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Abstract: This paper proposes an adaptive incremental nonlinear dynamic inversion (INDI) controller
for unmanned aerial manipulators (UAMs). A novel adaptive law is employed to enable aerial
manipulators to manage the inertia parameter changes that occur when the manipulator moves or
picks up unknown objects during any phase of the UAM’s flight maneuver. The adaptive law utilizes
a Kalman filter to estimate a set of weighting factors employed to adjust the control gain matrix of
a previously developed INDI control law formulated for the corresponding UAV (no manipulator
included). The proposed adaptive control scheme uses acceleration and actuator input measurements
of the UAV without necessitating any knowledge about the manipulator, its movements, or the objects
being grasped, thus enabling the use of previously developed INDI UAV controllers for UAMs. The
algorithm is validated through simulations demonstrating that the adaptive control gain matrix
used in the UAV’s INDI controller is promptly updated based on the UAM maneuvers, resulting in
effective UAV and robot arm control.

Keywords: unmanned aerial vehicle; unmanned aerial manipulator; robotic arm; adaptive control

1. Introduction

Unmanned aerial vehicles (UAVs) have attracted increasing attention for both military
and civil operations in recent decades. Military missions, including surveillance and
reconnaissance, have been successfully carried out by automated UAVs [1]. UAVs have
also found applications in civil operations, such as aerial photography, providing wireless
coverage, and infrastructure inspection [2]. However, current UAV missions remain limited
to passive operations, where UAVs observe, collect data, or perform tasks without direct
engagement or interaction with the environment or targets.

In an effort to broaden the capabilities and versatility of UAV missions, researchers
have explored the integration of robotic manipulators into UAVs. The combination of UAVs
with robotic manipulators is often referred to as unmanned aerial manipulators (UAMs).
The addition of one or more robot arms enables UAVs to perform active operations herein
defined as operations where UAVs interact and manipulate with the environment/objects.
For example, UAMs could clear paths inside collapsed buildings by removing obstacles
hindering navigation and perform repairs in inaccessible industrial structures, such as
pipeline labyrinths and underground facilities. Despite the potential capabilities of UAMs,
these capabilities are still limited, and advanced developments in control, estimation, and
motion planning are required before UAMs can fully maximize their potential. An aspect
of particular interest to be resolved is the ability to manage changes to the UAM’s inertia
parameters, including mass, the position of the aircraft’s center of mass, and the moment of
inertia tensor that occur when the arm is moved. This becomes particularly difficult when
the UAM picks up an unknown mass, making it challenging to model these inertia changes
accurately. This is of special interest when the aircraft and the arm move simultaneously,
which is currently challenging, thus limiting the use of the arm comprising a given UAM
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to only move when the aircraft is in hover. In full flight, the UAM’s inertia changes can
significantly impact aircraft operation and its control performance.

To address the challenge of varying inertia parameters in aircraft, various control
techniques have been applied. Jimenez-Cano et al. [3] proposed a variable parameter
integral backstepping controller for UAM attitude control, accounting for changes in inertia
parameters and torques due to manipulator movements. Orsag et al. [4] designed UAM
PID controllers and analyzed their stability under a changing moment of inertia tensor [5,6].
PID controllers, however, have shown to exhibit oscillatory behavior during grasping flight
maneuvers and lead to the development of hybrid adaptive controllers [7]. There have
been many other research studies that use adaptive laws to address inertia changes in
aircraft [8–10]. Nicol et al. introduced a neural-network-based adaptive law capable of
handling disturbances caused by the presence of unknown payloads and strong wind [11].
Others have estimated inertia parameters of UAVs through the use of Lyapunov functions
for added payloads [12], moment of inertia changes [13], and object pick-up maneuvers [14].
For the estimation of inertia parameters, researchers [12–14] have employed gradient de-
scent adaptive laws, adaptive backstepping controllers, and model reference adaptive laws.
However, flight performance tends to degrade before the estimation variables converge to
their true values, which require several seconds when the above-mentioned tools are used.
To reduce such time dependencies, Lee and Kim proposed an online parameter estimator
for unknown picked-up payloads conforming to a given Lyapunov candidate function for
control purposes [15,16]. Additionally, Park et al. proposed the use of a Kalman filter, which
accounts for the manipulator’s movement, to promptly estimate the inertia parameters of
UAMs during manipulation maneuvers [17].

Despite these and other control efforts developed to manage varying inertia parame-
ters, UAMs have not yet reached the desired level of performance due to the complexities
associated with the highly coupled dynamics between the UAV and the manipulator. Incre-
mental nonlinear dynamic inversion (INDI) controllers have been developed to address
this challenge by increasing robustness to model uncertainties and effectively managing
coupled system dynamics, which other controllers struggle to handle [18–20]. Due to such
capabilities, INDI control schemes have been employed in UAVs, including aggressive
flight control [21–23] and disturbance rejection [24].

While INDI demonstrates robustness and agile control performance with minimal
dynamic modeling information, it faces two primary challenges. First, it requires somewhat
accurate information about the vehicle’s inertia parameters, including total mass, moment
of inertia tensor, and the location of the center of mass, to formulate the corresponding
control effectiveness matrix that generates control input increments based on sensor mea-
surements of the UAV. Efforts have been made to address this challenge. In [25], Smeur et al.
used a least mean squares algorithm to estimate the control effectiveness matrix in real
time. Cao et al. [26] combined a neural network adaptive law and an INDI controller
to handle the nonlinear characteristics of fixed-wing UAVs that cannot be accounted for
in the control effectiveness matrix. However, these developments have only considered
time-invariant systems and have not addressed systems where the dynamics change over
time. In an attempt to resolve such challenges and generate robust control effective ma-
trices, Ahmadi et al. [27] proposed a reference model adaptive INDI controller capable
of handling unmodeled dynamics from actuator faults, demonstrating that quadcopter
drones can be controlled under the presence of partial actuator faults. The second issue
with INDI involves ensuring that the control effectiveness matrix for the system of interest
is non-singular (invertible). Although such aspects have been considered for time-invariant
systems (e.g., [28,29]), challenges remain for time-variant systems, including UAMs. Thus,
when controlling UAMs, it is necessary to consider the conditions that lead to singularity
in the control effectiveness matrix needed to develop suitable solutions during the flight
maneuvers of UAMs.
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This paper presents an adaptive INDI control scheme for UAM systems that experi-
ence changes in inertia parameters that occur during the manipulator’s movements and
object grasping actions while either the UAV is in hover or performing a flight maneuver.
The adaptive law estimates a set of weighting factors to adapt the terms comprising the
inverse of the control effectiveness matrix at each time step of the flight control process.
The proposed approach captures inertia changes due to manipulation maneuvers through
an adaptive process and resolves matrix singularity problems by eliminating the need for
matrix inversion, resulting in effective UAM control under varying flight grasping maneu-
vers. The proposed formulation does not require any information about the manipulator
connected to the UAV and relies solely on sensor measurements. UAVs will frequently
employ different manipulators based on mission requirements, necessitating on-the-spot
decisions. These manipulators can also undergo geometric or inertial changes, such as
component replacement or installation, making it impractical and costly to measure their
parameters each time. Therefore, the proposed algorithm offers significant benefits under
these circumstances.

The remainder of this paper is structured as follows. Section 2 provides an overview of
the UAM system and its dynamic model used in this research. Section 3 describes the INDI
control scheme that is employed in this paper for UAMs formulated based on previous
work on highly maneuverable UAVs [28,29]. Section 4 describes the proposed adaptive
INDI control scheme. Section 5 provides simulation results, and Section 6 concludes the
paper with general observations and future work.

2. UAM Dynamic System Model

In this research, a highly maneuverable tilt rotorcraft VTOL vehicle named Navig8
(Figure 1a) with a three-degree-of-freedom (DoF) manipulator (Figure 1b) is used as the
targeted dynamic system platform.

(a) (b)

Figure 1. The Navig8-UAV and hypothetical Navig8-UAM: (a) The Navig8-UAV; (b) The hypothetical
Navig8-UAM.

2.1. Navig8-UAM System

The Navig8-UAV, developed primarily for operations inside confined spaces, is a
scalable tilt-rotorcraft with two (left and right) ducted variable-pitch (VP) propellers and
one horizontal VP (non-tiltable) tail propeller (Figure 1a). To reduce aerodynamic ground
and wall effects, the two main propellers include a dihedral angle, γ, and are shrouded to
increase thrust. This configuration enables the UAV to execute unconventional aerobatic
maneuvers at slow speeds, suitable for flight inside confined spaces, including hovering in
any non-zero pitch attitude. Such capabilities facilitate take-off and landing on inclined
surfaces (e.g., mountains) and perching on vertical walls and ceilings. Various control
methods have been previously developed for both the Navig8-UAV [30–32] and the Navig8-
UAM [33]. Notably, a novel INDI2+ PD control architecture for the Navig8-UAV has been
developed, demonstrating satisfactory control performance [28,29]. The control efforts for
the Navig8-UAM have been limited to include 2 DoF simple low-weight robot arms, where
the effect of inertia parameters is minimal [33]. In this paper, the previously mentioned
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control architectures are extended to manage UAMs, where the UAM’s inertia changes due
to the arm motions/tasks have a profound effect on the system, marking the first instance of
such an extension. The modeling approach for Navig8-UAM in this paper differs from the
method presented in [33]. This paper considers the UAM as a unified system, whereas [33]
treats the UAV and the robot arm as distinct entities.

The Navig8-UAM, depicted in Figure 1b, incorporates a 3 DoF manipulator attached
to the UAV’s underside, where the rotational axes of its joints are parallel to one another,
thereby constraining the manipulator’s motion to the longitudinal plane of the UAV (x̂ − ẑ
plane) as illustrated in Figure 2. The arm includes an end-effector capable of grasping
objects of diverse size and weight. The Navig8-UAM is symmetric with respect to the
longitudinal plane of the UAV.

It is essential to note that the addition of the manipulator to the UAV results in dynamic
changes in the center of mass from the UAV (CoMUAV) to the UAM (CoMUAM), denoted
as the position vector r⃗o f f in Figure 2. This displacement varies as the manipulator moves
and/or interacts with objects. As a result, the dynamic equations reported in [28,29] are
enhanced to consider the UAM.

Figure 2. Schematic diagram of the Navig8-UAM.

2.2. Force and Moment Equations for the Navig8-UAM

The force and moment equations of motion for the Navig8-UAM are derived from
Newton’s second law with respect to the UAV frame of reference. This frame of reference
is used because it remains fixed at the UAV’s center of mass (Figure 2) and is unaffected
by the movement of the arm, whereas the UAM frame of reference at the UAM’s center of
mass varies with manipulation maneuvers. The developed equations are extensions of the
mathematical model described in [28,29]. The force equation around the UAM is expressed
with respect to the UAV frame of reference as Equation (1):

F⃗UAM = mUAM a⃗P
UAM (1)

where F⃗UAM represents the total force acting on the UAM, excluding the gravitational force,
mUAM denotes the total mass of the UAM (UAV + arm), including the mass of objects
held by the manipulator, and a⃗P

UAM represents the UAM’s linear acceleration without the
gravitational acceleration (i.e., a⃗P

UAM = a⃗UAM − g⃗). Notably, the linear acceleration of the
UAM is distinguished from the linear acceleration of the UAV (⃗ap

UAV) as movements of
the arm or rotation of the UAM introduce additional linear acceleration to the UAV. The
relationship between a⃗P

UAM and a⃗P
UAV is expressed by Equation (2):

a⃗P
UAM = a⃗P

UAV + a⃗add (2)
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where a⃗add = d2

dt2

(⃗
ro f f

)
+ α⃗UAV ×

(⃗
ro f f

)
+ 2ω⃗UAV × d

dt

(⃗
ro f f

)
+ ω⃗UAV ×

(
ω⃗UAV × r⃗o f f

)
,

ω⃗UAV = [P, Q, R]T , and α⃗UAV =
[
Ṗ, Q̇, Ṙ

]T are the angular velocity and acceleration of the
UAV, respectively (i.e., P, Q, and R represent the rotational speeds of the UAV in the x̂, ŷ,
and ẑ directions of the UAV reference frame). Additionally, r⃗o f f is a displacement vector
from the UAV’s center of mass to the UAM’s center of mass (Figure 2).

The moment equation of the UAM is described with respect to the UAV frame of
reference by Equation (3):

M⃗UAM = IUAM · α⃗UAM + ω⃗UAM × (IUAM · ω⃗UAM) (3)

where IUAM represents the moment of inertia tensor of the UAM in the UAV reference
frame. Similarly to the linear acceleration, the angular velocity and acceleration of the
UAM, represented as ω⃗UAM and α⃗UAM, are distinguished from those of the UAV, denoted
as ω⃗UAV and α⃗UAV . This representation is necessary to identify the variations that the
manipulator’s movements induce to the UAV. Thus, the mathematical equation for the
angular velocity and angular acceleration between the UAM and UAV is described by
Equations (4) and (5), respectively:

ω⃗UAM = ω⃗UAV − ω⃗int (4)

α⃗UAM = α⃗UAV − α⃗int − ω⃗UAV × ω⃗int (5)

where ω⃗int and α⃗int denote the relative (internal) angular velocity and acceleration of the
UAV with respect to the UAM.

The knowledge regarding the manipulator movements, including its joint angles q,
velocities q̇, and acceleration q̈, as well as inertia information (mass and moment of inertia
tensor), is captured by Equations (2), (4) and (5) via terms such as r⃗o f f , ω⃗int, α⃗int, mUAM,
and IUAM.

In this research work, the UAM’s motion is considered to be executed under slow-
speed conditions in calm air, where aerodynamic forces and torques (e.g., drag) can be
neglected. Thus, it is assumed that the sole forces and torques acting on the UAM are those
resulting from the propellers’ movements (rotation and tilt) as Equations (6) and (7):

F⃗UAM = F⃗p1 + F⃗p2 + F⃗p3 (6)

M⃗UAM = r⃗p1 × F⃗p1 + r⃗p2 × F⃗p2 + r⃗p3 × F⃗p3 − r⃗o f f × (F⃗p1 + F⃗p2 + F⃗p3)+ Q⃗p1 + Q⃗p2 + Q⃗p3 (7)

where F⃗pi and Q⃗pi denote the propeller force and torque generated by the ith propeller, and
r⃗pi represents the position vector from the center of mass of the UAV to the ith propeller
(Figure 2). The fourth term (−⃗ro f f × (F⃗p1 + F⃗p2 + F⃗p3)) in Equation (7) arises from the
displacement of the center of mass due to the combination of the manipulator.

The motion of the robotic arm affects the motion of the UAV through the reaction
force and torque that are produced on the aircraft. These forces and torques, however, can
be considered as internal forces and torques within the UAM system; thus, they do not
influence the motion of the UAM, in accordance with the conservation of momentum.

In a similar fashion as carried out in [28,29], for the purpose of controller design, the
control input vector, U, is formulated as a combination of actuator inputs, which include
the propellers’ rotational speeds (i.e., ωpi for i = 1 to 3), and the tilt angles of the two main
shrouded propellers (i.e., α1 and α3) as represented in Equation (8):

U =
[
u1 u2 u3 u4 u5

]T
=

[
cos α1ω2

p1
sin α1ω2

p1
cos α3ω2

p3
sin α3ω2

p3
ω2

p2

]T
(8)
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Thus, the control input vector, U, provides corresponding actuator inputs to be sent to
the UAV, as described in Equation (9):[

ωp1 ωp2 ωp3 α1 α3
]
=
[

4
√

u2
1 + u2

2
√

u5
4
√

u2
3 + u2

4 arctan u2
u1

arctan u4
u3

]
(9)

3. INDI for UAMs

An effective INDI control architecture for the Navig8-UAV (without a manipulator),
referred as the INDI2 + PD, has been developed and described in [28,29]. In this section,
the INDI2 + PD controller is adapted and used for developing the proposed adaptive
INDI control law for the Navig8-UAM. The INDI2 + PD controller is a cascade control
architecture composed of an attitude and a position INDI controller. Herein, the INDI
control is derived following the same procedure as in [28,29]. However, this derivation
uses the force and moment equations of the UAM, which include the manipulator.

3.1. Rotational Relationship

The INDI controller responsible for rotational motions is devised by reformulating the
moment equation (Equation (3)) in terms of the UAV’s angular acceleration as shown in
Equation (10):

α⃗UAV = I−1
UAM M⃗UAM − α⃗add (10)

where α⃗add = −⃗αint − ω⃗UAV × ω⃗int + I−1
UAM(ω⃗UAV + ω⃗int) ×

{
IUAM · (ω⃗UAV − ω⃗int)

}
.

Equation (10) is linearly approximated using the first-order Taylor expansion, which leads
to Equation (11):

α⃗UAV ≈
(

I−1
UAM0

M⃗UAM0 − α⃗add0

)
+

∂

∂X

(
I−1
UAM M⃗UAM − α⃗add

)
· (X − X0)

+
∂

∂U

(
I−1
UAM M⃗UAM − α⃗add

)
· (U − U0)

(11)

The terms within the first set of parentheses in Equation (11) represent the components
at the linearized point, which corresponds to the current time denoted by the subscript “0”.
Thus, such components denote the measured angular acceleration of the UAV, α⃗UAV0 , at the
current time. The terms within the second set of parentheses represent the contribution
arising from the change in the UAV state vector, X, comprising 12 terms defined as per
Equation (12):

X = [pE pN pU ϕ θ ψ ṗE ˙pN ˙pU P Q R]T (12)

where (pE, pN, pU) denotes the UAV’s position in the inertial frame of reference, (ϕ, θ, ψ)
represents the UAV’s roll, pitch, and yaw angles, and (P, Q, R) represents the angular ve-
locity of the UAV. Assuming that the response of the UAV’s actuators (motors for propeller
rotation and servo motors for shroud tilting) is significantly faster than the change in the
UAV state, and that the sensor’s sampling time is sufficiently fast, it can be said that the
change in the UAV state, (X − X0), is negligible compared to the control input changes,
(U − U0), leading to X ≈ X0. This assumption is frequently used in the INDI controller
design procedure [22–28,34] and is often referred to as the principle of time scale separa-
tion [20]. Thus, the second part of Equation (11) is considered negligible and removed from
the control signal computation. Therefore, Equation (11) can be simplified to Equation (13):

α⃗UAV = α⃗UAV0 + I−1
UAM

∂M⃗UAM
∂U

· (U − U0) (13)

Equation (13) thus represents the rotational relationship between control inputs and
angular accelerations, which will be used to formulate the INDI controller.
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3.2. Translational Relationship

In a similar fashion, the force equation (Equation (1)) can be reformulated in terms of
the linear acceleration of the UAV, resulting in Equation (14):

a⃗UAV =
F⃗UAM
mUAM

− a⃗add (14)

Through the application of the Taylor expansion, Equation (14) is linearized, yielding
Equation (15):

a⃗UAV ≈
(

F⃗UAM0

mUAM0

− a⃗add0

)
+

∂

∂X

(
F⃗UAM
mUAM

− a⃗add

)
· (X − X0)

+
∂

∂U

(
F⃗UAM
mUAM

− a⃗add

)
· (U − U0)

(15)

Similar to Equation (11), the first part of Equation (15) corresponds to the current
linear acceleration of the UAV, a⃗UAV0 , which is measured via the UAV’s on-board sen-
sors (i.e., IMU). Under the similar conditions used in Section 3.1 (e.g., swift actuator
dynamics and a sensor high sampling rate) the change in UAV state is considered to be
zero (i.e., X − X0 = 0). As a result, after computing the partial derivatives, Equation (15)
simplifies to Equation (16):

a⃗UAV = a⃗UAV0 +
1

mUAM

∂F⃗UAM
∂U

· (U − U0) (16)

3.3. INDI Formulation

From Equation (13) in Section 3.1 and the x and z components of Equation (16) in
Section 3.2, the relationship between the acceleration increments, ∆Acc =[⃗αUAV − α⃗UAV0 ;
a⃗UAVx,z − a⃗UAV0x,z

], and the control input increments, ∆U = U − U0 =[∆u1, ∆u2, ∆u3, ∆u4,
∆u5]

T , is formulated as per Equations (17) and (18):

∆Acc =

 I−1
UAM

∂M⃗UAM
∂U

1
mUAM

∂F⃗UAMx,z
∂U

 · ∆U = G · ∆U (17)

∆U = G−1 · ∆Acc (18)

It is worth noting that the y component of Equation (16) is not used because the vehicle
is underactuated in terms of the linear acceleration in the y direction. By inverting the
5 × 5 matrix G in Equation (17) and multiplying it by the desired acceleration increments,
the necessary control input increments can be computed as shown in Equation (18). The
complete control input vectors are formulated as shown in Equation (19):

U = U0 + ∆U (19)

The actuator inputs can then be obtained by using Equation (9). The details of matrix
G for the Navig8-UAM are presented in Appendix A.

3.4. Control Effectiveness Matrix

The matrix G in Equation (17) is often referred to as the control effectiveness matrix.
The control effectiveness matrix G plays a crucial role in determining the control perfor-
mance of INDI controllers. It produces the necessary control input increments to achieve
the desired acceleration increments. While the matrix G can be analytically obtained by
applying the Taylor expansion to the system’s moment and force equations, its components
are dependent on the inertia parameters of the UAM. As the manipulator moves and
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picks up unknown masses, such parameters (i.e., total mass, moment of inertia tensor, and
the center of mass position of the UAM) constantly change, making it difficult to model.
This dynamic nature makes it challenging to establish a single fixed control effectiveness
matrix for all flight grasping and arm movement scenarios, unless the inertia information
of the UAM, including the object, does not change or is provided at every corresponding
specific moment in time. Therefore, there is a need to adapt the G matrix according to
the current inertia state of the UAM. When adapting the control effectiveness matrix to
the current flight state, or, generally, when the system’s inertia parameters/configurations
change as UAM scenarios, it is crucial to ensure that the matrix G remains invertible at
all times during the flight mission (so that Equation (18) can be used). The conditions
under which G becomes singular as the UAM moves need to be identified in real time or
computed analytically and avoided for all flight and robot arm movement states. However,
in this paper, this necessity is removed. The following section describes the adaptive INDI
control architecture capable of computing a set of weighting values used to update the
theoretical G−1 matrix of the Navig8-UAV in real time. The proposed approach enables the
control architecture developed for the UAV to be capable of controlling the UAM version
of the UAV without prior knowledge of the robot’s arm, its motion, or the object being
grasped. The methodology enables the UAM to effectively compute the corresponding
control signals to maneuver the UAM as desired despite the inertia changes in the system
due to the manipulator maneuvers. This is achieved via an adaptive estimation process.

4. Adaptive INDI for UAMs

The challenges mentioned in Section 3.4 are resolved by directly adapting the inverse
of matrix G in this paper. This section outlines the adaptive mechanism for computing G−1

as the UAV flies while the arm is simultaneously used.

4.1. Methodology

As per Equation (17), the control effective matrix G (as well as its inverse, G−1) repre-
sents the relationship between the changes in control inputs and the resulting acceleration
changes of the UAV within the UAM system. This implies that G−1 can be estimated
based on the knowledge about the current control inputs (or actuator inputs) and the
corresponding resulting acceleration achieved by the UAV, which can be measured. To
achieve this, a previously developed INDI controller [28,29] for the aircraft of interest is
extended, resulting in the adaptive INDI control architecture.

Figure 3 illustrates the proposed extended INDI control structure for the UAM, which
we refer to as the adaptive INDI controller.

As reported in [29], the controller operates on a trajectory that the UAV is required to
track. Trajectory commands for the UAV include the desired position (pEcmd, pNcmd, pUcmd)
in the inertial frame of reference and the desired pitch and yaw attitude (θcmd, ψcmd) of the
UAV. As represented by the blue box with a dotted outline in Figure 3, the adapted control
algorithm begins by computing the inertial position error of the UAV (epE, epN , epU) by
subtracting the current UAV’s inertial position from the desired inertial position. Then, the
reference frame of the position error is transformed to the UAV’s body frame (ex, ey, ez).
These position errors in the UAV’s reference frame are employed by a set of three PID
controllers to generate the desired linear acceleration in the x and z directions (aP

xcmd
, aP

zcmd
),

along with the required roll attitude (ϕcmd). Notably, for the desired lateral translation,
the desired roll attitude is generated rather than directly generating the y-directional lin-
ear acceleration due to the UAV’s underactuated characteristics in the y-direction. This
desired roll attitude, along with the desired pitch and yaw attitude obtained from the
given UAV trajectory, are employed by a second set of three PID controllers as represented
in the green box in Figure 3. These attitude PID controllers produce the corresponding
desired angular acceleration of the UAV in the x, y, and z directions (Ṗcmd, Q̇cmd, Ṙcmd). The
desired linear acceleration in the x and z directions (aP

xcmd
, aP

zcmd
) and the desired angular

acceleration of the UAV (Ṗcmd, Q̇cmd, Ṙcmd), collectively denoted as Acccmd, are used as the
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inputs to the attitude and position INDI controller, as detailed in Section 3.3 and reported
in [28]. To reduce measurement noise, the required acceleration measurements of the UAV
(Acc = [aP

x , aP
z , Ṗ, Q̇, Ṙ]) pass through a low-pass filter before being used in the atti-

tude/position INDI.

Figure 3. Block diagram of the proposed adaptive INDI controller for UAMs.

The purple box with a long dashed outline in Figure 3 represents the proposed adaptive
algorithm. This algorithm comprises a Kalman filter with two low-pass filters. The Kalman
filter estimates a set of 16 weighting factors represented by a matrix, K̂, which are used
to adjust the inverse of the original G matrix used to control the UAV. The inverse of this
original G matrix is set as the initial G−1 matrix (G−1

ini ). This is achieved by using the
increments of real-time actuator measurements (α1, α3, ω1, ω2, ω3) and the corresponding
acceleration measurements (Acc) of the UAV. The Kalman filter may diverge or converge
to incorrect values if sensor measurements are too noisy or if the UAVs perform abrupt
maneuvers, such as step control input tracking. To mitigate this, low-pass filters are
placed before the Kalman filter algorithm, preventing the adaptive law from reacting
to sudden changes in measurements and sensor noise. It is crucial that the low-pass
filters for the actuator and corresponding acceleration measurements have the same time
constant to maintain real-time synchronization [22,25]. Additionally, the weighting factors
are constrained to a predetermined range between −10 and 10 to avoid convergence to
erroneous values. The matrix K̂ generated by the Kalman filter is then used to update the
matrix G−1

ini (Section 4.3) at each time step.

4.2. Analysis of the Inverse of the Control Effectiveness Matrix

The analytical formulation of the G−1 matrix for Navig-UAM derived in Section 3.3
reveals that such a matrix possesses characteristics (e.g., G−1

11 = −G−1
31 ), outlined in
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Table 1, that can be exploited to develop an adaptation algorithm to compute an updated
G−1 matrix.

Table 1. Equality conditions of the components of G−1.

1st Column 2nd Column 3rd Column 5th Column

G−1
11 = −G−1

31 G−1
12 ≈ G−1

32 G−1
13 = −G−1

33 G−1
25 = −G−1

45
G−1

21 = −G−1
41 G−1

22 = −G−1
42 G−1

23 = −G−1
43

G−1
51 = 0 G−1

53 = 0

As outlined in Table 1, 7 of the 25 components comprising the matrix G−1 for the
case of Navig8-UAM have an identical (or nearly identical) component within G−1, while
other components (i.e., G−1

51 and G−1
53 ) are equal to zero. Furthermore, the difference

between terms that are almost identical, such as G−1
12 and −G−1

32 , is negligible, with a
percent difference of less than 1% for the Navig8-UAM, making them practically equivalent.
These characteristics of G−1 can be verified through the analytical calculation example in
Appendix B.

In addition to the nine equality conditions of G−1 (Table 1), 6 of the 25 components
are always positive, and 8 are always negative as outlined in Table 2.

Table 2. Sign conditions of the components of G−1.

Positive G−1
11 G−1

14 G−1
23 G−1

34 G−1
42 G−1

52

Negative G−1
12 G−1

22 G−1
24 G−1

31 G−1
32 G−1

43 G−1
44 G−1

54

Based on these observations, the G−1 matrix for the Navig8-UAM is simplified as
shown in Equation (20), where only 16 out of 25 elements comprising the matrix need to be
computed and used to update G−1. The equivalent elements are identified with the same
color box within Equation (20).

G−1 =



G−1
11 G−1

12 G−1
13 G−1

14 G−1
15

G−1
21 G−1

22 G−1
23 G−1

24 G−1
25

− G−1
11 G−1

12 − G−1
13 G−1

34 G−1
35

− G−1
21 − G−1

22 − G−1
23 G−1

44 − G−1
25

0 G−1
52 0 G−1

54 G−1
55


(20)

It should be noted that the equality and sign conditions as Equation (20) also apply to
the Navig8-UAV case.

4.3. Adaptation of G−1 Matrix

While the original matrix G−1 (denoted herein as G−1
ini ), derived from the UAV’s inertia

information without the manipulator, functions properly within the INDI control scheme
for the standalone UAV [28,29], it is not effective for the UAM, especially when the inertia
parameters of the UAM change as the manipulator is used. Thus, there is a need to update
the matrix G−1

ini as the inertia parameters of the UAM change. For this, the proposed
adaptive law updates each of the elements comprising matrix G−1

ini via a set of estimated
weighting factors represented by a matrix K̂, as illustrated in Equation (21):

Ĝ−1 = K̂ ◦ G−1
ini (21)

In Equation (21), the matrix Ĝ−1 defines the adaptive law, where the term G−1
ini defines

the initial inverse control effective matrix, which is derived based on the UAV’s inertia
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parameters and remains unchanged regardless of the arm movement. The symbol, ◦, in
Equation (21) stands for the element-wise product operation.

A Kalman filter mechanism is utilized to estimate the elements comprising the weight-
ing factor matrix K̂. Accordingly, the estimation variables are the components of the
weighting factor matrix K̂, which comprise 16 elements required to update the 16 elements
of G−1

ini as per Table 1 and Equation (20). Thus, K̂ is defined as K̂ = [K11, K12, K13, K14, K15,
K21, K22, K23, K24, K25, K34, K35, K44, K52, K54, K55]. It should be noted that K11, K12, K14,
K15, K22, K23, K24, K34, K35, K44, K52, and K54 among the elements of K̂ are bound to be
positive due to the sign condition regarding matrix G−1 provided in Table 2 to ensure that
the signs of these values remain unchanged.

As with traditional Kalman filter algorithms, the proposed approach incorporates
two models with respect to the estimation variables: (i) a motion model and (ii) a mea-
surement model. The motion model is set as a random walk model [35] as represented by
Equation (22):[

K̇11 K̇12 K̇13 K̇14 K̇15 K̇21 K̇22 K̇23 K̇24 K̇25 K̇34 K̇35 K̇44 K̇52 K̇54 K̇55
]T

=
[

ε11 ε12 ε13 ε14 ε15 ε21 ε22 ε23 ε24 ε25 ε34 ε35 ε44 ε52 ε54 ε55
]T

(22)

where εij indicates Gaussian noise for the corresponding weighting factor component,
meaning that future predictions of each of the estimation variables primarily rely on
random changes, reflecting the inherent unpredictability in the system’s behavior.

The measurement model is defined as the relationship between the control input
increments and the acceleration increments of the UAM, including measurement noises, as
described in Equation (23), where ∆U represents the control input increments, ∆Acc denotes
the acceleration increments, and N is the measurement noise vector (N = [ν1, ν2, ν3, ν4, ν5]

T).

∆U = K ◦ G−1
ini · ∆Acc + N (23)

It should be noted that these measurement equations do not take into consideration
the reaction force and torque exerted on the UAV from the manipulator motions. Thus,
under this approach, it is assumed that the angular velocity and acceleration of the arm’s
joints comprising the UAM do not exceed certain limits (i.e., q̇i < 1 rad/s, q̈i < 10 rad/s2) to
minimize the generated reaction force and torque of the arm on the UAV.

By Euler-discretizing the motion and measurement models (Equations (22) and (23),
respectively), the discrete Kalman filter is formulated in the adaptive law to estimate the
components of the weighting factor matrix K̂ based on the approach reported in [36].

5. Simulation Results

The proposed adaptive INDI control methodology was analyzed to assess and validate
how it enhances typical UAV INDI control performance in the presence of a manipulator
holding objects, both having unknown inertia parameters. For this, the Matlab Simulink
environment was used. During the tests, a 3 DoF robotic arm was mounted on the aircraft
(see Figure 4). The size and inertia parameters of each component of the UAM utilized in
the simulation tests are detailed in Table 3.

Table 3. Size and inertia parameters of the UAM components.

Size [m] Mass [kg] Ixx [kg· m2] Iyy [kg· m2] Izz [kg· m2] Ixz [kg· m2] Ixy [kg· m2] Iyz [kg· m2]

Navig8-UAV
length: 1.0

5.0 0.0667 0.1492 0.2019 0.0147 0 0width: 0.8
height: 0.2

Each arm
linkage length: 0.3 0.5 0.0037 0.0037 0 0 0 0

Object
(sphere) radius: 0.05 1.0 0.001 0.001 0.001 0 0 0
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To simulate the noisy characteristics of real-world sensors, it was assumed that the
sensor measurements of the UAV angular velocity and linear acceleration have Gaussian
noises with a standard deviation of 0.01 rad/s and 0.5 m/s2, respectively. Angular accel-
eration measurements of the UAV were obtained by directly differentiating the angular
velocity measurements. Additionally, the noise measurements of the angular velocities of
each propeller and angular tilt positions of each shrouded propeller were considered to
have a noise with a standard deviation of 20 rad/s and 0.08 rad, respectively.

Figure 4. Manipulator poses during the simulation.

The noise covariance for each motion equation in the Kalman filter was set to the square
of 10−9, and, for each measurement equation, it was set to the square of 0.9. These values
were determined through trial and error. The same covariance value was assigned to each
motion equation since the motion models for the weighting factors were purely random
walk models and assumed to have the same uncertainties. Given that each measurement
model comprises a similar combination of actuator and acceleration measurements, the
same noise covariance was chosen for all measurement equations. The time constant for
the low-pass filters in the adaptive law was set to 0.7 s, and the low-pass filter for the
INDI control feedback (acceleration) was set to 0.1 s. These time constant values were also
selected through trial and error. Each estimate for the weighting components, K̂ij, of the
K̂ matrix is constrained to have a value between −10 and 10, taking into account feasible
ranges of G−1 components of Navig8-UAM. This range was set to prevent divergence or
convergence to incorrect values.

Validation of the proposed algorithm was conducted via numerous simulation tests.
In this paper, however, two simulation results are presented, which represent and illustrate
the obtained results. Both simulations demonstrate the improvement in acceleration control
performance when the manipulator constantly moves while holding an object of 1 kg. It
should be noted that the reaction force and torque from the manipulator are taken into
account and applied to the UAV when the manipulator is in motion during simulations.
In the first simulation, a set of different motion step commands were applied to the UAV
at different times and states to show how the adaptive INDI controller responds as the
components of the inverse control effectiveness matrix adapt to each circumstance. The
second simulation demonstrates how the aircraft is able to perform an aerobatic flight
maneuver while its robot arm executes diverse operations. Herein, we show the UAM
performing a helical turn climb maneuver while extending and retracting its robot arm,
which is holding a 1 kg object. The results of this test are compared with traditional
INDI controllers.
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5.1. Step Response Simulation Test

For step response tests, the UAM starts in a hovering maneuver with no robot arm
movement controlled, with the original INDI control having an effectiveness matrix deter-
mined based on the inertia parameters of the UAV (G−1

ini ). The inverse control effectiveness
starts to adapt after 2 s using the proposed adaptation law. Starting from 5 s of the simu-
lation, a step command in position and orientation is sent to the UAV at different times.
Specifically, the UAV is commanded to move 2 m forward at 5 s, 2 m sideways at 10 s, and
2 m upward at 15 s. After the position commands, a −45-degree pitch attitude command
is applied at 20 s, and a 90-degree yaw attitude command is applied to the UAV at 25 s.
At the 5 s mark, the manipulator is commanded to continuously move, changing its pose
between the two poses (Pose 1 and Pose 2) as depicted in Figure 4, where Pose 1 represents
a retracted arm and Pose 2 represents an extended forward arm.

To achieve the continuous arm extension and retraction, the joint angles are com-
manded to change following the three joint motion curves provided in Figure 5.

Figure 5. Joint angles of the manipulator during the simulation.

It is worth noting that the manipulator moves slowly (q̇max = 0.53 rad/s,
q̈max = 0.43 rad/s2) within the angular velocity and acceleration constraints of the arm
joints as detailed in Section 4.3 (q̇i < 1 rad/s, q̈i < 10 rad/s2). This is performed to limit the
generation of substantial reaction forces and torques of the arm on the UAV.

Figures 6–8 provide detailed results of the above described simulation. Figure 6
presents the position (pE, pN, and pU) and the attitude angles of the UAV (ϕ, θ, and ψ). The
solid lines represent the actual UAV states, while the dashed lines represent the commands
applied to the UAV. The dotted line indicates the UAV states within the UAM system,
controlled by the traditional INDI controller with a fixed G−1

ini . The parameters pE, pN, and
pU refer to the UAV’s position in the east, north, and upward (altitude) directions.

Figure 7 describes the acceleration states (Ṗ, Q̇, Ṙ, aP
x , aP

y , and aP
z ) of the UAV controlled

by the adaptive INDI scheme.
Figure 8 represents the adaptation of the inverse of the control effective matrix through-

out the simulation.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6. Position and attitude control of the UAV during the simulation: (a) UAV position control in
the east direction; (b) UAV position control in the north direction; (c) UAV position control in the
upward direction; (d) UAV roll angle control; (e) UAV pitch angle control; (f) UAV yaw angle control.
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(a)

(b)

(c)

(d)

(e)

(f)
Figure 7. Acceleration control of the UAV during the simulation: (a) UAV angular acceleration control
in the x direction of the UAV frame; (b) UAV angular acceleration control in the y direction of the
UAV frame; (c) UAV angular acceleration control in the z direction of the UAV frame; (d) UAV linear
acceleration control in the x direction of the UAV frame; (e) UAV linear acceleration control in the y
direction of the UAV frame; (f) UAV linear acceleration control in the z direction of the UAV frame.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 8. Components of the inverse control effectiveness matrix during the simulation: (a) 1st
column of the adapted G−1; (b) 1st column of the true G−1; (c) 2nd column of the adapted G−1;
(d) 2nd column of the true G−1; (e) 3rd column of the adapted G−1; (f) 3rd column of the true G−1;
(g) 4th column of the adapted G−1; (h) 4th column of the true G−1; (i) 5th column of the adapted G−1;
(j) 5th column of the true G−1.

The plots on the left side (Figure 8a,c,e,g,i) show the adapted inverse control effec-
tiveness (Ĝ−1) values. In contrast, the plots on the right side (Figure 8b,d,f,h,j) display the
analytically calculated inverse control effectiveness (G−1

true) values, which are based on the
true inertia parameters of the UAM and the object. The plots on the right are provided
for comparison purposes, as these values are not available in real-world scenarios. The
first two plots (Figure 8a,b) indicate values in the first column of the adapted and true
G−1, which play a crucial role in generating effective control commands from the Ṗ mea-
surements. Similarly, the subsequent plots represent the second to fifth columns of the
adapted and true G−1, which are closely related to the measurements of Q̇, Ṙ, aP

x , and aP
z ,

respectively. The plots on the left in Figure 8 also provide the degree of change for each
matrix component of Ĝ−1 as the UAM flight evolves over time. From Figure 8a,c,e,g,i,
it is observed that certain components of Ĝ−1 undergo significant changes as the UAM
changes its flight behavior while others remain unaffected. This observation indicates the
significance of each element within Ĝ−1 in the adaptation process.

In the initial 2 s, the UAM is controlled by the traditional INDI control scheme with
the original G matrix (G−1

ini ). Notably, during this period, the attitude control of the UAV
becomes unstable, as shown in Figures 6d and 7a, where the roll attitude exhibits divergence.
At 2 s of the hover-flight, the adaptive INDI algorithm initiates and the components of
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Ĝ−1 converge to specific values within 0.5 s and continue to update thereafter. At 5 s, the
UAM is commanded to move 2 m in the east (forward) direction (Figure 6a). At that time,
the acceleration command in the x direction of the UAV is produced and it is properly
followed as depicted in Figure 7d. During this maneuver, the second and fourth column of
Ĝ−1 (Figure 8g) are updated correspondingly. At 10 s, the UAV is commanded to move
2 m sideways to the north (Figure 6b), which leads to the roll angle command to the UAV
(Figure 6d). Correspondingly, the angular acceleration command in the roll direction, Ṗcmd,
is generated (Figure 7a). As the values in the matrix Ĝ−1 are promptly adjusted through the
proposed adaptive law (Figure 8a), the control of Ṗcmd is successfully achieved, leading to
the proper control of the sideways motion (pN) and roll motion (ϕ). It should be noted that
the components of the Ĝ−1 matrix are also updated from the regulation of corresponding
states (Q̇, Ṙ, aP

x , and aP
z ) as shown in Figure 8. At 15 s, the UAV is commanded to increase its

altitude by 2 m (Figure 6c). The linear acceleration command in the z direction is generated
and controlled with the updated Ĝ−1. In this scenario, the components of Ĝ−1 related to
ap

z are only slightly updated. At 20 s of the simulation, a pitch command of −45 degree
angles (nose pointing up) is applied to the UAV (Figure 6e), resulting in the production
of the corresponding angular acceleration command in the y direction of the UAV, Q̇. As
described in Figure 7b, the Q̇ is tightly controlled with the estimated Ĝ−1. At 25 s, the
UAV is commanded to turn its heading (yaw) by 90 degrees while maintaining a pitch-up
attitude (Figure 6f). The corresponding yaw angular acceleration command is produced,
and adequately controlled (Figure 8e). Notably, the roll and pitch angles are agitated from
the yaw maneuver due to the coupled dynamics of the vehicle, leading to the roll and
pitch angle deviation from the desired values (Figure 6d,e). Accordingly, the first and third
column of Ĝ−1 are updated from the regulation of the roll and pitch angles (Figure 8a,c).
Since the adaptive algorithm utilizes the relationship between actuator measurements and
the corresponding acceleration measurements, the components of Ĝ−1 primarily related
to the current maneuver are updated. Consequently, not all updated components of Ĝ−1

will necessarily align with the true components of G−1
true at all times. This accounts for the

deviation between Ĝ−1 and G−1
true observed in Figure 8. It can be observed from Figure 6

that the UAM system fails to stabilize its attitude when the traditional INDI control scheme
is used (dotted line), leading to a loss of control.

5.2. Helical Turn Climb Trajectory Tracking Flight Simulation

To analyze the trajectory tracking performance of the adaptive INDI controller, the
UAM is positioned to execute a helical turn climb maneuver (Figure 9) while simultaneously
managing the continuous robot arm movement between Pose 1 and Pose 2 (Figure 4). The
vehicle is initially positioned at coordinates (0, 0, 2) in the inertial frame of reference, with
roll, pitch, and yaw angles set at 0 degrees. Subsequently, the UAM is commanded to
track the helical turn climb trajectory (pNcmd = 2 sin 0.4t, pEcmd = 2 cos 0.4t − 2, pUcmd =
0.1t + 2, ψcmd = −0.4t, θcmd = 0, t = [0, 35]). During the first 5 s of the flight maneuver,
the arm remains stationary. Subsequently, at 5 s, the manipulator continuously transitions
between Pose 1 and Pose 2, as illustrated in Figure 9. The motion of the arm uses a max
speed and acceleration of q̇max = 0.53 rad/s and q̈max = 0.43 rad/s2 following the arm
motion described by Figure 5. The detailed trajectory tracking results are presented in
Figures 9–11. In Figures 9 and 10, the dotted line represents the desired trajectory provided
to the vehicle. The solid line shows the trajectory followed by the UAV without the
manipulator controlled with the control effectiveness matrix derived from its own inertia
parameters, G−1

ini (traditional INDI) [28,29]. The dash-dotted line shows the trajectory of
the UAM under the control of the proposed adaptive INDI control scheme, while the
dashed line displays the trajectory of the UAM when it is controlled using the traditional
INDI control (i.e., no adaptation). Figure 9 shows the isometric view of the trajectory
with snapshots of the UAM at 5 s intervals. From the obtained results, it can be seen that
the UAM’s trajectory tracking performance when controlled with the proposed adaptive
INDI controller (dash-dotted line) is comparable to that of the UAV’s trajectory tracking
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controlled with the traditional INDI (solid line). In contrast, when the traditional INDI
control with fixed control effectiveness matrix G−1

ini is used, the UAM system fails to track
the trajectory (dashed line), resulting in a loss of control. Figure 10 shows a top view of
the trajectory, where trajectory tracking performance between the adaptive INDI and the
traditional INDI controllers can be compared.

Figure 9. Side view of the helical trajectory achieved by the UAM.

Figure 10. Top view of the helical trajectory achieved by the UAM.

The trajectory followed by the UAM when controlled with the traditional INDI (dashed
line) fails at 2.8 s and results in a crash at 5 s. On the other hand, the trajectory followed by
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the UAM when controlled with the adaptive INDI (dash-dotted line) closely matches the
desired trajectory, as does the UAV trajectory with traditional INDI (solid line). However,
slight deviations (e.g., deviation of (|△pE|,|△pN|,|△pU|) = (0.14 m, 0.02 m, 0.03 m) at 22 s
shown in Figure 10) are found, mainly caused by the reaction forces and torques from
the manipulator movement, as expected. Figure 11 illustrates the attitude control errors
during the trajectory tracking. The UAM with adaptive INDI control as the inner loop
demonstrates performance comparable to that of UAV attitude control with traditional
INDI. In contrast, the UAM fails to stabilize when controlled using traditional INDI.

(a)

(b)

(c)

Figure 11. Attitude control errors during the helical trajectory tracking simulation: (a) roll angle
control error; (b) pitch angle control error; (c) yaw angle control error.

As a result, the simulation results show that the proposed adaptive INDI controller
can effectively control the UAM with and without arm movement, whereas the traditional
INDI controller can only control the UAV itself when no arm is attached.

6. Conclusions and Future Work

This paper proposes an adaptive INDI control scheme for UAMs that relies on the
acceleration responses of the vehicle to its actuation inputs. The key innovation lies in
the direct estimation of the elements comprising the inverse of the control effectiveness
matrix using a Kalman filter. Notably, this approach eliminates the need for any prior
information regarding the manipulator movements or the size/volume and mass of the
object being grasped by the manipulator. This approach effectively addresses the problem
of singularities that can occur when dealing with varying manipulator dynamics as we
directly estimate the inverse of G. The results show that the adaptive control law promptly
adjusts the inverse of the control effectiveness, leading to a control performance that is
comparable to that of controlling a UAV. However, it is important to note that the adaptation
law is designed based on the UAM’s response in a quasi-static state, meaning that it does
not consider the reaction forces and torques resulting from rapid manipulator movements.
Extending the algorithm to handle impulsive or rapid manipulator motions, which would
further enhance the UAM’s capabilities in real-world applications, is left as future work.
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Appendix A. Analytical Calculation of G

The analytical calculations of G components for Navig8-UAM are described here. In
the equations below, CTi and CQi stand for the thrust and torque coefficients of the ith
propeller, which are multiplied by the square of their propeller angular velocities to obtain
the thrust and torque of the propellers (i.e., CTi ω

2
pi

and CQi ω
2
pi

).

G =


G11 G12 G13 G14 G15
G21 G22 G23 G24 G25
G31 G32 G33 G34 G35
G41 G42 G43 G44 G45
G51 G52 G53 G54 G55



G11 =
Ixz(cos γA1 + sin γA0) + Izz(cos γA2 + sin γA4)

I2
xz − Ixx Izz

G12 =
IzzCQ1 − Ixz A2

I2
xz − Ixx Izz

G13 =
−Ixz(cos γA1 + sin γA0)− Izz(cos γA4 − sin γA3)

I2
xz − Ixx Izz

(A1)

G14 =
−IzzCQ1 − Ixz A3

I2
xz − Ixx Izz

, G15 =
IxzCQ2 + IzzCT2 ro f fy

I2
xz − Ixx Izz

G21 = G23 =
−CQ1 sin γ + cos γA0

Iyy

G22 = G24 =
A4

Iyy
, G25 =

A5

Iyy
(A2)

G31 =
−Ixx(cos γA1 + sin γA0)− Ixz(cos γA2 + sin γA4)

I2
xz − Ixx Izz

G32 =
−IxzCQ1 + Ixx A2

I2
xz − Ixx Izz

(A3)

G33 =
Ixx(cos γA1 + sin γA0) + Ixz(sin γA4 − cos γA3)

I2
xz − Ixx Izz

G34 =
IxzCQ1 + Ixx A3

I2
xz − Ixx Izz

, G35 =
−IxxCQ2 − IxzCT2 ro f fy

I2
xz − Ixx Izz

G41 = G43 = G45 = 0, G42 = G44 = −
CT1

m
(A4)

G51 = G53 =
CT1 cos γ

m
, G52 = G54 = 0, G55 =

CT2

m
(A5)
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where, A0 =CT1(ro f fx − rp1x
), A1 = CQ1(ro f fx − rp1x

)

A2 =CT1(ro f fy − rp1y
), A3 = CT1(ro f fy + rp1y

)

A4 =CT1(ro f fz − rp1z
), A5 = CT2(ro f fx − rp2x

)

Appendix B. Example of the Analytical Calculation of G−1 for Navig8-UAM

Examples of the G−1 components for Navig8-UAM are shown here.

G−1 =


G−1

11 G−1
12 G−1

13 G−1
14 G−1

15
G−1

21 G−1
22 G−1

23 G−1
24 G−1

25
G−1

31 G−1
32 G−1

33 G−1
34 G−1

35
G−1

41 G−1
42 G−1

43 G−1
44 G−1

45
G−1

51 G−1
52 G−1

53 G−1
54 G−1

55



G−1
11 = +

IxzCQ1 + IxxCT1 rp1y

B0
, G−1

21 = −B1

B0

G−1
31 = − G−1

11 , G−1
41 = −G−1

21 , G−1
51 = 0

G−1
12 = − B2

B3
, G−1

22 = −B4

B5
, G−1

32 = −B6

B3
, G−1

42 = −G−1
22

G−1
52 = +

IyyCT1 cos γ

CQ1 CT2 sin γ + CT1 CT2 rp1x
cos γ − CT1 CT2 rp2x

cos γ
(A6)

Percentage difference between G−1
32 and G−1

12 :

G−1
12 − G−1

32

G−1
12

× 100 =
B2 − B6

B2
× 100 =

2CQ1 CQ2 CT1 cos γ

B7
× 100

where

B0 =2(C2
Q1

cos γ + C2
T1

r2
p1y

cos γ + CQ1 CT1 ro f fx sin γ − CQ1 CT1 rp1x
sin γ − C2

T1
ro f fz rp1y

sin γ + C2
T1

rp1y
rp1z

sin γ)

B1 =IxxCQ1 cos γ − IxzCT1 rp1y
cos γ + IxxCT1 ro f fx sin γ + IxzCT1 ro f fz sin γ − IxxCT1 rp1x

sin γ − IxzCT1 rp1z
sin γ

B2 =Iyy{+C2
Q1

CT2 cos γ + CQ1 CQ2 CT1 cos γ + C2
T1

CT2 r2
p1y

cos γ − C2
T1

CT2 ro f fz rp1y
sin γ

+ C2
T1

CT2 rp1y
rp1z

sin γ + CQ1 CT1 CT2 ro f fx sin γ − CQ1 CT1 CT2 rp1x
sin γ}

B3 = 2CT2{CQ1 sin γ + CT1rp1x
cos γ − CT1 rp2x

cos γ} · {C2
Q1

cos γ + C2
T1

r2
p1y

cos γ + CQ1 CT1 ro f fx sin γ

− CQ1 CT1 rp1x
sin γ − C2

T1
ro f fz rp1y

sin γ + C2
T1

rp1y
rp1z

sin γ}

B4 = IyyCQ2 C2
T1

cos γ(rp1y
cos γ − ro f fz sin γ + rp1z

sin γ)

B5 = 2CT2(CQ1 sin γ + CT1 rp1x
cos(γ)− CT1 rp2x

cos γ)(C2
Q1

cos γ + C2
T1

r2
p1y

cos γ + CQ1 CT1 ro f fx sin γ

− CQ1 CT1 rp1x
sin γ − C2

T1
ro f fz rp1y

sin γ + C2
T1

rp1y
rp1z

sin γ)

B6 = Iyy{+C2
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CT2 cos γ − CQ1 CQ2 CT1 cos γ + C2
T1
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cos γ − C2
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CT2 rp1y
rp1z
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sin γ}

B7 =C2
Q1
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sin γ
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