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Abstract: The parametrisation of the geometry in shape optimisation has an important influence on
the quality of the optimum and the rate of convergence of the optimiser. Refinement studies for the
parametrisation are not shown in the literature, as most methods use non-orthogonal parametrisa-
tions, which cause issues with convergence when the parametrisation is refined. The NURBS-based
parametrisation with complex constraints (NSPCC) is the only CAD-based parametrisation method
that guarantees orthogonal shape modes by constructing an optimal basis. We conduct a parametrisa-
tion refinement study for the benchmark turbomachinery cooling bend (U-bend) geometry, an intially
symmetric geometry. Using an adjoint RANS solver, we optimise for mininmal total pressure drop.
The results show significant effects of the control net density on the final shape, with the finest control
net producing an asymmetric optimal shape resembling strakes that induces swirl ahead of the bend.
These asymmetric modes have not been reported in the literature so far. We also demonstrate that the
convergence rate of the optimiser is not significantly affected by the refinement of the parametrisation.
The effectiveness of these shape features obtained with single-point optimisation is evaluated for
a range of Reynolds numbers. It is shown that total pressure drop reduction is not sensitive to
Reynolds number.

Keywords: CAD; shape parametrisation; NURBS; orthogonal shape modes; cooling channel; U-bend

1. Introduction

Shape optimisation of aircraft wings, turbomachinery blades, or automotive ducts
has become a widely used technique over recent decades. While early studies in shape
optimisation used gradient-free approaches, more recent work in the past decade has
firmly established gradient-based approaches as the method of choice given their superior
efficiency for the large number of design variables that are often required [1]. This implies,
however, that gradients are also computed for the shape parametrisation. Using the adjoint
approach to compute the gradient of an objective to be minimised with respect to the
design variables makes the cost of gradient computation independent of the size of the
design space and allows for consideration of a much wider range of parametrisations
for the design. At the very rich end of the spectrum, node-based methods consider the
displacement of every surface grid node as a design variable [2–5], using the richest design
space the computational method can possibly treat. This design space contains unwanted
oscillatory modes which need to be regularised. There is no analysis in the literature of how
to control this regularisation to appropriately distinguish between unwanted and desirable
high-wavenumber modes. A more rigorous approach is the CAD-based NSPCC method,
which defines the possible shape modes in CAD rather than on the mesh, and hence does
not need regularisation. This is the approach employed in this work.

A widely studied optimisation benchmark testcase is the flow in serpentine cooling
channels for turbomachinery blades. Covering the area to be cooled requires routing the
channel with a number of 180◦ turns, commonly referred to as ‘U-bends’, which impose
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high total pressure losses on the coolant flow, and hence impair engine efficiency. The
testcase we consider in this paper is the VKI U-bend benchmark case [6,7], shown in
Figure 1, which has seen experimental validation for both the baseline and an optimised
shape. The benchmark case allows for modifications to the bend section in order to minimise
mass-averaged pressure loss. The Boundary Representation (BRep) of the U-bend geometry
along with some of the geometric constraints is shown in Figure 1 and the design patches
considered in this study are highlighted in green. The BRep of the baseline geometry
consists of twelve NURBS patches: four planar rectangular patches that form the inlet
and outlet channels, as well as four curved patches that form the U-bend. G2 continuity
(continuous curvature, zero in this case) is enforced at the upstream and downstream ends
of the deformable part. G1 continuity is imposed at all ‘cross-sectional’ patch interfaces,
i.e., those that run mostly perpendicular to the flow between the originally planar and
curved patches. G0 continuity is imposed on the remaining patch interfaces that align with
the flow, i.e., interfaces between originally planar patches and originally curved patches.

Figure 1. Baseline U-bend geometry with design patches highlighted in green and geometric con-
straints imposed on different edges.

Earlier experimental validation of CFD results of both baseline and optimal
geometries [6,8] found significant discrepancies, as RANS-based simulations were un-
able to accurately capture secondary flow effects, streamline curvature and flow separation.
More recently, Alessi et al. [9] computed U-bend flow characteristics using the Large Eddy
Simulation (LES) approach and compared with RANS-based simulation. They observed
that the LES model could accurately predict the complex vortex structures and flow separa-
tion associated with the U-bend geometry. However major flow trends were well captured
using a RANS-based solver. Hence, RANS-based shape optimisation can be considered to
be suitable for the U-bend geometry. Furthermore, we note that LES-based optimisation is
not feasible for routine application due to (a) its computational cost, but also (b) due to the
fact that no adjoints exist for LES models, which resolve the chaotic nature of the flow, as
this implies blow-up of the adjoint sensitivities. The use of adjoints to compute sensitivities
is essential, as this is the only known way to compute them at constant cost. Alternatives,
such as finite differences, forward-mode automatic differentiation or the complex variable
method have a cost that scales linearly with the number of design variables, which is
prohibitive for highly refined design spaces.

The performance of shape optimisation is critically dependent on the design modes
including the relevant shape modes to control the flow. Since those “flow” modes are
not known a priori, design spaces need to be rich enough to include the widest range of
possible modes. In nearly all parametrisation methods in the literature, smoothness of the
shape is achieved by modes that are either smooth by construction, such as Radial Basis
Functions (RBFs) [10], or are smoothened by built-in regularisation, e.g., in node-based
methods [2–5]. Convergence of linear systems strongly depends on the diagonal dominance
of its Jacobian matrix; however, the global support of RBF or the large stencil of regularised
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methods produce non-sparse ill-conditioned Jacobians, which result in poor convergence
toward the optimum.

The NURBS-based parametrisation with complex constraints (NSPCC) method derives
orthogonal shape modes directly from the BRep of a CAD model using singular value
decomposition (SVD). This derives an optimal orthogonal basis for the shape modes, which
is a crucial ingredient to obtain a convergence rate independent of the number of design
variables. Hence, NSPCC is used in this work.

In contrast to earlier works on NSPCC, the NSPCC geometry kernel is differentiated
using source transformation algorithmic differentiation in adjoint mode. This approach
enables the efficient reverse-mode, or adjoint differentiation of the entire design chain,
including CFD, meshing, and CAD operations, in a single ‘one-shot’ computation. Conse-
quently, gradient computation remains independent of the size of the control net density.
To investigate the impact of control net distribution on shape optimisation, we perform
shape optimisation using three different levels of control net distribution with the VKI
U-bend benchmark test case. Our objective is to evaluate how variations in control net
density affect optimisation convergence, the ability to capture fine geometric details, and
the trade-off between computational complexity and efficiency.

The paper is organised as follows. Section 2 gives a brief review of the key parametri-
sation approaches applied to the U-bend benchmark case. Section 3 presents the NURBS-
based parametrisation with complex constraints (NSPCC) method considered in this study.
Section 4 discusses the reverse differentiation of the entire design chain and its assembly for
shape optimisation. One-shot aerodynamic shape optimisation of an internal turbine cool-
ing channel including flow solver validation, mesh convergence study, and CAD sensitivity
verification is discussed in Section 5. In Section 6, the influence of shape parametrisation is
presented with an analysis of the results of the optimisation and the effectiveness of the
methodology. Conclusions and future work are presented in Section 7.

2. Shape Parametrisation Approaches
2.1. Gradient-Free Approaches

Earlier applications of shape optimisation mainly used gradient-free optimisation
methods, which scale poorly with the number of design variables. Therefore, parametrisa-
tions were typically chosen to limit the number of design variables. The original work on
the U-bend by Verstraete et al. [7] considered only 2D changes in the plane perpendicular
to the bend. They parametrised the 180◦ bend region using piecewise Bézier curves and
considered their control points as design variables. The authors used a metamodel-assisted
differential evolution algorithm; CFD results for baseline and 2D optimised geometry
can be found in [6]. Namgoong et al. [8] performed both 2D and 3D CAD-based shape
optimisation using design of experiments and a surrogate design space model. To reduce
computational complexity, only the inner U-bend surface was considered for optimisation.
This region is parametrised using spline curves, with control points allowed to deform
symmetrically. Kiyici et al. [10] employed an RBF-based mesh morphing approach to
deform the U-bend region, aiming to minimise pressure loss and enhance heat transfer
performance. They utilised a metamodel-assisted evolutionary algorithm and incorporated
ten ribs before and after the U-turn, excluding the bend region.

2.2. Gradient-Based Approaches

The availability of gradients allows for considering a much larger design space.
Willeke et al. [11] consider 2D displacements of boundary grid points as design variables
and use a continuous adjoint approach to compute the derivatives. However, only a 2D
variation of the shape is considered, which offers limited ability to minimise secondary
flow effects but instead focuses on pressure loss reduction by suppressing flow separa-
tion along the internal side of the bend. He et al. [12] also consider the U-bend and use
Free-Form Deformation (FFD) with 63 FFD points that are allowed to move in the z or x, y
directions, resulting in 113 design variables. Verstraete et al. [13] parametrised the U-bend
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region with trivariate B-spline volumes with external control points as design variables,
resulting in 540 degrees of freedom. Kim et al. [14] employed topology optimisation to
minimise pressure loss in the U-bend region. Recently, Alessi et al. [15] utilised Large Eddy
Simulation (LES) in an optimisation framework, deforming each design surface grid point
in the direction normal to the surface while freezing the deformation in the z direction,
thereby restricting the design space.

2.3. CAD-Free vs. CAD-Based Parametrisation Approaches

A common feature of the aforementioned approaches is that they are ‘CAD-free’;
while the baseline shape is derived from a CAD model, this model is not included in the
optimisation loop and hence not updated. The resulting optimal shape is not in a CAD
format and a ‘return to CAD’ step needs to be added to make this shape available for further
design, analysis or manufacturing. This step typically requires approximation of the opti-
mised shape using a given or adapted CAD topology, and relevant features of the optimal
shape may be lost. On the other hand, CAD-based parametrisation approaches use a CAD
model in the design loop, hence updating both the CAD model and the corresponding
computational mesh consistently within the design loop. Feature-based parametric CAD
systems, such as CATIA, SolidWorks, and OpenCASCADE, create geometry by defining,
combining and evolving features, with the construction history recorded in the ‘feature-
tree’. Parameters embedded in the feature tree can serve as design variables and be updated
by the optimiser, thus producing the optimal model in CAD at the end of the design loop.
Therefore, CAD-based methods can be integrated seamlessly with black box CFD solvers
and meta-model-assisted gradient-free optimisation methods [8].

To integrate a CAD model into a gradient-based optimisation design loop, the deriva-
tive

( ∂XS
∂α

)
of surface grid point coordinates (XS) with respect to design variables (α),

termed ‘shape sensitivities’, need to be obtained by differentiating the CAD model. The
available options are (1) applying finite differences directly to the CAD model, (2) for-
mulating analytic derivatives, and (3) applying algorithmic differentiation to the source
code. Finite difference approaches compute the shape sensitivities by perturbing each
parameter, which requires selecting an appropriate perturbation size to balance truncation
and round-off errors. However, finite-size perturbations may lead to topological changes
in the CAD geometry, resulting in a non-differentiable function. This can be mitigated by
computing the perturbed point location on a projected surrogate surface [16,17], which
may incur further approximation errors in regions of high curvature. Techniques based
on analytic derivatives propose to formulate analytic derivatives for each operation in
the model feature tree and concatenate these derivatives using the chain rule of calculus.
Dannenhoffer et al. [18] used the open-source Constructive Solid Modeler (OpenCSM) and
applied analytic differentiation to basic primitives such as circles and cylinders. However,
for operations such as fillets and chamfers, direct analytic differentiation is not available, ne-
cessitating the use of finite differences for these cases. Complex feature trees with Boolean
operations could then result in topological changes, giving rise to similar issues as in the
full finite difference approach.

If the source code of the CAD kernel is available, such as in in-house CAD modellers
or in the case of open-source CAD engine OpenCASCADE (OCCT), shape sensitivities can
be obtained by applying Algorithmic Differentiation (AD) Software tools to the complete
the CAD kernel. The OpenCASCADE CAD kernel has been differentiated [19–21] using
the operator-overloading AD tool ADOL-C. While their work demonstrates reverse-mode
sensitivities for smaller models, in most cases, they use the forward mode to limit memory
consumption. The execution time of the complex geometric model is not negligible com-
pared to the runtime of computing the flow sensitivities. Banovic et al. [20] parametrised the
U-bend region using a feature tree set up in the OCCT CAD library. The geometric model
consists of a number of 2D slices orthogonal to the given U-bend pathline, each consisting
of four Bézier curves with four control points each. The cross-sectional coordinates for each
Bézier point, as well as the pathline for the sweep, are interpolated along spline curves,
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with their control points being the actual design variables. A final three-dimensional vol-
ume is obtained by lofting through these cross-sections. Shape sensitivities are obtained
by differentiating the OCCT CAD kernel in forward mode, while CFD sensitivities are
obtained using a discrete adjoint solver.

The optimised shapes of all the preceding studies on pressure loss minimisation exhibit
very smooth deformation modes; visual inspection suggests shape mode wavelengths of
the order of the bend’s curve length. While some basic features such as the enlargement of
the inner radius are present in all proposed optimal solutions, significant differences can be
observed in the overall shape characteristics. A brief summary of related work with the
U-bend channel is presented in Table 1. The number of design variables is not explicitly
available for some of the works listed. To date, no U-bend cases have been published that
assess the effect of control net refinement or present very high-resolution CAD-based shape
parametrisation. The presented study aims to address this.

Table 1. Summary of related work with U-bend channel. The number of design variables is shown
for those works where this has been presented.

Reference Dimension Objective
Function

Reynolds
Number

Parametrisation
Method

No. of Design
Variables

Optimisation
Method

Verstraete
et al. [7] 2D Pressure loss 4.0 × 104 Bezier curves +

DoE 26

RANS +
Kriging +

Differential
Evolution

Namgoong
et al. [8] 3D Pressure loss 1.0 × 105 Spline curves +

DoE 24

RANS +
Kriging +
Genetic

Algorithm

Verstraete
et al. [13] 3D Pressure loss 4.0 × 104 Tri-variate

B-splines 540 RANS + adjoint

He et al. [22] 3D with and
without ribs

Pressure loss +
heat transfer 4.2 × 104 FFD 113 without ribs

146 with ribs RANS + adjoint

Banovic
et al. [20] 3D Pressure loss 1.5 × 104 Parametric

CAD 252 RANS + adjoint

Jesudasan
et al. [23] 3D Pressure loss 1.5 × 104 Adaptive

NURBS 1008 RANS + adjoint

Kiyici et al. [10] 3D with ribs Pressure loss +
heat transfer 2 × 104

RBF Mesh
Morphing +

DoE
-

RANS + RSM +
Genetic

Algorithm

Kim et al. [14] 3D Pressure loss 1 × 105 Topology
optimisation - RANS + adjoint

Alessi et al. [15]
3D with x, y
deformation

alone
Pressure loss 4 × 104 Node-based - LES + adjoint

3. Parametrisation Based on the Boundary Representation

As an alternative to the aforementioned approaches, the authors developed a
lightweight CAD kernel for “NURBS based parametrisation with Complex Constraints”
(NSPCC) [24]. The implementation was carried out in Fortran-90 to support the appli-
cation of source-transformation AD using Tapenade [25], resulting in extremely efficient
derivative code. Previously, authors have differentiated the NSPCC CAD kernel in forward
mode [23,24], where computational costs for computing CAD sensitivity are proportional
to the number of design variables. The NSPCC approach [24,26] avoids the need to set up
an explicit parametrisation, e.g., via the definition of a CAD feature tree, but instead derives
it ‘implicitly’ from the Boundary Representation (BRep) of a CAD model. The BRep, as



Aerospace 2024, 11, 663 6 of 25

given in the standardised STEP format, represents the geometry as a collection of NURBS
patches (Ss,t) [27],

Ss,t =
n

∑
i=0

m

∑
j=0

Ri,j(s, t)Pi,j, (1)

where Pi,j are the control points which form a bidirectional control polygon, Ri,j are rational
functions with degree p and q in parameter direction s and t, Ns = n + 1 and Nt = m + 1
are the total number of control points along each of the parameter direction s and t.

3.1. Constraint Formulation

NSPCC considers the displacement of the NURBS control points to deform the geome-
try in the design process. A finite displacement of control points at the interface between
adjacent NURBS patches results in a surface discontinuity, as shown in Figure 2. The
important contribution of NSPCC to CAD-based parametrisation based on the BRep is the
formulation of geometric constraints. Examples include geometric continuity across patch
interfaces, from G0 (water-tightness) to G2 (curvature continuity), but also box, radius,
and thickness constraints. This work presents the extension of the NSPCC approach with
differentiation in reverse mode; hence, entire design chain derivatives are differentiated
in an adjoint mode. Thus, derivative computational cost is independent of the number
of design variables. Geometric constraints to establish or maintain under a parameter
variation are verified numerically at a number of test points, e.g., watertightness can be
expressed as

G0 = Xt,L − Xt,R = 0, (2)

and tangency continuity as
G1 = n⃗L × n⃗R = 0, (3)

where Xt,L and Xt,R are the positional coordinates of test points (denoted by t) distributed
along a shared edge of the left (denoted by L) and right (denoted by R) NURBS patches,
respectively. Here, n⃗L and n⃗R are the unit normals computed at Xt,L and Xt,R, respectively.
Figure 3 shows the deployed test points along a common edge of the two NURBS patches.

(a) (b)

Figure 2. Shape deformation of a NURBS patch with its control net: (a) original NURBS and
(b) perturbed NURBS.

Figure 3. Test points along a common edge and corresponding control net of adjacent NURBS patches.
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Assuming that the constraints are satisfied in the baseline geometry, any perturbation
to the control points (P) needs to be chosen in a space that does not affect the constraints.
Linearising the variation in all constraints, G becomes

Gn+1 − Gn ≃ Gn +
N

∑
i=1

∂G
∂Pi

δPi − Gn = CδP = 0, (4)

where C is the constraint Jacobian matrix, δP denotes the column vector of displacement of
control points, and in vector, form both terms can be expressed as:

C =



∂G0,1
∂P1

∂G0,1
∂P2

. . . ∂G0,1
∂PN

...
. . .

...
∂G0,M0

∂P1

∂G0,M0
∂P2

. . .
∂G0,M0

∂PN
. . . . . . . . .

∂G1,1
∂P1

∂G1,1
∂P2

. . . ∂G1,1
∂PN

...
. . .

...
∂G1,M1

∂P1

∂G1,M1
∂P2

. . .
∂G1,M1

∂PN


=

Gj
0

. . .
Gj

1

, δP =


δP1
δP2

...
δPN

. (5)

Here, M0 and M1 correspond to the total number of G0 and G1 constraint equations,
respectively, and j denotes the edge index. The matrix C, as defined in Equation (5),
incorporates different continuity constraints across edges. It consists of Mc rows (where
Mc is the total number of constraint equations) and N columns (representing the total
number of control points). Equation (4) states that any vector of infinitesimal displacement
of control points, i.e., any shape mode, needs to reside in the nullspace of C, any ‘recovery’
step after a finite-sized step, or to establish the constraint at the beginning, it needs to reside
in the column-space of C. To obtain a suitable basis for the nullspace, NSPCC performs a
Singular Value Decomposition

C = UΣVT , (6)

where U is an Mc × Mc unitary matrix, VT is an N × N unitary matrix, Σ is an Mc × N
diagonal matrix and its entries σi are the singular values of C. The number of non-zero
singular values in Σ determines the theoretical rank (r) of the constraint matrix (C), and
the last (N − r) columns of the matrix V span the exact null space of C. With the presence
of non-linear constraints, singular values show a gradual decrease rather than a sudden
drop to zero. In NSPCC, a cut-off threshold frequency value (σC) is used to determine
the numerical rank (r′) of matrix C. The corresponding numerical nullspace, denoted as
Ker(C), consists of columns representing deformation modes that satisfy the constraints
and are orthogonal to each other. Therefore, the resultant control point perturbations are
computed as a linear combination of the columns of the numerical nullspace:

δP =
N−r′

∑
k=1

ϑk+r′δαk = Ker(C)δα, (7)

where δαk are the perturbations to design variables and ϑk+r′ are the columns of the
numerical nullspace.

3.2. Constraint Recovery

Geometric perturbations obtained using Equation (7) are tangent to the linearised
constraint functions. For non-linear constraints like G1, each tangent step slightly violates
the constraints, necessitating additional normal steps within the range space of C to rectify
the violations. The recovery of the control point perturbation δP⊥ is expressed as:

CdevδP⊥ + δGdev = 0, (8)
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where δGdev is the deviation of constraints from their target values and Cdev is the Jacobian
matrix related only to the non-linear constraints that are violated. Each recovery step must
strictly satisfy the linear constraints; hence, δP⊥ is given by:

δP⊥ = Ker(Csat)[CdevKer(C)sat]
+δGdev, (9)

where Csat represents the Jacobian matrix containing only satisfied linear constraints, and
[CdevKer(C)sat]+ denotes the pseudo-inverse obtained using SVD. Equation (9) ensures
that δP⊥ lies within the null space of Csat, thereby satisfying linear constraints in each
recovery step. Typically, only a few Newton steps are necessary to correct violated designs
during the shape optimisation process. The effect of U-Bend deformation with and without
constraint recovery is shown in Figure 4.

(a) (b)

(c) (d)

Figure 4. Effect of G1 constraint recovery: (a) inner U-bend without constraint recovery, (b) inner
U-bend with constraint recovery, (c) U-bend duct without constraint recovery and (d) U-bend duct
with constraint recovery.

4. Gradient-Based One-Shot Aerodynamic Shape Optimisation

To minimise an objective function of interest J(α, U(α)) (e.g., lift or drag) that de-
pends on design variables α and a state U which is the solution of a partial differential
equation (e.g., Navier–Stokes), one needs to compute the sensitivity dJ

dα . The chain rule of
differentiation can be applied to obtain

dJ
dα

=
∂J
∂α

+
∂J
∂U

∂U
∂XV

∂XV
∂XS

∂XS
∂α

(10)

where J and the flow solution U are computed on the volume mesh XV , and XS is the
surface part of the mesh on the deformable shape. The ‘volume or CFD sensitivity’ ∂J

∂XV
can

be obtained by differentiating the flow solver, the ‘mesh sensitivity’ ∂XV
∂XS

by differentiating
the mesh deformation. In this work, the volume mesh (XV) is deformed using the inverse
distance weighting (IDW) method, which smoothly propagates the boundary displacement
(XS) into the volume mesh (XV) (XS → XV). Since IDW is a linear operator, we exactly
differentiate the IDW mesh deformation algorithm to project volume sensitivity onto
surface mesh nodes. In this work, mesh sensitivity is integrated with the flow solver’s
mesh management, and their derivatives are computed in a combined fashion. Therefore,
we refer to the sensitivity of objective function (J) with respect to surface mesh coordinates
(XS),

∂J
∂XS

as the ‘flow sensitivity’ . Computing the flow sensitivity using the discrete adjoint
approach is widely reported in the recent literature [28] and the derivation will not be

reported here. The solution to the adjoint equations v = ∂J
∂R

T
is obtained by solving

∂R
∂U

T ∂J
∂R

= ATv = g =
∂J
∂U

. (11)
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Here, R represents the residuals of the governing equations describing the flow. The
flow sensitivity ∂J

∂XS
can then be computed by reverse differentiating through the residual

calculation and mesh deformation(
∂J
∂R

∂R
∂XV

∂XV
∂XS

)T

=

(
∂R

∂XV

∂XV
∂XS

)T
∂J
∂R

= f T
S v. (12)

4.1. Computation of Total Sensitivity with Adjoint CAD Sensitivity

To complete the chain rule, we need to compute the ‘shape sensitivity’, how a surface
coordinate of XS depends on one of the SVD shape modes (α) of NSPCC. This is computed
in two steps, first the sensitivity of the objective function with respect to the control point
position P, then the sensitivity of P wrt. α. The product term

( ∂J
∂P
)T

=
( ∂XS

∂P
)T( ∂J

∂XS

)T can
be computed using AD without explicitly computing and storing the transposed control
point sensitivity matrix

( ∂XS
∂P

)T . The total adjoint sensitivity of the objective function ᾱ with
respect to design variables can be obtained as

ᾱ =

(
dJ
dα

)T

=

(
∂J
∂α

)T
+ Ker(C)T

(
∂J
∂P

)T

. (13)

When computing the shape sensitivities in the reverse mode, the total sensitivity, combining
flow and shape, can be evaluated in a single reverse pass as(

dJ
dα

)T
=

(
∂J
∂α

)T
+ Ker(C)T

(
∂XS
∂P

)T
f T
S vT . (14)

In this work, the entire implementation including both CFD and CAD modules was written
in Fortran-90 to support the application of source-transformation AD using Tapenade. We
employed mgopt [29], an in-house compressible discrete adjoint solver to compute the
gradient of the objective function with respect to surface mesh nodes. To compute the shape
sensitivities, in-house light-weight CAD kernel NSPCC is differentiated using adjoint mode.
Differentiated source code modules are assembled with non- or hand-differentiated code to
optimise memory and runtime. Equation (14) shows how seeding the reverse differentiation
of the NURBS kernel

( ∂XS
∂P

)T with ∂J
∂XS

computes ∂J
∂P at a cost that is independent of the

size of the control net density. The computation of the kernel of C already includes the
required linearisation.

4.2. Solving the KKT System

The equations for flow (’primal’), gradient (‘adjoint’) and design form the coupled
KKT System. To effectively compute the KKT solution, we do not fully converge primal and
adjoint at each design iteration, but only converge to an accuracy that is made to depend on
the convergence to the optimum [30]. To determine temporal accuracy, a stopping criterion
for the residual threshold gRMS is defined, which is proportional to the gradient magnitude
and scaled by an appropriately chosen constant cRMS:

gRMS = cRMS

∥∥∥∥ dJ
dα

∥∥∥∥
2
. (15)

This conditions imposes a more stringent convergence threshold as the optimum is approached.

5. Flow Solver and Gradient Validation
5.1. Case Description and Objective Function

The NSPCC method with reverse differentiation of the entire design chain has been
applied to the optimisation of a 3D segment of an internal turbine blade cooling channel
U-bend. This test case is provided by the VKI research institute to the AboutFlow and IODA
research project [31]. It consists of a circular U-bend with a square cross-section having
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an external radius of 1.26Dh and an internal radius of 0.26Dh. The hydraulic diameter is
Dh = 0.075 m. The numerical domain used in the study is 10Dh long, which was chosen
to achieve fully developed flow at the entrance to the U-bend. The baseline geometry is
shown in Figure 1, where the deformable design surfaces are highlighted in green. This
U-bend passage with 180◦ turns connects the straight channel segments to a serpentine
duct. The interactions between the secondary flows and flow separation have a strong
effect on the total pressure loss. The aim of this optimisation is to reduce the mass-averaged
total pressure loss between inlet and outlet,

J =

∫
inlet ptot(u⃗ · n⃗)dS −

∫
outlet ptot(u⃗ · n⃗)dS∫

inlet(u⃗ · n⃗)dS
(16)

where ptot is the total pressure, u⃗ is the velocity vector, n⃗ is the normal direction and S is
the cross-sectional area.

5.2. Flow and Adjoint Solver Mgopt

Popular incompressible CFD codes use segregated approaches such as the SIMPLE
algorithm, which often converge only to limit cycle oscillations for complex flows such
as this. This lack of full convergence in most cases implies an absence of linear stability,
which in turn results in the blow-up of its discrete adjoint [32]. As an alternative in this
work, the discretisation of primal and adjoint flow equations is based on preconditioned
compressible flow equations, as implemented in the in-house RANS-based geometric
multigrid compressible flow and discrete adjoint solver named mgopt [29]. The primal
flow solver of mgopt uses a standard node-centred, edge-based compressible finite volume
discretisation using MUSCL-type reconstruction of primitive variables with second-order
accuracy and stable implicit JT-KIRK scheme [32]. The viscous source terms are obtained
using an edge-corrected Green–Gauss formula. Turbulence modelling is performed with
the negative Spalart–Allmaras RANS model with AUSM scheme for the convective fluxes
with no-slip and subsonic inlet and outlet boundary conditions.

The Reynolds number based on the hydraulic diameter of the U-bend is Re = 43, 830.
A Mach number of 0.1 allows for valid assumption of incompressible flow. To accelerate
the convergence of the compressible solver for low-Mach-number conditions, a pressure
scaling method [33] is employed in this work. For a given reference velocity (u0), density
(ρ), and Mach number (M∞), the required pressure (p) can be calculated as

p =
ρu2

0
γM2

∞
. (17)

This type of pressure scaling ensures good convergence for low-Mach-number flows and is
especially suitable for internal flows where pressure drop across the domain is of primary
interest. The adjoint solver in mgopt is derived from the flow solver using the automatic
differentiation (AD) tool Tapenade. The time-stepping of the adjoint equations is based on
a fixed-point method using the same assembly steps as the primal. Details of the numerical
method, as well as the primal and adjoint implementations, can be found in [29].

5.3. Mesh Convergence Study

Four grid levels are generated to perform a detailed grid convergence study, ranging
from coarse (C) to extra fine (XF) meshes with 50k, 125k, 260k, and 500k nodes, respectively.
Computational grids are created using Ansys Mesher, with the coarse grid (C) having a Y+

value of 3, and all remaining grid levels having a Y+ value of 1. The U-bend geometry has
a square cross-section, resulting in sharp corners that generate singular cells when using
a body-fitted mesh with square topology. To avoid this, a butterfly topology is created.
The structure of all grid levels at the inlet and outlet of the U-bend geometry is shown in
Figure 5.
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(a) (b)

(c) (d)

Figure 5. The inlet and outlet surfaces of the meshes: (a) coarse, (b) medium, (c) fine and (d) extra fine.

The values of the objective function and velocity profiles at three different locations are
compared with all grid levels to make sure the solution is independent of mesh resolution.
These velocity profiles, including both streamwise and radial directions, are taken one at
the 90◦ turn region (location A) and others (location B and C) at the exit of the channel, as
shown in Figure 6. Figure 7 shows a comparison of the normalised streamwise velocity
profiles at locations A, B and C (along the vertical lines). The positive and negative z/Dh
indicates the top and bottom surfaces, respectively, from the center of the U-bend. Figure 8
shows a comparison of the normalised radial velocity profiles at locations A, B and C
(along the horizontal lines). To avoid overlap and maintain clarity, we presented a coarse
distribution of profile points. From the comparison, it is found that both streamwise
and radial velocity profiles from the fine (F) and extra fine meshes are closely matched,
and hence, the solution became independent of mesh resolution. Figure 9a illusrates the
variation in the normalised objective function value with all the grid levels, indicating
that the fine mesh results in a difference of less than 0.1% in the objective function value
compared to the extra fine (XF) mesh. This difference is found to be acceptable for the
present study [34]; hence, the fine mesh (F) is used for optimisation purposes. The steady-
state nonlinear primal flow solver fully converges and the discrete adjoint solver uses the
same time-marching scheme, which also fully converges with the adjoint solution. The
convergence history of both flow and adjoint solution using the fine mesh is shown in
Figure 9b.

Figure 6. Locations used for velocity profiles.
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(a) (b) (c)

Figure 7. Streamwise velocity profiles along the vertical lines (along z axis) at (a) A, (b) B and (c) C.

(a) (b) (c)

Figure 8. Radial velocity profiles along the horizontal lines (along y axis) at (a) A, (b) B and (c) C.

Figure 9. (a) Grid convergence study and (b) convergence history of flow and adjoint solver using
fine (F) mesh.

5.4. CFD Solver Validation

The numerical results obtained using mgopt are compared with the computational and
experimental ones obtained by Coletti et al. [6,9] for the same Reynolds number Re = 43,830.
In their experimental work, an inlet leg with length 23.3Dh is used to guarantee a fully
developed flow at the location of the circular bend. Based on the suggestion given in the
test case description [31], the inlet leg of 10Dh with respect to the center of the U-bend
region is used in the present numerical study to reduce the computational cost.

For the validation of our present model, the simulation is performed using the fine
mesh (F) containing a total of 260k nodes, as the grid independence study showed that
this grid offered sufficient resolution (see Figure 9b). The computed normalised axial
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velocity profile at the inlet section before the bend region shows very good agreement
with experimental results, as illustrated in Figure 10. Figure 11 presents a comparison
of the velocity field at the symmetric mid-plane simulated using the mgopt solver with
experimental results by Coletti et al. [6], Large Eddy Simulation results by Alessi et al. [9]
and RANS results by Alessi et al. [9]. Similar to the LES results, the mgopt solution captures
the flow separation right after the turn. However, the height and length of the inner wall
separation region are slightly underestimated. This underestimation is typical for RANS
models, more pronounced in the results of Alessi et al. [9] compared to our results, causing
lower acceleration toward the outer wall compared to the current RANS-based results.

Figure 10. Comparison of normalised streamwise velocity profile taken at the inlet leg between
experiment and mgopt.

Figure 12 shows a good agreement between mgopt and LES for the counter-rotating
Dean vortices at the 90◦ turn region, with only minor discrepancies observed near the
inner wall separation region. This indicates that mgopt effectively captures the complex
vortex structures within the turn. Furthermore, the comparison of normalised velocity
magnitude at the outlet leg in Figure 13 demonstrates that mgopt results are consistent
with LES results, capturing the overall flow pattern, including the interactions between the
Dean vortices and the recirculation region. Thus, the fine mesh (F) has been selected for
the optimisation studies.

Figure 11. Comparison of normalised velocity field (U∗) along streamwise direction between
experiment and simulation taken at mid-plane. (a) Experiment [6], (b) LES simulation [9], (c) RANS
simulation [9], (d) RANS-mgopt (current work).
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Figure 12. Comparison of normalised velocity field at 90◦ turn region. (a) LES [9], (b) mgopt.

Figure 13. Comparison of normalised velocity field at outlet leg. (a) LES [9], (b) RANS [9], (c) mgopt.

5.5. Gradient Verification of Differentiated NSPCC

Since a major focus of this work is on CAD-based parametrisation, the verification of
the gradient computation by Algorithmic Differentiation is presented only for the NSPCC
CAD kernel; solver validation can be found in [29]. Sensitivity verification is performed by
perturbing the BRep of the baseline U-bend geometry shown in Figure 1.

Ad Code vs. Complex Step Derivative

All the required derivatives of geometric operators, including surface sensitivities with
respect to parameters s and t for point inversion (Equation (1)), entries of the constraint
matrix C and CAD sensitivities (Equation (10)), are computed using derivative code pro-
duced by the source transformation AD tool Tapenade [25]. To verify the AD derivatives,
we compare to the values obtained with the complex step method [35]. The method is
very easy to use in Fortran, which allows very simple conversion from all double precision
variables to double precision complex variables. However, additional care has been taken,
as discussed in [36,37], when handling intrinsic functions such as abs and conditional
branches IF..THEN..ELSE. Figure 14 shows the comparison of the convergence with step-
size of the relative error in the surface sensitivity estimates using the complex step, forward,
and central difference methods. The relative error here indicates the difference between
the computed derivative using finite difference methods and the derivative computed
using algorithmic differentiation as the reference. The rate of convergence shows that
the forward difference estimate initially converges to the AD result at a linear rate, since
its truncation error is O(h), while the central difference method converges quadratically.
However, as step sizes fall below approximately 10−8 for forward difference and 10−7 for
central difference, subtractive cancellation errors cause a significant increase in relative
error. The complex step method is also second-order-accurate, but has no subtractive
cancellation error and becomes essentially exact to machine accuracy for step sizes ≤ 10−8.
This also confirms the correctness of the AD derivatives used as reference. The convergence
behaviour of relative error for the complex step derivative method for seven surface points
is also presented in Figure 15.

Additionally, the comparison of the sensitivity of the objective function with respect
to control points, using shape sensitivities computed with both forward and reverse mode
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differentiation of the NSPCC CAD kernel, is presented in Figure 16. For visual clarity, the
results are shown here for a limited number of sensitivity indices, confirming a very high
degree of consistency.

Figure 14. Convergence of relative error in the surface sensitivity estimates by complex step, forward
and central difference using algorithmic differentiation result as the reference. Error: ϵ = |FD−AD|

|AD| .

Figure 15. Convergence of relative error in the surface sensitivity for seven surface mesh points
using complex step derivative (CSD) method. Each curve corresponds to a distinct mesh point on the
surface. Error: ϵ = |CSD−AD|

|AD| .

Figure 16. Comparison of sensitivity of the objective function with respect to control points
( ∂J

∂P
)

with shape sensitivities computed using reverse mode and forward mode differentiation of NSPCC
CAD kernel.

6. Effect of Choice of Design Space
6.1. Shape Parametrisation Using NURBS

Figure 1 shows the BRep of the U-bend geometry with design patches highlighted in
green. The Boundary Representation (BRep) of the geometry consists of twelve NURBS
patches: four planar rectangular patches that form the inlet and outlet channel and four
curved patches that form the U-bend. G2 continuity (zero curvature) is enforced at the
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upstream and downstream ends of the deformable part by fixing the first three layers
of control points nearest to the fixed sections of the channel. G1 continuity is imposed
at all ‘cross-sectional’ patch interfaces, i.e., those that run mostly perpendicular to the
flow between the originally planar and curved patches. G0 continuity is imposed on the
remaining patch interfaces that align with the flow, i.e., interfaces between originally planar
patches, and originally curved patches. NSPCC derives an optimal basis for the design
space from the BRep, i.e., the distribution of control points, and the choice of constraints.
The number of test points to enforce the constraints is also proportional to the number of
control points along that edge [24]. To show the influence of BRep control net density on
aerodynamic shape optimisation, control nets for coarse (L1), medium (L2) and fine (L3)
design spaces have been produced by refining globally by a factor of 2 for each level.

For the coarsest level L1, the BRep has a 6 × 4 control net for each patch, resulting in a
total of 288 control points. For L2 and L3, the BRep has an 8 × 6 and 12 × 8 control net for
each patch, a total of 576 and 1152 control points, respectively. Control point distributions
defining the U-bend region corresponding to each level are shown in Figure 17. Figure 18
shows the comparison of the shape sensitivity of a control point for each of the three
levels. The BSpline representation uses a cubic spline; hence, the influence of each control
point extends to the two neighbouring points in the BSpline control net either side. As the
control net is refined, the support radius is reduced, enabling the representation of localised
variations. The SVD then constructs an optimal and orthogonal basis of shape modes from
these BSpline modes.

(a) (b) (c)

Figure 17. Levels of parametrisation: (a) coarse: level-1, (b) medium: level-2, (c) fine: level-3.

(a)
(b) (c)

Figure 18. Shape sensitivity of a control point on the outer U-bend patch
( ∂XS

∂P
)
: (a) coarse: level-1,

(b) medium: level-2, (c) fine: level-3.

6.2. Physical Mechanisms of Total Pressure Loss Reduction

The total pressure loss in a serpentine cooling channel is primarily caused by flow
separation and secondary flow generated by the turn. Figures 19 and 20a show the flow
field of the baseline geometry using the surface line integral convolution (LIC) visualisation
technique [38], taken at various different locations along the channel and at the middle
plane, respectively. When coolant flow passes through the U-bend, the presence of a
pressure gradient toward the outer radius provides the centripetal force required to turn the
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flow. This results in very low static pressure close to the inner bend region. Consequently,
as the flow exits the bend region, it experiences a strong adverse pressure gradient. The
fluid particles very close to the inner wall have low velocity and do not have sufficient
inertia to overcome the adverse pressure gradient. Hence, the flow separates from the inner
wall boundary, which reduces the effective cross-section and thus increases wall friction,
but also incurs additional secondary flow losses.

In addition to that, losses also take place due to the presence of strong secondary flows
in the radial plane of the U-bend geometry because the non-uniform turbulent velocity
profile is subjected to a pressure gradient normal to the streamline, which results in a
non-uniform centripetal force. As a result of inertial effects, fluid at the centre of the bend
moves towards the outer wall at the mid-plane and comes back towards the inner wall near
the top and bottom walls (considering the bend being aligned with the horizontal). This
creates symmetric strong counter-rotating vortices at the 90◦ turn region, ‘Dean’ vortices,
which persist in the long downstream exit channel of the U-bend, as shown in Figure 19.
This strong helical motion in conjunction with the flow separation reduces the effective
cross-sectional area and accelerates the flow towards the outer wall of the exit channel,
which increases the velocity gradients at the wall. This in turn results in greater frictional
losses in a U-bend cooling channel than the straight pipe under similar conditions, as can
be clearly seen in Figures 19 and 20a. A similar pattern was found in both experimental [6]
and other numerical simulations [7,39]. Therefore, an effective design should be able to
reduce the effects of secondary flows and flow separation in the U-bend geometry.

Figure 19. Normalised velocity field (U∗) of the baseline geometry at Re = 4.3 × 104. CS view taken
at various locations ordered from upstream to downstream.

Figure 20. Comparison of normalised velocity field (U∗) along streamwise direction between baseline
and optimised geometries at Re = 4.3 × 104 taken at mid-plane. (a) Baseline, (b) opt-L1, (c) opt-L2,
(d) opt-L3.

6.3. Shape Optimisation

Aerodynamic shape optimisation is performed using three fixed levels of parametrisa-
tion L1–L3 L1–L3. In this work, a Python-based shape optimisation framework has been
developed to integrate all the required CFD and geometry modules with the Python-SciPy
library to drive the design process. The overall workflow is shown in Figure 21 using an
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extended design structure matrix (XDSM) diagram [40]. Black lines illustrate the process
flow in the order of the numbers, while gray lines represent data dependencies. At the
top level, the Python API reads user-input CAD and CFD mesh files, defines the objective
function, design patches, and constraint functions, and interfaces with multiple external
modules for optimisation. These modules are mgopt for flow fields and CFD sensitivity
computation; NSPCC for surface mesh mapping, shape perturbation, surface mesh de-
formation, shape sensitivity and constraint Jacobian computation; IDW for volume mesh
deformation, which takes surface mesh displacements from NSPCC and smoothly propa-
gates to the volume mesh using the inverse distance weighting method. Scipy optimise is
used for optimiser selection.

2 : Baseline design

1 : Pre-processing
3 : NURBS

control points
4 : Volume

mesh

9 : Optimised design
(IGES ,STEP)

2, 7 → 2 :
Optimiser

3 : Updated design
variables (α)

7 : Geometric
constraints (G0,G1)

3 : NSPCC
Parametrisation

4 : Updated
surface mesh (XS)

7 : CAD
sensitivities (∂XS

∂α )

4 : Volume
Mesh Deformation (IDW )

5 : Updated
volume mesh (XV )

7 : Mesh
sensitivities (∂XV

∂XS
)

7 : Objective
function (J)

5 : Flow Solver
mgopt

6 : State
variables (U)

6 : Adjoint Solver
mgopt

7 : CFD
sensitivities ( ∂J

dXV
)

7 : Total
sensitivities ( dJ

dα )
7 : Sensitivity Assembly

Figure 21. Shape optimisation workflow using extended design structure matrix (XDSM).

Figure 22 shows a comparison of the convergence histories of the objective function for
all three levels of optimisation. The optimisation is conducted with Steepest Descent (SD).
While SD typically shows very poor convergence rate for larger systems, the rate is very
acceptable with NSPCC due to the orthogonality of the shape modes. To demonstrate the
difference, the finest level L3 was restarted using BFGS after 64 iterations, as shown by the
arrow in Figure 22. BFGS reconstructs Hessian information by matching function value and
gradient evaluations at past iterates. This in turn requires that the number and definition
of the design variables remain the same at each iteration. We hence keep the linearisation
of Ker(C) and its SVD constant for a number of iterates, then re-evaluate Ker(C) and its
SVD and restart BFGS. It can be observed that the convergence rate of the BFGS section
from iteration 65 on L3 is not noticeably improved over the rate of SD up to iteration 64.

Table 2 shows the percentage drop of the converged optimal designs as a function of
a total number of free control points and total number of design variables offered by the
NSPCC approach. For all the levels, we select a cut-off for the singular value at 10−10. As
the design space dimension increases, the pressure loss of the optimal geometries improves,
with L3 performing best. More details about the SVD cut-off and its influence on the shape
optimisation can be found in [24].

Table 2. Aerodynamic shape optimisation results.

Level Dimension Reynolds Number Total No. of Free Control
Points (N) Size of the Design Space Percentage Drop in Total

Pressure Loss

L1 3-D 4.3 × 104 192 442 −25.34%
L2 3-D 4.3 × 104 432 1082 −26.67%
L3 3-D 4.3 × 104 576 2100 −27.52%
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Figure 22. Comparison of objective function convergence using Steepest Descent between three
different parametrisation levels. L1, L2 and L3 have 288, 576 and 1152 BSpline control points. L3 was
restarted after 64 design iterations using BFGS.

6.4. Flowfield of the Optimised Geometry

When compared with the baseline configuration, the optimised geometries obtained
with all levels of parametrisation suppress the flow separation near the inner wall of the exit
channel and reduce the wall shear stress significantly. Figure 20 shows the comparison of
velocity magnitude at the mid symmetry plane between baseline and optimised geometries.
The reason for the design improvement is threefold. Firstly, all levels of parametrisation
increase the radius of the inner U-bend, as shown in Figure 23. For incompressible and
irrotational flow, the velocity gradient normal to the streamline is proportional to the
curvature of the streamline. Hence, the optimised geometries with an enlarged radius of
curvature reduce the required radial pressure gradient and consequently the streamwise
adverse pressure gradient, resulting in a smaller separation zone. Secondly, the duct section
is considerably enlarged for all of the optimised geometries; this can be clearly seen in
Figure 24, which compares the U-bend region between baseline and optimum geometries.
This enlargement reduces the velocity in the bend, which, like the radius increase, reduces
the required centripetal forces, and hence the required radial pressure gradient and the
separation zone.

Figure 23. Comparison of inner bend radius between baseline and optimised geometries.

Finally, a third contribution is the presence of surface undulations along the outer
wall of the inlet channel that span from the inlet of the design surface to right before
the sharp 90◦ turn region. While the baseline flow and geometry are symmetric in the
vertical (considering the U-bend arranged in the horizontal), a clear downward direction
is observed in L3, resulting in the asymmetry of the Dean vortices, as seen at the 90◦

cross-section in Figure 25, which shows the comparison of the secondary flows taken at
different locations along the inlet and exit channel. It is apparent that the function of
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the surface undulations is similar to guide vanes used in curved flow channels and also
resembles paired ridges in the venom channel of a spitting cobra, which reduces pressure
loss [41]. The downward direction of the bumps pre-conditions the flow with a dominant
counter-clockwise swirl (when viewed in the flow direction). Only the L3 parametrisation
includes shape modes that are local enough to express the wall undulations needed to
achieve this.

(a) (b)

(c) (d)

Figure 24. Comparison of design patches of the optimised U-bend region obtained using three levels
of parametrisation. (a) Baseline, (b) Opt-L1, (c) Opt-L2, (d) Opt-L3.

The flow in the baseline geometry shows a very non-uniform velocity distribution
in the 90◦ section, with a large region of low velocity near the inner bend, resulting in an
effectively reduced cross-section and higher viscous losses. The optimised shapes suppress
the low-velocity region. The span of the shape modes of L1 is wide enough to span the
entire channel height, and the inner radius of L1 is changed uniformly. The locality of the
shape modes in L2 and L3 enables it to pick up a shape feature that varies the radius and
height, effectively shaping the upper and lower halves of the bend cross-sections to ‘mold’
around the secondary flow features. This increases the frictional resistance to the secondary
flow, while also using the momentum of the secondary flow to energise and/or displace
the low-velocity region near the inner radius. The most significant gains in pressure loss of
25.34% are achieved already with the coarsest L1 parametrisation. Further refinements to
L2 and L3 gain another 1.3% from L1 to L2, and another 0.9% from L2 to L3; see Table 2.
Further refinement of the control net might reduce the pressure slightly further, but could
also reduce the locality of the shape mode to a scale comparable with the computational
grid, which in turn might require additional surface regularisation techniques to filter
out unwanted high-frequency modes that are not penalised by the flow model. Many
existing studies on the VKI U-bend test case often simplify constraint formulations and
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use inconsistent Reynolds number, which makes direct comparisons with our results
misleading. Each work uses its own flow solver and uses different RANS turbulence
models. Most importantly, we use a total pressure and total temperature inlet condition
typical for compressible turbomachinery flow, while the other works use a velocity inlet
condition that fixes mass flow. In our optimisation, mass flow increases as the total pressure
loss is reduced. Therefore, we chose not to include comparisons with other available results
over total pressure loss reduction in Table 2.

Figure 25. Comparison of normalised velocity field (U∗) between optimised geometries at
Re = 4.3 × 104. Cross-sectional (CS) views taken at various locations ordered from upstream
to downstream. (a) Baseline, (b) Opt-L1, (c) Opt-L2, (d) Opt-L3.

6.5. Off-Design Performance

The highly refined shape of L3 may be optimal only for a particular Reynolds number,
while the design may seek good performance across a range of flow speeds. To study the
effect of Reynolds number, the performance of the designs is evaluated using a range of
Reynolds numbers from 1 × 104 to 7 × 104. The effect of Reynolds number on the value
of the objective function is shown in Figure 26, with the value of the objective function
normalised by the value for the baseline case. All optimal geometries retain their improved
performance over the entire range of Reynolds numbers, although the improvement for
the L3 shape is diminished when compared to the L1 and L2 shapes at lower and higher
Reynolds numbers.
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Figure 26. Influence of Reynolds number on the objective function value.

6.6. Computational Time

To analyse the computational cost of the various steps within a design iteration, the
runtime of each of these steps is shown in Table 3 for three levels of parametrisation.
Timings are taken for the first design step in which the primal and adjoint CFD solves up
to full convergence. The optimisation process is performed using the fine (F) mesh with
260k nodes. The data show that the dominant cost arises from the primal and adjoint CFD
computation, while the cost associated with the shape parametrisation and optimisation is
negligibly small in comparison. In this work, shape sensitivities are obtained using reverse
mode differentiation. For the case of conformal NURBS patches, both forward and reverse
mode differentiation are fine. However in the case of non-conformal, when the intersection
has to be computed, the surface grid must be smoothed and reprojected [42], leading to
higher costs associated with shape derivatives. Hence, reverse mode differentiation might
be beneficial in such cases.

Table 3. Computational time breakdown for a single design step.

Computation Percentage over Total Time

L1 L2 L3

Primal 44.99 44.87 44.74
Adjoint 54.75 54.59 54.43

Surface Mesh Mapping 0.16 0.22 0.33
SVD null space 0.05 0.22 0.34

CAD perturbation 0.01 0.01 0.02
Constraint recovery 0.02 0.05 0.11

7. Conclusions and Future Work

The NSPCC approach derives smooth orthogonal shape modes directly from the
boundary representation of a CAD model and chosen constraints. This study extended
and differentiated the NSPCC method in adjoint mode to efficiently handle high-fidelity
design spaces for gradient-based shape optimisation. We further investigated the impact
of varying control net densities on NURBS patches with nonlinear constraints on the
optimal shape of the benchmark VKI U-bend internal turbine blade cooling channel. The
optimisation was conducted using three different levels of parametrisation: L1, L2, and L3,
with 192, 432, and 576 free control points, respectively, resulting in design spaces of 442,
1082, and 2100 degrees of freedom (DoF) for the three levels.

The density of control points on the NURBS patches significantly influences the
shape modes captured during the design process, affecting both the optimal solution and
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the convergence rate of the optimisation. The finer levels L2 and L3 exhibit increased
modulation of the surface, effectively reducing pressure losses due to secondary flow. This
is evident in the deformation of the cross-section at the mid-bend, resulting in a W-shape
of the inner radius with a pronounced increase at mid-height. Most notably, downward
ridges emerge on L3 on the outer radius upstream of the bend, a feature also observable
at a coarser resolution on L2. Despite the initial symmetry with respect to the horizontal
mid-plane, the optimisation finds improvement through non-symmetric shape variations.
This feature ‘pre-conditions’ the flow with secondary motion before it enters the bend,
ultimately reducing secondary flow losses. Notably, this pattern has not been observed
in previous U-bend benchmark studies, highlighting NSPCC’s capability to parametrise
a high-dimensional design space with orthogonal shape modes crucial for converging
complex shape optimisation problems.

It has been shown that the NSPCC approach is able to generate rich design and
well-conditioned design spaces, crucial for capturing all significant shape modes without
constraining the design flexibility and ensuring converged shape optimisation results. This
approach is suitable for any complex industrial shape optimisation applications and has
many advantages:

1. Local shape control with orthogonal modes: The local support of B-Splines enables
us to concentrate shape modes to deform only local areas. NSPCC computes an
orthogonal basis for this design space, thus ensuring convergence of the optimisation
in the case of very fine control nets as well.

2. Smoothness: The B-Spline surfaces are smooth by construction up to the desired level
of differentiability.

3. Efficient constraint handling: Geometric constraints, such geometric continuity across
NURBS patch interfaces (G0, G1 and G2) or thickness, curvature and box constraints
can be imposed using the test point approach of NSPCC and are included in the
orthogonalisation of the basis for the design space.

4. Exact and Efficient CAD sensitivities: The NSPCC CAD kernel is differentiated using
source transformation tool TAPENADE providing exact CAD sensitivities regardless
of the local scaling of the geometry. The CAD kernel has been also differentiated in
reverse mode, enabling it to compute the complete sensitivity of the objective function
w.r.t. the design parameters in a single calculation, irrespective of the size of the
design space.

5. Portability: The NSPCC approach preserves the topology of the CAD model and con-
sistently updates the parameters of the model in the design loop. The optimal shape
is then available as a CAD geometry to support meshing for further multi-disciplinary
analyses, but also to serve as an exact datum surface for multi-disciplinary coupling.

In this study, the control net levels remain fixed for each optimisation process. Our
future work will focus on implementing adaptive control point refinement of NURBS
patches to enhance the design space resolution in areas of high sensitivity. Additionally, we
plan to expand the application to accommodate multi-objective functions, addressing both
fluid flow dynamics and conjugate heat transfer analysis.
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Abbreviations

The following abbreviations are used in this manuscript:
AD Algorithmic Differentiation
BFGS Broyden–Fletcher–GoldFarb–Shanno Quasi-Newton method
BRep Boundary Representation
CAD Computer-Aided Design
CSD Complex Step Derivative
DoE Design of Experiments
FD Finite Difference
FFD Free Form Deformation
IDW Inverse Distance Weighting mesh morphing
KKT Karush–Kahn–Tucker
LES Large Eddy Simulation
NSPCC NURBS-based Parametrisation with Complex Constraints
NURBS Non-Uniform Rational B-Splines
RANS Reynolds-Averaged Navier–Stokes
RBF Radial Basis Function
RSM Response Surface Method
SD Steepest Descent
SVD Singular Value Decomposition
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