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Abstract: Hole detection is an important means of crack detection for aero-engine blades, and the
current technology still mainly relies on manual operation, which may cause safety hazards for visual
reasons. To address this problem, this paper proposes a deep learning-based, aero-engine blade crack
detection model. First, the K-means++ algorithm is used to recalculate the anchor points, which
reduces the influence of the anchor frame on the accuracy; second, the backbone network of YOLOv5s
is replaced with Mobilenetv3 for a lightweight design; then, the slim-neck module is embedded
into the neck part, and the activation function is replaced with Hard Sigmoid for redesign, which
improves the accuracy and the convergence speed. Finally, in order to improve the learning ability for
small targets, the SimAM attention mechanism is embedded in the head. A large number of ablation
tests are conducted in real engine blade data, and the results show that the average precision of the
improved model is 93.1%, which is 29.3% higher; the number of parameters of the model is 12.58 MB,
which is 52.96% less, and the Frames Per Second (FPS) can be up to 95. The proposed algorithm meets
the practical needs and is suitable for hole detection.

Keywords: aero-engine; non-destructive testing; YOLOv5; lightweighting

1. Introduction

Since the heart of aircraft aviation engines usually works within high-temperature,
high-pressure, high-load, high-speed, strongly corrosive, and harsh environments, the
core components inside the engine’s applicability and reliability will decline, affecting the
aircraft’s long-term capability [1]. High-speed rotors, including compressor and turbine
blades, often undergo deformation, bruising, tearing, cracking, discoloration under high
temperatures, and other structural damage. These are shown in Figure 1. The sources of
damage mainly include centrifugal inertia force generated by high-speed rotation, aero-
dynamic force generated by flowing gas, fatigue damage due to long operation time, and
impact of external objects [2]. Therefore, timely and accurate detection and resolution of
engine blade structural losses during the maintenance period not only extends the service
life of the aircraft but also ensures personnel safety [3].

At present, non-destructive testing has been widely applied to detect structural dam-
age to engine blades [4]. Wang et al. [5] used ultrasonic technology to detect small cracks
in blades. They first fabricated blades with different degrees of damage on the vibration
experimental bench and then utilized non-linear ultrasonic testing to detect non-linear
coefficients of different faulty blades. Through a large number of experiments and statistical
analyses, they derived the empirical non-linear coefficients and the equivalent crack size
formula, which can be used for blade crack evaluation. Based on the principle of electro-
magnetic induction, eddy current detection can be used to detect faulty blades. Xie et al. [6]
designed a new type of flexible eddy current array sensor that generates eddy currents
through the excitation and sensor coils. When the eddy currents pass through the damaged
part of the blade, the eddy currents change significantly to derive the type, location, and
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size of the damage to the blade. Yang et al. [7] also designed an eddy current automatic
detection system with six degrees of freedom, and the experiments show that the detection
sensitivity of the automatic detection system is very high. Liu et al. [8] also utilized digital
radiography for non-destructive testing of gas turbine blades, with remarkable results.
Karatay et al. [9] investigated Fluorescein isothiocyanate-conjugated Escherichia coli as a
penetrant that can be used to detect leaf cracks.
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Figure 1. (a) Turbine blade corrosion, (b) Cracked compressor blade, (c) Torn compressor blade,
(d) High-temperature ablation of the turbine blade.

Due to the many types of engine components and complex structure, it is difficult
and costly to dismantle the engine. Hole probe inspection enters the engine interior with
a camera through a small hole in the engine to inspect the blades in real-time, which
can avoid disassembling the engine. By changing the probe insertion depth, rotating the
probe direction and engine rotor angle, maintenance personnel can collect video and image
information of different levels of blades and different angles of the rotor and then analyze
and judge the state of the blades [10]. However, these methods still rely on visual inspection.
There is a subjective factor. Different mechanics detecting the same damaged blade may
have different conclusions, with a certain risk. The engine’s internal light is dark, the
contrast is low, it is easy to hide the hidden faults, the number of blade stages inside the
engine is large, and the overhauling workload is large, which is a very high requirement
for the maintenance personnel [11].

In recent years, artificial intelligence technology has continued to develop and is
widely used in various industries. Target detection technology has a strong feature learning
ability [12], which can be combined with hole detection technology to help maintenance
personnel identify and process image information, make more accurate and rapid judg-
ment decisions, and improve maintenance ability. The current popular target detection
algorithms are ResNet [13], R-CNN series [14], YOLO series [15], FCN series [16] and
Mask-RCNN [17], etc.

More and more scholars have now applied target detection techniques to engine
borehole inspection. Anurag et al. [18] designed the U-Net architecture to detect defects
on high-pressure compressor blades, and the detection precision and recall rate exceeded
90%. Still, the detection sensitivity was low for small-size defects. Li et al. [19] combined
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high-resolution engine blade images into a deep convolutional neural network (DCNN)
and then proposed a coarse classifier over most of the background parts. Finally, the defects
were detected by a fine detector module, which showed a better detection performance.
Zhang et al. [20] applied YOLOv3 to the task of detecting damage on aero-engine blades
and achieved a balance between detection accuracy and detection speed. Li et al. [21]
proposed an improved intelligent detection model for YOLOv4, which fuses shallow and
deep features, improves the PANet structure, and employs focusing loss, and the results
show that the improved model achieves an average accuracy of 90.1% and an FPS of 24.82,
which falls short of real-time detection. Li et al. [22] introduced deformable convolution
and depth-separable convolution on the basis of YOLOv5s and used k-means clustering
to optimize the anchor frame, and the results showed that the detection precision could
reach 93.3% and the recall rate could reach 76.2%, but the parameter count of the model
was 7,928,117, the weight file size was 15.3 MB, and the average detection time was 28.8 ms.
The model has high precision, but the model parameters are too large, the detection speed
is slow, and further improvement is needed. Cai et al. [23] reconstructed the structure of
YOLOv5, changed the backbone network to FasterNet, and introduced the depth separable
convolution and GSConv in the neck. The results show that the improved model reduces the
number of parameters by 52.5% compared to the YOLOv5 model, the FPS reaches 61, and
the average accuracy value reaches 89.6%, and there is still much room for improvement in
the accuracy and speed of detection of this model. Shang et al. [3] constructed an enhanced
shape Mask R-CNN network with three functions: damage pattern separation, damage
localization, and damage region segmentation. The model pays more attention to more
attention to the texture information model; although the detection accuracy is higher, it
belongs to the two-stage, which may bring about the problem of high computational cost
and slow detection speed, and it still can’t be better luck to use in the hole probing detection.
Li et al. [24] embedded the CBAM attention mechanism module into YOLOv7 and utilized
Alpha-GIOU as the coordinate damage function. The average accuracy of the improved
model was 96.1%, but the number of parameters was 36.52 MB, and the FPS reached 85.92;
although the accuracy of the model was higher, the number of parameters of the model
was larger, and it brought high requirements to the mobile device. In summary, although
many scholars have used the target detection technology for engine borehole exploration
equipment, they are unable to balance the relationship between test accuracy, test speed,
and model size; there is still a lot of room for development. Therefore, this paper combines
the current mainstream improvement module reorganization YOLOv5s model to try to
solve the above problems.

YOLO network version has been updated from 1.0 to the current 10.0; considering its
model size, detection accuracy, and detection speed, YOLOv5 still has strong application
value. Compared to other versions of YOLO, YOLOv5 weighs the detection performance
and model size and still contains three main parts: backbone network, feature fusion
network, and detection head [15], which is more adapted to small target detection, with
greater speed and detection accuracy [25]. According to the number of model channels
and convolution times, the YOLOv5 family can be divided into YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x, which are similar in structure but different in size. YOLOv5s,
with the smallest number of model channels and convolution times, belong to the lightest
class, which has a small amount of computation and thus is faster and more adaptable to
mobile terminal devices [2]. Firstly, YOLOv5s performs Mosaic data enhancement and
size scaling and other operations on the input images, i.e., four input photos are used to
be spliced by random scaling, random cropping, and random arranging, which not only
enriches the dataset to reduce the memory needs of the device, but also accelerates the
training speed; secondly, preprocessing the data by using Focus to reduce the amount of
computation and increase the speed, alternately using three Convolutional Block Layers
(CBL) and Cross Stage Partial networks (CSP) for feature extraction, deepening the network
and preventing model overfitting, this part is the core of the backbone network, fusing local
and global features by Spatial Pyramid Pooling (SPP) and inputting the extracted features
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in different stages into the neck network; then, in the neck network, the Feature Pyramid
Network(FPN) and the Path Aggregation Network (PAN) are utilized for enhanced feature
fusion and extraction, fusing the features extracted at different stages of the backbone and
those obtained from the detection network, to improve the robustness and generalization of
the detection; finally, the feature mAPs outputted from the Neck network are convolved and
predicted to derive the bounding boxes, categories and confidence levels of the detection
targets at different scales [26].

YOLOv5s algorithm weighs the detection accuracy and detection speed compared to
other algorithms, but the model parameters are more and cannot be embedded in mobile
device terminals. In order to make up for the shortcomings of the above research, we take
the YOLOv5s algorithm for improvement.

2. Algorithms Overview

In order to better adapt the model to the field of aero-engine blade crack detection,
this paper proposes a detection algorithm based on MobileNet3, YOLOv5, and GSConv
(hereinafter referred to as MobGSim-YOLO algorithm), the structure of which is shown in
Figure 2. The K-means++ algorithm is introduced instead of Kmeans, and the anchor frame
size is re-selected to improve the detection accuracy; the backbone network is replaced
with the lightweight module MobileNet3 to realize the initial extraction of the dataset
features. The neck part utilizes the lightweight convolution of GSConv instead of the
ordinary convolution, and the activation function is replaced with the Hard Sigmoid to
improve the multi-scale fusion and to enhance the small target feature extraction ability in
the engine interior dark light, complex structure, noise, and the blade cracks are usually
small, deep feature fusion is often not conducive to the extraction of small targets, so the
SimAM attention mechanism is introduced in the part of the feature fusion to make the
model pay more attention to small target features. Compared with the YOLOv5s algorithm,
the model proposed in this thesis is more innovative, almost updating the whole framework
and retaining only a few original modules, which substantially improves the detection
speed and compresses the model size under the premise of guaranteeing the detection
accuracy. Finally, the model MobGSim-YOLO used in this paper is proposed.
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Target detection can be divided into two stages: one is to determine the target location,
and the other is to identify the target category. For YOLOv5s, generating rectangular
candidate frames or Kmeans clustering, mainly randomly selected K samples as the initial
clustering center, cannot avoid the similarity problem of clustering, aiming frames to form
the positional error affects the model accuracy, and the K value is difficult to determine.
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Therefore, in this paper, the Kmeans++ algorithm is used to optimize the clustering center
selection so as to get the most suitable aiming frame. The steps are as follows:

(1) Randomly select a sample from the data distribution set as the initial clustering center,
as close to the edge as possible;

(2) Calculate the distance between each sample and the current clustering center and
select the minimum distance of D(x);

(3) Calculate the probability that the sample in (2) will be the next cluster center according
to the probability distribution formula P. The formula is given as follows:

P =
D(x)2

∑
x∈X

D(x)2 (1)

Repeat the above (2) and (3) until K clustering centers are selected and iterate using
the Kmeans++ algorithm to get the final result. As Table 1 shows the results of anchor
frame generation, the comparison shows that the anchor frames obtained by K-means
clustering have a deviation in the center and small size, while the center deviation obtained
by Kmeans++ clustering is small and the size is appropriate, and most of the cracks can be
included. w denotes the length of the anchor frame, and h denotes the width of the anchor
frame. Therefore, the K-means clustering algorithm is more reliable in target detection.

Table 1. Anchor Box Generation Results.

Algorithm Feel the Wild Size Anchor Frame Size (w, h)

K-means
Large (140, 98) (139, 161) (118, 205)

Medium (75, 36) (68, 71) (65, 96)
Small (9, 4) (12, 16) (11, 20)

Kmeans++
Large (166, 129) (157, 196) (144, 255)

Medium (102, 69) (87, 91) (80, 123)
Small (16, 11) (22, 34) (20, 52)

The backbone network is an important part of the deep learning model, which mainly
realizes the function of extracting features and learning them. The backbone network of
YOLOv5s utilizes the complex C3 network structure, which is not only slow to detect but
also has many parameters and large computations, which is demanding on the equipment,
and it cannot be used in the borehole probing equipment. Intelligent borehole probing
devices need to embed deep learning models into mobile device terminals with limited
device memory and performance, which undoubtedly puts high demands on the computa-
tion and memory of the models. Several factors need to be considered to choose a suitable
backbone network: image dataset characteristics and size, task-specific requirements, etc.
With comprehensive consideration, we choose the more advanced MobileNetv3 model as
the backbone network and improve it.

MobileNet network architecture is a lightweight neural network model proposed by
Google, which has now been updated to the fourth generation. It relies on lightweight
model design and is widely used in projects with limited hardware resources and arithmetic
power. Compared to other versions, MobileNetv3 is applied to this dataset with better
results, utilizing the inverted residual structure, depth separable convolution, SE attention
mechanism, and activation function h-swish [1].

The principle of traditional multi-channel convolution is shown in Figure 3, the size of
the input feature map is: Ci × Hi × Wi, the size of the convolution kernel is Ci × Dk × Dk,
and the number is Co. The original feature map is computed with each original convolution
kernel for channel convolution respectively, and all the results can be summed up to get
the output feature map, and the number of parameters is: S = DK × DK × C0 × Ci.
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Depth separable convolution can be understood as a tandem operation of channel-
by-channel convolution and point-by-point convolution and the working principle is
shown in Figure 4. The size of the input feature map is Ci × Hi × Wi, and each channel is
convolved channel by channel with a convolution to obtain the intermediate feature map.
The intermediate feature map is then convolved point by point with a convolution kernel,
and the result is summed up as the output feature 2, and the number of convolution kernels
point by point is equal to the number of channels of the output feature map. The number
of parameters is: P = DK × DK × Ci + 1 × 1 × Ci × C0.
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The ratio of the number of parameters for conventional multichannel convolution and
depth separable convolution is:

P
S
=

DK × DK + C0

DK × DK × C0
=

1
C0

+
1

DK × DK
(2)

It can be seen that the depth separable convolution can make the model simpler and
less parameterized, i.e., the depth separable convolution extracts deeper features with the
same parameters. Specific references can be found in the literature [27].

The depth separable convolutional parameters are less, which will cause the model to
lose a lot of key features; in order to ensure the accuracy of the model, MobileNet3 also
introduces the SE attention mechanism. The SE attention mechanism mainly starts from
the perspective of the channel to get the weights of different channels at different positions
of the feature map and to learn the channel features more accurately. First of all, the feature
map is globally average pooled and compressed into vectors, i.e., each channel can be
represented by a single number; then the weights of each channel are generated by two
fully connected layers; finally, the generated channel weights are used to assign values
to the original feature map to get the final required feature map, and the details can be
referred to the literature [28], and the schematic diagram is shown in Figure 5.
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A reverse residual network replaces the traditional ResNet [13] residual structure. The
reversed residual network first uses dot convolution to boost the number of channels of
the feature map, uses depth-separable convolution to extract features in high-dimensional
space, which reduces the parameters, and then uses dot convolution to reduce the number
of channels, and introduces a new activation function, ReLU6, and the formula can be
expressed as:

ReLU6(x) = min(max(0, x), 6) (3)

In addition to this, in order to ensure the nonlinearity, lightness, and accuracy of
the activation function, MobileNet3 also introduces the h-swish function, which can be
expressed as an equation:

h − swish(x) = x
ReLU6(x + 3)

6
(4)

Traditional activation function has a strong exponential nature, and the derivation is
complex and computationally intensive in the gradient calculation; whereas the h-swish
function is a combined form of linear ReLU activation functions with at most quadratic
terms, which is simple and smoother to compute, and reduces the computational cost
significantly.

The smart hole detector device should be integrated into the mobile device terminal;
the algorithm model size has high requirements, the ordinary convolution to extract features
is limited, and for more parameters, we use the GSConv lightweight convolution module
instead of the ordinary convolution and use the VOVGSCSPC module [29], i.e., slim-neck.
The slim-neck module was first proposed to be applied in the automatic driving system,
which not only requires high detection accuracy but also needs good real-time performance,
which is basically the same as the requirements of this paper’s smart hole detector. GSConv
is more effective in lightweight networks than other convolutional modules, which combine
the ideas of GhostNet and ShuffleNetv2 and apply deep separable convolution more
skillfully. The principle of GhostConv is to use a small number of ordinary convolutions
to compress the feature channels, which can reduce the amount of computation, and
then carry out the constant to get the Intrinsic feature and, at the same time, extract the
Ghost feature through the low-cost depth-separable convolution, and then finally splice
the two types of feature to get the final feature. GSConv principle uses a smaller ordinary
convolution to generate a series of basic features, and then a series of features are generated
using depth separable convolution. Then, the two groups of features share weights and
merge them, randomly mixing and washing the feature to enhance the generalization
ability, to ensure that the information circulates between different groups, and then finally
form the final convolutional results, it is obvious that GSConv has more outputs compared
to the ordinary convolution, but the cost of computation is still kept at a low level, and its
schematic diagram is shown in Figure 6.
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Figure 6. GSConv Schematic.

Two GSConv and one ordinary convolution are combined in parallel to generate the
GS bottleneck, the structure of which is shown in Figure 7. This module is then combined
with ordinary convolution to be the VOVGSCSPC module, which is obtained by ablation
experiments and one-time aggregation methods, and its structure is shown in Figure 8.
Research manuscripts reporting large datasets that are deposited in a publicly available
database should specify where the data have been deposited and provide the relevant
accession numbers. If the accession numbers have not yet been obtained at the time of
submission, please state that they will be provided during review. They must be provided
prior to publication. For details, please refer to the literature [29].
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The activation function for the shuffle blending operation in GSConv is a Sigmoid
function. The Sigmoid function and derivatives are schematically shown in Figure 9. It
can be seen that the two ends of the function are saturated regions, and the derivative of
the saturated region is close to 0, which will bring serious gradient vanishing problems.
When the network is deep enough, the gradient will gradually disappear, reducing the
convergence speed of the network. In addition, the Sigmoid function is an exponential-
type function, and the computational cost is too high. Although the slim-neck structure
improves a lot in performance, the limited number of aero-engine blade datasets is prone
to the risk of overfitting, for which this paper redesigns the slim-neck and optimizes the
structure again.

In this paper, Hard Sigmoid function is used to replace the original activation function,
and its core idea is to approximate the Sigmoid function by a segmented linear function
with the expression:

f (x) = min(max(x + 3), 0)/6
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A comparison of the Sigmoid function and Hard Sigmoid function is shown in
Figure 10. Compared with the original activation function, the Hard Sigmoid function has
a more stable gradient in the saturation region and is less prone to gradient vanishing. In
order to verify whether replacing this activation function helps to improve the performance
of the original model, ablation experiments are also done in this paper.
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In the dark and noisy interior of an aero-engine, theoretically, a deeper model can
learn a more complex feature representation, which is more conducive to distinguishing
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between noise and small targets, but at the same time, multiple down-sampling operations,
with the increase of the network depth, lead to an increase in the receptive field, and the
representation of the small targets on the feature will be better sparse or even lost. To
overcome this difficulty, we introduce the attention mechanism to emphasize important
regions. Learning the attention mechanism module is widely used in many computer
vision projects because it allows the model to focus on more important information and
ignore unimportant information. Aero-engine blade crack detection is different from
traditional target detection in that blade cracks tend to be long, diversified in shape, and
have inconspicuous features; secondly, the engine interior has low brightness, complex
structure, less visible area, and more background noise. In order to overcome the influence
of the above situations and considering the lightweight design, we adopt the SimAM
attention module, as shown in Figure 11, which will reasonably assign 3D weights to
the feature and increase the degree of target attention so that the model can compute the
local similarity between the target region and the neighboring regions, capture the texture
features of the image, and improve the recognition accuracy of the crack. Compared to the
current hot attention mechanisms, including ECA, CBAM, SE, etc., the biggest advantage
of SimAM is that it does not need to add parameters to the original network, and it is
a lightweight module while still maintaining considerable accuracy [11]. This attention
module mainly takes inspiration from human neurons and introduces an energy function
to assign weights; the larger the energy difference between a neuron and its surrounding
neurons, the more important and worthy of attention the neuron is. For details, please refer
to the literature [11].
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Figure 11. SimAM Schematic.

3. Experiments and Analysis of Results

The aero-engine blade crack intelligent detection process is shown in Figure 12. Firstly,
the aero-engine blade with cracks is manually screened, and the dataset is expanded
by cropping and rotating the images and divided into training, validation, and testing
sets; secondly, all the image sizes are modified to be 640 × 640 × 3, and the usable aero-
engine blade cracks dataset is obtained; the training parameters are set up, and the COCO
dataset [30] is utilized to perform deep learning model preprocessing, and get the initial
weights and biases; then adjust the training parameters, and use the obtained aero-engine
blade crack dataset for freeze training, and the model weights and biases are updated;
finally, validate and test the model.
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3.1. Data Set Production

The datasets explored in this study were derived exclusively from photographs cap-
tured by an aero-engine equipped with a borescope. Initially, aero-engine blade images
exhibiting cracks were meticulously filtered out, totaling approximately 200. These im-
ages were subsequently labeled with the identifier “crack” utilizing specialist labeling
software, ensuring accurate categorization, and the images are expanded, which are shown
in Figure 13. and randomly divided into training set, validation set, and test set according
to the ratio of 7:2:1, and the resolution of all the images is unified to be 640 × 640. A total of
3000 aero-engine blade images were obtained in the end. Crack images, the use of image
annotation software, labeling sequentially on all cracks in accordance with the VOC data
format, and finally, automatically recording the crack location and rectangular box size in a
notepad file.

3.2. Model Evaluation Indicators

In order to accurately measure the performance of the model, this paper selects
standard evaluation metrics for quantitative evaluation, such as Precision, Recall, mAP@0.5,
mAP@0.95, parameter, FLOPs and Frames Per Second (FPS). The binary confusion matrix
is widely used in evaluating target detection models, which simply means that the number
of model predictions and the number of true labels for each category are integrated into a
single matrix.

Precision is the ratio of the number of model-predicted positive samples that are also
positive to the number of all model-predicted positive samples, and Recall is the ratio of
the number of model-predicted positive samples that are also positive to the number of all
actual positive samples. The formula is as follows:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

where P denotes precision; R denotes Recall; TP denotes the number of samples predicted
to be positive and actually also positive; FP denotes the number of samples predicted to
be positive and actually negative; and FN denotes the number of samples predicted to be
negative and actually positive.
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Recall for the horizontal axis, Precision for the vertical coordinates of the curve called
P-R curve, the curve and the axis of the polygon around the city of the area known as the
AP, the average of the AP can be obtained by averaging the mAP.

The formula for mAP is:

mAP =
1
K

K

∑
i=1

APi (7)

K is the number of detection categories, which is 1 in this paper.
To better illustrate mAP@0.5 and mAP@0.95, the concept of IOU must be introduced

here, which measures the degree of overlap between the predicted bounding box and the
true bounding box, the intersection is the area where the predicted box and the true box
overlap, the concatenation is the sum of the areas of all the regions of the predicted box
and the true box, and the IOU is the ratio of the intersection and the concatenation. The
schematic diagram is shown in Figure 14. S1 denotes the area of the region where the
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prediction box and the real box overlap; S2 denotes the sum of all areas of the prediction
box and the real box. The formula for IOU is:

IOU =
S1

S2
(8)
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mAP@0.5 then denotes the average precision mean mAP of IOU ≥ 0.5. And mAP
@0.95 is stricter, denoting the average precision mean of IOU ≥ 0.95.

All of the above are measures of model detection accuracy; the smart hole detection
device also requires the model to be small enough and the detection speed to be fast
enough. Therefore, it is also necessary to introduce the model size (parameter), FLOPS,
and FPS. Parameters include weights, neuron paranoia, convolution kernel, all-connected
layer weights, anchor frame parameters, etc. FLOPS floating point operations per second
characterize the computational power; FPS can reflect the speed of the model testing and
inference, i.e., how many frames of images can be processed per second, which is extremely
important for real-time monitoring of the borehole detection equipment. This is extremely
important for real-time monitoring of equipment.

3.3. Ablation Experiment

In this paper, we use the Windows 10 operating system, the CPU is Intel(R)Core(TM)i5-
10200H, and the GPU is NVIDIA GeForce GTX 1650 Ti. YOLOv5s model is built based on
Pytorch deep learning framework using Python 3.6 programming language. The model
training parameters: epochs are 300, batch size is 2, image size is 640, initial learning rate is
0.01, momentum parameter is 0.937, weight decay coefficient is 0.0005, and SGD optimizer
is used to iterate the parameters.

3.4. Ablation Experiment

In order to prove the effectiveness of the proposed algorithm in this paper, we perform
ablation experiments on the same engine blade crack dataset and ensure that the training
strategy and hyperparameters are the same. The design of the ablation experiment is
as follows:

• Module A1: Introducing the K-means++ clustering algorithm;
• Module A2: Replace the backbone network with MobileNet3 for a lightweight design

for downsizing the model and reducing parameters;
• Module A3: Replace the neck part of the ordinary convolution as GSConv and add the

VOVGSCSPC module after it to form a slim-neck module, which enhances the depth
of the network and distinguishes between noise and valid features;

• Module A4: Slim-neck module after replacing activation function by hard Sigmoid;
• Module A5: Incorporating SimAM attention mechanisms to improve the learning of

small features.

The experimental results are shown in Tables 2–4:
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Table 2. YOLOv3, YOLOv4, and YOLOv7 test results comparison chart.

Precision Recall mAP@0.5 mAP@0.95 Parameter (MB) FLOPS FPS

Yolov3 0.71 0.57 0.64 0.334 28.76 16.8 60.5
Yolov4 0.72 0.579 0.655 0.346 27.64 16.5 61.8
Yolov7 0.821 0.697 0.758 0.424 25.45 15.2 65.7

Table 3. Comparison of test accuracy for ablation experiment 1. (
√

denotes the module in which the
model exists, All of the following.)

Yolov5s A1 A2 A3 A4 A5 Precision Recall mAP@0.5 mAP@0.95
√

0.72 0.61 0.67 0.352√ √
0.793 0.565 0.668 0.356√ √ √
0.811 0.708 0.769 0.414√ √ √ √
0.87 0.778 0.832 0.507√ √ √ √ √

0.892 0.808 0.848 0.518√ √ √ √ √
0.931 0.792 0.849 0.528

Table 4. Comparison of model size and test speed for ablation experiment 1.

Yolov5s A1 A2 A3 A4 A5 Parameter (MB) FLOPS FPS
√

26.75 15.8 72.4√ √
26.75 15.8 72.3√ √ √
13.5 6.2 99.1√ √ √ √

12.65 4.2 99√ √ √ √ √
12.65 4.2 100.3√ √ √ √ √
12.58 4.2 95.8

By analyzing the results of the experiment, the following conclusions can be drawn:

1. The introduction of K-means++ clustering frames made the generated anchor frames
more adapted to the present data, which significantly improved the test accuracy, and
the results were in line with the expected assumptions;

2. Replacing the backbone network with the lightweight module MobileNet3, the model
parameters are reduced by 49.54% compared to YOLOv5s, and the model accuracy
is also slightly improved, mainly due to the small number of parameters in depth
separable convolution compared to the ordinary convolution, the small number of
parameters in h-swish activation function compared to the exponential activation
function, the SE attention mechanism to improve the attention to the features, and the
inverted residual structure enhances the model expression ability, and the results are
in line with the expected assumptions;

3. Replacing the ordinary convolution in the neck with GSConv and adding the VOVGSC-
SPC module, i.e., slim-neck module, afterward, the results show that compared with
YOLOv5s, the parameters are reduced by 52.71%, and the accuracy is improved by
20.83%, which is significant due to the fact that the model learns deeper features after
the introduction of slim-neck, which enhances the feature fusion and improves the
target learning ability, which is in line with the expected conception;

4. Adding the SimAM attention mechanism to the head’s front-end, which does not
introduce any parametric quantities but improves the accuracy, can improve the
problem of deeper learning depth and ignoring small target features brought about
by GSConv, which is in line with the expected conception.

5. After replacing the activation function with GSConv, the results compared with
YOLOv5s, the parameters were reduced by 52.96%, and the accuracy was improved
by 29.31%, which was obvious and in line with the expected assumptions.

6. After the lightweight design, the FPS of all the models is greater than 95, which meets
the detection requirements of the hole detector.
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There are many popular lightweight backbone networks, such as PP-LCNet and
MobileNet series. In order to enhance the persuasiveness and visualize the results, this
paper also conducts a series of ablation experiments for backbone networks. The second
set of ablation experiments is designed as follows:

• Module A6: Replace the backbone network with PP-LC [31];
• Module A7: Replace the backbone network with MobileNetv4 [32].

The experimental results are shown in Tables 5 and 6:

Table 5. Comparison of test accuracy for ablation experiment 2.

Yolov5s A1 A2 A3 A4 A5 A6 A7 Precision Recall mAP@0.5 mAP@0.95
√ √ √ √ √

0.931 0.792 0.849 0.528√ √ √ √ √
0.813 0.705 0.775 0.425√ √ √ √ √
0.78 0.68 0.755 0.388

Table 6. Comparison of test accuracy for ablation experiment 2.

Yolov5s A1 A2 A3 A4 A5 A6 A7 Parameter (MB) FLOPS FPS
√ √ √ √ √

12.65 4.2 100.3√ √ √ √ √
12.39 4.3 99.5√ √ √ √ √
12.51 4.4 145.4

By analyzing the results of the second group of ablation experiments, the model that
replaces the backbone network for PP-LC and MobileNet4, although excellent in model
size and detection speed, the decline in test accuracy is more obvious and can’t meet
the accuracy requirements, so by analyzing the experimental data, we can get the best
performance of the backbone network for MobileNet3, which is in line with the application
scenario of this paper.

Through the above ablation experiments, it can be concluded that the model, after
improving on the YOLOv5s model by adding the K-means++ algorithm, replacing the
backbone network with the Mobilenetv3 lightweight module, replacing the neck portion
with the slim-neck structure, and incorporating the SimAM attention mechanism performs
the best when weighed against the test accuracy, speed, and model size. The training results
are shown in Figure 15. Analyzing the loss function curve shows that the total loss value
of the model decreases with the increase of training rounds, indicating that the model is
gradually learning and reducing the prediction error, which is in line with the expected
results. The model only detects one type of crack, so the classification damage is 0. Analyz-
ing the precision, recall, and map curves, it can be seen that with the increase of training
rounds, the performance index rises significantly and gradually reaches convergence after
300 rounds of training, and the training results are real and credible.

The test set is detected using the model MobGSim-YOLO algorithm proposed in
this paper, and some of the plots of the results are shown in Figure 16. The YOLOv5s
algorithm detection results are shown in Figure 17. The test set selected in this paper
is composed of photos of compressor blades and turbine blades, totaling 300, and only
7 turbine blade cracks and 5 compressor crack detection results are screened and displayed
for the convenience of comparison. It can be observed by comparison that the confidence
level of the MobGSim-YOLO model test results is significantly higher than that of the
YOLOv5s model, visually observing that the bounding box formed by the former is more
accurate, while the latter omits the boundary cracks with darker brightness and specific
angles and misjudges the boundaries of the occluded and darker parts as cracks. It is clear
that the MobGSim-YOLO model is superior in detection.
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4. Conclusions

In this paper, the MobGSim-YOLO model for hole detection is proposed for aero-
engine blade crack detection. In this paper, we first summarize the problems of the current
aero-engine intelligent hole detection, especially the lower detection accuracy, slower
detection speed, and the larger model that cannot be embedded into the mobile device
terminal. In order to improve the accuracy of YOLOv5s model, we utilize kmeans++ to
reasonably design the clustering frame to improve the accuracy of the detection location,
introduce and redesign the slim-neck module to improve the model depth and accuracy
while ensuring that the size of the model is not increased, which is effective; embed the
SimAM attention mechanism in the front-end of the head, to overcome the problem of small
target loss due to the excessive depth of the model. We also embed the SimAM attention
mechanism in the front of the head to overcome the problem of small target loss due to
the deep model. We also replaced the backbone network with a Mobilenetv3 module for
lightweight design. In this paper, a large number of ablation experiments are carried out on
the real aero-engine blade crack dataset to verify the feasibility and accuracy of the method,
and the result proves that the model can weigh the test accuracy and model size and fully
comply with the requirements of the intelligent borehole detection equipment, which is an
attempt to intelligent borehole detection of the aero-engine, and we hope that the model
proposed in this paper can bring certain thinking.
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