first two bodies orbit around the primary. A planetary
flyby can be decomposed into three distinct trajectories: two elliptic arcs about the primary
body, namely the Sun, before and after the encounter, and a two-body Rutherford-like
scattering hyperbole about the secondary body, which connects the two heliocentric arcs
and represents the flyby itself. The fundamental idea at the basis of this method is that
every arc is influenced only by the gravitational attraction of one body, and the presence of
the two massive bodies is never considered simultaneously. The elliptic arcs are influenced
by the Sun and the hyperbole only by the planet, and the concept of SOI [36] is used to
determine when to switch from one body to another. Within the SOI of the secondary,
its gravitational effect dominates that of the Sun, allowing the PC theory to neglect the
influence of the Sun. Outside the SOI, instead, the primary has the strongest influence and
is considered as the only centre of attraction. A flyby, in this context, takes place when the
small body enters the SOI of the secondary.
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The SOI can be mathematically represented by the Hill’s sphere, which is the sphere
around the secondary where its gravitational influence dominates over the larger primary
body. Its physical interpretation comes from the solution of the Lagrangian three-body
problem, since its dimension is almost the distance between the first and second Lagrangian
points. A possible formula to compute the radius of the Hill’s sphere is [34]:

RH = 3

√
mP
3 M

· rs (8)

where mP is the mass of the perturbing body, M the mass of the primary, and rs is the
distance between the secondary and the primary.

Inside the SOI, the massless particle moves in a hyperbolic trajectory around the
secondary, as in Figure 11. This trajectory is relative to the secondary, which is also in
motion around the Sun. At the edges of the sphere of influence, the massless particle has
a relative velocity, which takes the name of hyperbolic excess velocity, of v∞ = V1 − VP,
where V1 is the heliocentric velocity of the massless particle before the encounter and
VP is the heliocentric velocity of the perturbing body. Throughout the following pages,
heliocentric velocities will be denoted in capital letters, while relative velocities with respect
to the perturbing body will be represented in lowercase letters.

Figure 11. Hyperbolic trajectory of the massless particle around the secondary during a flyby. VP

represents the velocity vector of the secondary, v+
∞ and v−

∞ are, respectively, the velocities at the entry
and exit points of the hyperbolic trajectory, and 2δ is the deflection angle between the two asymptotes
of the hyperbola, caused by the flyby.

The direction of v∞ also indicates the direction of the incoming asymptote of the
hyperbola. Due to the gravitational interaction between the two bodies, the asymptote is
rotated by an angle, 2δ, that depends on the mass of the secondary, the hyperbolic excess
velocity, and the minimum distance of the approach trajectory [35]:

sin δ =
1

1 + rpv2
∞/µP

(9)

where δ is half of the rotation of the asymptotes, rp is the minimum distance between the
two bodies during the encounter, and µP is the gravitational parameter of the secondary.
This rotation represents the deflection of the flyby itself.
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After the encounter, the relative velocity, at the exit of the SOI, is rotated with respect
to v∞ by an angle, 2δ, and has the same magnitude as v∞. The post-encounter heliocentric
velocity is obtained by the vector sum V2 = v+

∞ + VP.
In this model, the rotation of the velocity, which represents the effect of the encounter

in the PC approach, is assumed to occur at a single point: the point of minimum distance
between the unperturbed heliocentric trajectory and the perturbing body.

In this way, the rotation of the hyperbola and the ∆v after the encounter can be
calculated [34]:

∆v = 2v∞ sin δ =
µP

rp vp
(10)

where vp is the magnitude of the velocity at the minimum distance. From the previous
assumptions, the ∆v related to the planetocentric trajectory is equal to the ∆V related to the
heliocentric trajectory.

As showed by Minovitch [15], the use of the vectors allows for the evaluation of the
energy change due to the flyby, which can be computed as:

∆E = VP ·
(
V2 − V1

)
=

V2
2 − V2

1
2

(11)

The formula of ∆E is also important to understand the mechanism of energy exchange
during a flyby. In this process, the smaller body undergoes a change in momentum
relative to the secondary body. The rotation of the relative velocity, followed by its vector
summation with the perturbing body’s velocity, not only alters the magnitude of the
velocity but also modifies the flight path angle. In non-coplanar flybys, the inclination can
undergo changes as well. It is important to note that this manoeuvre affects the secondary
body, subjecting it to mutual gravitational perturbations from the smaller body. However,
due to the substantial difference in masses, with the secondary having significantly greater
mass, the impact on the secondary from the flyby becomes practically negligible.

The ∆E can also be evaluated analytically once the geometric encounter parameters are
defined. Broucke [18] proposed a set of parameters that enabled him to derive an analytical
formula for the energy change in the co-planar flyby involving just three parameters. This
set was later expanded by Prado [35] to account for the three-dimensionality of a generic
flyby, and this approach will be considered in the following pages, to better describe the
real cases encountered. The three-dimensional set of parameters is shown in Figure 6,
and the ∆E can be computed [35]:

∆E = −2 v∞ VP cos β sin α sin δ (12)

Opik’s Theory

Opik’s theory of close approaches is a formalism based on a two-body scenario to
study and predict encounters [7,10]. Opik’s theory models the flyby, similarly to the PC
theory, as a two-body problem and can describe, through the use of the Opik variables,
the pre- and post-encounter parameters of a flyby and systematically study its outcome.
Originally it was thought and widely used as a tool to analyse planetary encounters, espe-
cially in the context of comet capture and planetary formation, collisions of planetesimals,
and resonant encounters. However, with the advent of numerical computation, it has
progressively transformed from a predictive tool to a tool for understanding the dynamic
and geometric features of close approaches. The formalism was developed for intersecting
orbits, and although it was originally valid only at collision, in 2003 [37] an extension of the
theory was proposed to account for non-collision cases, using a first-order approximation
of the particles hyperbolic motion.

In the Opik’s formulation, the massless particle and the secondary body move in
their heliocentric trajectories around the Sun. They are placed in a Jacobi frame. In this
non-dimensional frame, the components of the relative velocity, U, at encounter can be
derived geometrically from the orbital elements of the massless particle [10]:
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UX =±
√

2 − 1/a − a(1 − e2) (13)

UY =
√

a(1 − e2) sin i − 1 (14)

UZ =±
√

a(1 − e2) sin i (15)

where a, e, i are the heliocentric orbital elements of the perturbed body. The ± symbol
depends on if the encounter takes place at the ascending or descending node defined upon
the perifocal plane of the perturbing body. U is the direction of the incoming asymptote of
the pre-encounter unperturbed trajectory, and the magnitude of U is as in Equation (3).

This vector can also be expressed in the XYZ local planetocentric reference frame,
making use of angular coordinates in the form of U = f(U, ϕ, ϑ), as shown in Figure 12.
With such a definition, the vector U can be rewritten:

UX =U sin ϑ sin ϕ

UY =U cos ϑ

UZ =U sin ϑ cos ϕ

Figure 12. Representation of the relative velocity vector, U, in the XYZ planetocentric frame.
ϑ ∈ [0, 2π) is the angle between the Y-axis and U, while ϕ ∈ [0, π] is the angle between the YZ
plane and the YU plane.

The orientation of U determines the b-plane or impact plane [38], a plane centred at the
planet and orthogonal to U. This plane encompasses vector b, extending from the planet to
the point of intersection with the incoming asymptote. The magnitude of b corresponds to
the impact parameter b.

As a consequence of the encounter, the relative velocity is rotated according to the
two-body scattering scenario with the angle 2δ, such that:

tan
2δ

2
=

µ

bU2 (16)

As this is the rotation of the asymptotes of the flyby hyperbola, Opik’s theory enables
the computation of post-encounter Opik parameters U′, ϕ′, ϑ′ , determining the direction
of the outgoing asymptote and, consequently, the post-encounter heliocentric trajectory.

Opik’s theory has been developed over the years and used to analytically study the
energy distribution in CAs [39], to analytically solve the direct flyby problem, allowing one
to find the pre-encounter trajectory given the desired post-encounter condition and the
perturbing body [40].

Other studies have highlighted the constraints of this approach, typically sharing
the limitations inherent in the PC theory. Challenges become prominent, especially in
cases where encounters unfold slowly and cannot be accurately approximated as occurring
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at a single point. Additionally, complications arise when the secondary body influences
the particle, even outside the context of an ongoing flyby [20]. Encounters between co-
planar bodies are critical for Opik’s theory [41], where the heliocentric velocities approach
tangency, and the Tisserand parameter tends towards 3 [39].

3.2. Keplerian Map

The KM serves as a semi-analytical tool for assessing the consequences of a flyby
within the framework of the CRTBP. Specifically, it enables the computation of changes in
the orbital elements of a small body influenced by the third-body effect over one period of
revolution. The KM has also demonstrated effectiveness beyond the SOI of the perturbing
body [27,28], and this hypothesis will be discussed in the results section. In the upcoming
paragraph, the focus will be on examining the change in the semimajor axis, denoted as ∆a,
crucial for the energy variation [27].

The KM method facilitates the mapping of the six orbital elements of the small body,
illustrating their alterations after one revolution while considering the perturbation from
the secondary. The chosen reference system is the synodic frame, shown in Figure 13,
characterised by an x-axis fixed along the line connecting the primary and secondary,
and rotating in accordance with the two bodies with the angular velocity ωR =

√
GM/R3,

where R is the distance between the primaries. The y-axis is orthogonal to the x-axis, in the
direction of the velocity of the secondary. Finally, the z-axis completes the right-handed
frame. Additionally, the same Jacobi units described in the previous paragraph are used to
simplify the equations and non-dimensionalise the problem. This reference frame, used
in the mathematical definition of the CRTBP and in the context of the KM, allows for the
immediate definition of the positions of the two primaries, with the small body’s position
determined from its orbital elements.

Figure 13. Representation of the synodic reference frame.

A first Picard iteration of the Lagrange planetary equations (LPE), numerically inte-
grated over one period of revolution of the small body, provides the estimate of the change
of the orbital parameters. Assuming µ ≪ M and µ ≪ r, with r the radius connecting
the small body to the centre of the synodic frame, the Hamiltonian for the motion of the
massless particle can be written as per [27]:

H = K+ U +O
(
µ2) (17)

where K is the Keplerian term of the nominal trajectory and U is the disturbing potential.
The variation of the orbital elements can be retrieved with the LPE [31] applied to the
disturbing function R [28]:



Aerospace 2024, 11, 647 15 of 25

R = −U ≈ −µ

(
1
r

cos ϑ

r2 − 1√
1 + r2 − 2r cos ϑ

)
(18)

Here, r is, under the approximations, comparable to r1, distance between the small
body and the primary. ϑ is the angle between the lines connecting the two primaries and
the centre of the reference frame to the small body. Hence, the distance between the small
and the perturbing body is r2 ≈

√
1 + r2 − 2r cos ϑ.

The variation of the semimajor axis can be obtained by applying a first Picard iteration
on the LPE over a period of time [28]:

∆a =
∫ t2

t1

da
dt

dt =
∫ t2

t1

2
n a

∂R
∂M

dt (19)

in which n =
√

M/a3
0 is the mean motion of the small body and M is its mean anomaly. t1

and t2 are two arbitrary values of time.
However, from the analytical point of view, it is more convenient to express the

integrals with respect to the true anomaly, f , taking as a reference point the orbital elements
at the periapsis of the Keplerian orbit of the small body. The derivatives can then be
evaluated with respect to the true anomaly and the integration can be done over one period
of revolution from −π to +π, allowing the method to inevitably consider the effect of the
close encounter. The formula for the semimajor axis change over an orbital period then
becomes [28]:

∆a =
2

n2
0 a0

∫ +π

−π

∂R
∂ f

d f (20)

The values with subscript ”0” are intended to be those evaluated at the periapsis of
the orbit, as it has been taken as the centre of integration. The integral has to be evaluated
numerically, although an analytical expression for the derivative of the disturbing function
R in Equation (18) can be provided [28]:

∂R
∂ f

=− µ

(
−e sin f

r(1 + e cos f )
− 1

r2 (cos(Ωrot) sin(ω + f )

+ sin(Ωrot) cos(ω + f ) cos i)− 2e cos θ sin f
r2(1 + e cos f )

)
− µ

(1 + r2 − 2r cos θ)3/2(
r2 e sin f

1 + e cos f
+ r(cos(Ωrot) sin(ω + f )

+ sin(Ωrot) cos(ω + f ) cos i)

)

+
µr cos θ

(1 + r2 − 2r cos θ)3/2
e sin f

1 + e cos f

(21)

All the quantities in this equation can be evaluated from the orbital elements of the
small body, given the geometry of the CRTBP. Ωrot is defined as the angle between the
RAAN Ω of the small body and the true anomaly of the secondary in its circular motion:
Ωrot = Ω − fP. Since the secondary is in circular motion in the synodic normalised frame,
where its period is exactly 2π, it can be written as a function of the orbital elements of the
small body, in particular its true anomaly, f , to account for its variation in time, as in [27]:

fP =

√
a3

1 − µ

[
2 tan−1

(√
1 − e
1 + e

tan( f /2)
)
− e

√
1 − e2 sin f

1 + e cos f

]
+ t0 (22)
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Since fP can be directly connected to the time of integration, t0 is the time at which
the small body passes through its periapsis, so that fP( f = 0) = 0 and fP = 0 at encounter.
For a successful numerical integration, it is crucial that the value of fP remains within the
bounds of −π and π. Furthermore, with these definitions, the angle between the secondary
and the small body ϑ can also be analytically defined [27]:

cos ϑ = cos Ωrot cos(ω + f )− sin Ωrot sin(ω + f ) cos i (23)

Finally, the numerical evaluation of the integral in Equation (20) can be calculated.
The method has proven to be reliable for encounters outside the SOI and is faster than the
numerical integration of the CRTBP equations of motion [27,28].

4. Applicability of the Theories on Asteroid Encounters

In Section 2, it was shown that the majority of asteroid encounters take place far from
the SOI of the perturbing body, a condition that goes against the assumption for the PC
theory and that instead is beneficial for the KM theory. However, previous studies have
shown that Opik’s theory, and hence the two-body approach, can work well, in certain
cases, even where the encounters are slow and distant [20], even those several times the
Hill’s radius of the perturbing body [41].

The applicability of the PC theory is hereafter verified through numerical simulations
of close encounters among asteroids. The flybys are modelled in the planetocentric frame
at the moment of closest approach using the three-dimensional Broucke parametrisation
illustrated in Figure 6 and normalising the physical quantities according to the Jacobi units.

The physical parameters at encounter used for the simulations have been retrieved
from the data presented in Section 2 and properly set within the following ranges:

• The angles α, β, γ are set in order to obtain all the possible combinations of geometric
positions for the minimum distance radius and velocity; the ranges are: α ∈ [0, 2π],
β ∈ [−π/2, π/2], γ ∈ [−π, π];

• The mass parameters µ of the perturbing body span from the mass of the fourth most
massive asteroid, Hygiea (µ = 4.42 × 10−11), to the 299th in the list (Ganymed with
µ = 3.362 × 10−14);

• The velocity at the moment of the closest encounter, vP, ranges between 0.08 and 0.25;
• The minimum approach distance, rP, spans from 2 to 100 times the RH of the perturb-

ing body. To analyse the differences with a flyby inside the SOI, the values 0.5 · RH
and 0.8 · RH are also included in a simulation.

These quantities define the encounter configuration, and for getting the pre- and
post-encounter conditions, the trajectory of the massless particle is propagated backward
and forward, respectively, for half a period of the perturbing body, i.e., ±π, considering
the use of the normalised frame. This is implemented to ensure that the massless particle
does not experience the gravitational influence of the perturbing body at the initial and
final moments of the propagation, and to avoid multiple encounters. The simulation setup
comprises only the Sun with unit mass, the perturbing body, and the massless particle,
allowing the neglect of the disturbing effects of other bodies. The propagation is performed
with the integration of the Gauss variational equations (GVE) [31,42]. The disturbing,
or perturbing, acceleration is represented by the gravitational acceleration of the secondary
body [43], and the integration is performed with the DOP853 routine in Python, which
implements an explicit Runge–Kutta method of order 8 with time step control.

4.1. Inverse Flyby Solution

Let us consider a scenario where the epoch of the flyby, along with the Runge–Kutta
and post-encounter trajectories, is known, but no information is available regarding the
mass and orbit of the perturbing body. The PC theory was initially developed to address the
direct flyby problem, where all characteristics of the perturbing body are known, and the
design focuses on achieving a specific geometry for the encounter based on the desired pre
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or post trajectory. We can reverse Equation (9) to extract information about the perturbing
body when given the pre- and post-encounter arcs. In fact, encounter distance-to-perturbing
mass ratio is: (

rP
mP

)
PC

=
1 − sin δ

sin δ v2
P/G

(24)

Its validity extends to all cases where the PC theory is applicable. The deflection angle,
δ, and the value of the relative velocity at minimum approach, vP, can be evaluated, even
without information on the perturbing body. Its orbit can be assumed as circular, with a
radius equal to the radius at which the encounter, i.e., the deflection, takes place. If we
assume the secondary is moving in a circular orbit, the problem is simplified (with the
assumption of a fixed eccentricity, eP = 0) and its velocity at encounter, vP, corresponds
to the circular velocity for the given radius. The angle δ is instead obtained as the angle
between the pre and post unperturbed relative velocities, obtained through a two-body
heliocentric propagation of the pre- and post-encounter trajectories.

The results of this inverse PC can give only information on the ratio (rP/mP), and these
two quantities cannot be decoupled through only using the two-body theory. However, this
tool is powerful also because it does not require any assumption on the approach direction.
In fact, if one also knew the approach distance and direction, the mass of the perturbing
body could be retrieved with a reverse KM approach.

The applicability of this reversed formula in the context of asteroid encounters can be
verified both by considering the real data presented in Section 2 and numerical simulations,
comparing the actual value of the distance over mass ratio and the result of Equation (24).
For the real cases, the formula can predict the ratio with a relative error smaller than 5% for
33% of the cases. However, it is with the results of the numerical simulations that one can
obtain a better idea of how this formula, hence the PC approach, is working for asteroid
flybys, given a higher level control on the encounter parameters.

The findings emphasize that the accuracy of predictions, as per the assumptions
of the PC theory, is influenced by the control parameters. An increase in rP leads to a
corresponding increase in error, whereas an increase in the mass of the perturbing body
or the relative velocity at encounter results in a reduction of the relative error. Despite
aligning with the limitations of the PC theory, the predicted values remain accurate, even
for encounter distances significantly beyond the Hill’s radius.

4.2. Errors in the Energy Variations Estimations

From Equation (12), one can calculate the energy change resulting from the flyby using
the PC theory, while for KM:

∆EKM =
GM
2a0

− GM
2(a0 + ∆aKM)

(25)

where a0 is the semimajor axis of the pre-encounter trajectory and ∆aKM is given by
Equation (20).

Multiple encounters are simulated to compare the variation in energy differences (∆E)
described by both the PC and KM theories, with the actual values between the pre- and
post-encounter arcs.

A previous study [44] conducted a similar analysis to evaluate the applicability scope
of the PC theory when varying parameters in the 3D Broucke parametrisation. That
publication analysed the absolute difference in ∆E between the PC theory and CRTBP
propagation, concluding that larger masses of the perturbing body, lower rP, and lower
vP were leading to higher absolute errors. These findings were justified by asserting that,
with that combination of parameters, the duration of the small particle’s influence by
the secondary is extended, and it is inappropriate to consider the flyby as instantaneous.
While these results may appear to contradict the assumptions of the PC theory, especially
concerning the approach distance and the mass of the perturbing body, they are accurate
because the absolute error served as the control parameter. This absolute error is computed
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as the difference between ∆EPC and ∆ECRTBP. Indeed, with an increase in distance or
a decrease in the mass parameter, the overall ∆E becomes smaller, resulting in smaller
differences between the values obtained through the two different methods.

A more accurate way to assess the performance of methods like PC or KM in predicting
the energy change is using the relative error, calculated as:

Err rel =
∣∣∣∣∣∣∣∣∆EPC/KM − ∆EGVE

∆EGVE

∣∣∣∣∣∣∣∣ (26)

In the following paragraphs, the relative errors for the two revised theories will be
analysed and compared. The results for the PC theory will be used to see if the conclusions
of the previous work [44] can stand also in the relative error, even if, in this case, the simu-
lation parameters will be based on the asteroid encounters data, so larger distances and
smaller mass parameters than in the benchmark paper.

4.2.1. Relative Errors for the PC Theory

The plots in Figure 14 show the relative error in ∆E for an asteroid flyby at different
distances from the perturbing body. To reduce the complexity of the problem and simplify
the readability of the results, some of the parameters have been fixed, and only rP, α and γ
vary over the respective ranges. The other variables are vP = 0.04, µ = 9.823 × 10−13, and
β = 77 deg.

The sequence of plots show a degradation of the performance of the PC theory to
predict the actual flyby outcome as the distance increases. The trend is also sensitive to the
approach geometry, with higher values around the encounters taking place at α = π, which
is incidentally also where ∆EPC = 0, according to Equation (12), and in general where ∆E
is lower, as also shown later. Getting much further from the SOI, the relative errors become
too high to consider the PC prediction as a reliable one, with errors greater than 60% that
have been blanked out from the plots for an easier visualisation.

In general, what is represented in the graph can be explained by noting that the lower
relative errors take place where the ∆E is higher, and vice-versa. The reason can be twofold.
Specifically, when ∆EGVE is low but not zero, i.e., when α = 0, Equation (12) yields zero,
failing to capture even a minor ∆E that might exist in reality. This deficiency results in a
substantial relative error, potentially reaching 100%. This occurs because the PC model,
when confronted with minimal ∆E, inaccurately approximates the encounter outcome as
having zero energy change. The second aspect contributing to this phenomenon is the
presence of a low denominator value in Equation (26), amplifying the relative error. This
dual effect is more pronounced for scenarios with lower ∆E values. In contrast, higher ∆E
values tend to alleviate this issue, although a discernible increase in absolute error may
persist, as indicated in [44].

The same assumption on high ∆E–low error can be verified when looking at the planar
case, as per in Figure 15. When β = 0, Equation (12) is maximised in β and indeed the
results show a lower error if compared to the previous one, with β = 77 deg.

In this scenario, the errors are more steadily below the 60% threshold, even for larger
distances. This confirms a dependency of the relative error in β that goes accordingly to
that in α, following the trend of the respective sinusoidal functions present in Equation (12).

However, the impact of the parameter δ on the results is different. This parameter is
not incorporated into Equation (12) and does not play any role in ∆EPC. This absence of
γ influence is also evident in Figure 16, where ∆EPC is plotted for two values of rP/RH ,
and no effect of γ is observable. Nonetheless, in Figures 14 and 15, the relative errors are
impacted by γ, indicating that its effect is significant in real cases. This suggests that the
real case scenario, unlike the PC formulation, is influenced by γ and that its absence in the
PC equation may lead to discrepancies in relative errors.
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(a) rP = 0.2 · RH (b) rP = 0.7 · RH

(c) rP = 2.0 · RH (d) rP = 26.5 · RH

(e) rP = 75.5 · RH (f) rP = 100 · RH

Figure 14. Relative error of the ∆EPC with respect to ∆EGVE at different rP/RH and β = 77 deg.
The values above 0.6 are blanked out in the heatmap for a better visualisation.

The latter is confirmed by Figure 17, where the ∆EGVE is plotted for the same distance
ratios, and here the role of γ becomes more clear, especially when the distance from the
perturbing body increases. This suggests that, once again, equations related to the PC
theory tend to be a valid representation of the reality only when close to the SOI of the
perturbing bodies.
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(a) rP = 0.2 · RH (b) rP = 0.7 · RH

(c) rP = 2.0 · RH (d) rP = 26.5 · RH

(e) rP = 75.5 · RH (f) rP = 100 · RH

Figure 15. Relative error of the ∆EPC with respect to ∆EGVE at different rP/RH and β = 0 deg.
The values above 0.6 are blanked out in the heatmap for a better visualisation.

(a) rP = 1.2 · RH (b) rP = 51.0 · RH

Figure 16. ∆EPC for β = 77 deg. According to Equation (12), there is no effect of parameter γ.
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(a) rP = 1.2 · RH (b) rP = 51.0 · RH

Figure 17. ∆EGVE for β = 77 deg.

4.2.2. Relative Errors for the KM Theory

The same plots, at β = 77 deg and 0 deg, respectively, are reported for the KM in
Figures 18 and 19.

(a) rP = 0.2 · RH (b) rP = 0.7 · RH

(c) rP = 2.0 · RH (d) rP = 26.5 · RH

(e) rP = 75.5 · RH (f) rP = 100 · RH

Figure 18. Relative error of the ∆EKM with respect to ∆EGVE at different rP/RH and β = 77 deg.
The values above 0.6 are blanked out in the heatmap for a better visualisation.
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(a) rP = 0.2 · RH (b) rP = 0.7 · RH

(c) rP = 2.0 · RH (d) rP = 26.5 · RH

(e) rP = 75.5 · RH (f) rP = 100 · RH

Figure 19. Relative error of the ∆EKM with respect to ∆EGVE at different rP/RH and β = 0 deg.
The values above 0.6 are blanked out in the heatmap for a better visualisation.

In the first case, the outcome is much more positive than the PC theory for the areas far
from the SOI. The differences in the performance of the method between 75.5 and 100 times
the Hill’s radius is almost inappreciable. The behaviour inside the SOI is instead much
worse than the PC results, confirming what was stated in Section 3.2 on the effectiveness of
KM outside the SOI.

The plots at β = 0 deg highlight a similar response, but with a wide area around
α = π, where the method is not able to give a reliable prediction at any distance.

5. Conclusions

A total of 11,500 close encounters among asteroids have been identified from the OD
of all the objects present in the ESA’s NEOCC database. The data highlight the distant
nature of typical asteroid encounters, with only 5500 events happening within a distance
from the perturbing body of 200 Hill’s radius and only 19 inside the SOI of the perturbing
body. This is attributed to the chaotic distribution of asteroids in the solar system, which is
mirrored in their encounter patterns. Additionally, the small masses of asteroids result in
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smaller SOI, further reducing the geometric probability of encounters occurring within the
SOI. The collected data can also help in statistically evaluating the geometric parameters
that characterise a typical asteroid–asteroid encounter. Furthermore, the survey can assist
in setting up numerical simulations of asteroid flybys. Particularly, the parameters of the
3D-Broucke parametrisation of the actual encounters have been shown, emphasising the
typical range of normalised relative velocity, which spans between 0.05 and 0.38.

Theories for describing flyby outcomes have been developed and are widely avail-
able in the literature. A focus has been placed on methods capable of analytically or
semi-analytically solving the flyby problem using a limited set of parameters, which are
constrained either to encounter geometry or the orbital elements of the involved bodies.
The PC and Opik’s theory have been outlined, along with their respective assumptions
and limitations, emphasising that these theories are not designed for describing encounters
that are too distant from the perturbing body. Particularly significant in the context of
asteroid dynamics is Opik’s theory, explicitly developed for planetary flybys and collisions,
providing geometric descriptions of encounter parameters. Another theory tailored for
planetary encounters is the KM theory, which can semi-analytically solve flybys and predict
changes in post-encounter orbital elements. The fact that these theories are implemented for
planetary encounters means that the eccentricity and inclination of the perturbing bodies
are considered as zero. This assumption, though acceptable for planets, becomes no more
valid for generic asteroid encounters, characterised by higher eccentricities and inclinations.

The applicability of these theories to asteroid encounters challenges their fundamental
assumptions. By testing the analytical formulations of the PC theory against data on
asteroid encounters through simulations, this aspect has been investigated. The results
indicate a degradation in the ability of the PC theory to predict the actual outcome of a
flyby as the distance from the central body increases, as expected. However, it is also
demonstrated that the PC theory exhibits the capability to describe encounters outside the
SOI, contrary to the assumptions of the PC theory.

A dependency on the geometry approach is evident. Indeed, the relative errors are
smaller when Equation (12) tends to higher values, i.e., when the flyby has a stronger effect.
Also, a dependency on the geometric parameter γ in the energy change, ∆E, has been
observed in the numerical simulations. This dependency is absent in the PC formulations.
However, the results indicate that this dependency becomes significant when approaching
the edge of the SOI and is important when very far from the perturbing body. This aligns
with the limits of validity of the PC theory, suggesting a co-influence of the distance and γ.

The KM theory has similarly shown a dependency on the geometry but has proven to
work better than the PC theory for the cases outside the SOI, even at very high distances.
This is due to the fact that it is a semi-analytical method that takes into account the
equations of motion more than the PC theory. However, the performances inside the SOI
have demonstrated to be non sufficient for flyby analyses.

Future works should focus on better understanding the mechanism governing very
distant encounters. The physical explanation for why γ has a significant effect only outside
the SOI remains unclear. One potential explanation could be that γ contributes to the out-
of-plane component of velocity, leading to a higher relative inclination (Figure 9). However,
investigations in this direction have not yielded conclusive results.

Furthermore, studying distant encounters could now lead to a new, general definition
of the boundaries of application for the PC-two-body theory, following recent works on
enhanced dynamical definitions of planetary SOIs [45]. As demonstrated, the boundary of
the SOI can be surpassed.
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