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Abstract: The rudder surfaces and lifting surfaces of a missile are utilized to acquire aerodynamic
forces and moments, adjust the missile’s attitude, and achieve precise strike missions. However, the
harsh flying conditions of missiles make the rudder surfaces and lifting surfaces susceptible to faults.
In practical scenarios, there is often a scarcity of fault data, and sometimes, it is even difficult to
obtain such data. Currently, data-driven fault detection and localization methods heavily rely on fault
data, posing challenges for their applicability. To address this issue, this paper proposes an HBOS
(Histogram-Based Outlier Score) online fault-detection method based on statistical distribution. This
method generates a fault-detection model by fitting the probability distribution of normal data and
incorporates an adaptive threshold to achieve real-time fault detection. Furthermore, this paper
abstracts the interrelationships between the missile’s flight states and the propagation mechanism
of faults into a hierarchical directed graph model. By utilizing bilateral adaptive thresholds, it
captures the first fault features of each sub-node and determines the fault propagation effectiveness
of each layer node based on the compatibility path principle, thus establishing a fault inference
and localization model. The results of semi-physical simulation experiments demonstrate that the
proposed algorithm is independent of fault data and exhibits high real-time performance. In multiple
sets of simulated tests with randomly parameterized deviations, the fault-detection accuracy exceeds
98% with a false-alarm rate of no more than 0.31%. The fault-localization algorithm achieves an
accuracy rate of no less than 97.91%.

Keywords: hierarchical signed directed graph; fault detection; fault localization; compatible path;
missile system

1. Introduction

Missile systems comprise several complex components, which collectively form a
sophisticated combat system through their coordination. These systems exhibit strong
characteristics of nonlinearity, non-stationarity, and strong coupling [1]. The lifting sur-
faces of missiles generate lift during flight, enabling their aerial navigation and attitude
maintenance. The rudder surfaces of missiles provide control moments to achieve rolling,
yawing, and pitching maneuvers, ensuring the missile’s ability to fly along its predeter-
mined trajectory. Both are crucial for the missile system [2]. However, missile missions are
subject to various uncertainties and disturbances from the atmospheric environment. Flight
conditions can be extremely harsh [3–5], and the missile system may also face potential
attacks from enemy anti-missile systems, making the lifting surfaces and rudder surfaces
susceptible to fatal faults. The lack of corresponding fault detection and localization analy-
ses renders it impossible to take effective measures after a failure, resulting in immeasurable
financial and strategic losses. Therefore, timely and accurate fault detection and localization
are crucial for ensuring missile safety. The purpose of fault diagnosis is to quickly and
accurately obtain information about system faults, providing guidance for fault-tolerant
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control. This enables fault-tolerant control to generate more appropriate and precise control
laws based on the specific faults, which is of great significance.

The primary objective of fault detection is to promptly identify abnormal conditions
within a system by continuously monitoring its measurable states in real time [6–8]. Mean-
while, fault-localization algorithms analyze the system’s status information to trace back
to the root cause of the fault, determining the specific component or location responsible
for the system’s abnormal behavior [9]. In other words, fault detection can determine
whether a system is faulty and when the fault occurs, while fault localization can pinpoint
the location of the faulty component. To ensure the overall algorithm’s speed and real-time
performance, it is customary to conduct system fault detection first. Subsequently, fault
localization is carried out upon fault detection to avoid additional time consumption from
executing fault-localization algorithms when the system is fault-free.

Currently, research methods for fault detection can be broadly categorized into two
types: those based on traditional model approaches and those based on deep learning. The
core idea of traditional model-based methods is to measure the system’s abnormality by
calculating the difference between normal data and the data under inspection using tradi-
tional models [10,11]. On the other hand, fault-detection algorithms based on deep learning
utilize neural networks to directly map fault features to system abnormality in a nonlinear
manner [12–18]. Traditional model-based fault-detection methods have advantages such
as low computational complexity, excellent real-time performance, relatively low data
requirements, and adaptability to sudden unknown faults. However, they struggle with
handling large-scale high-dimensional data and are sensitive to the initial parameters of the
model [7,19]. Fault-detection algorithms based on deep learning can achieve end-to-end
learning, reducing the need for manual intervention, and can effectively handle large-scale
high-dimensional data. However, they are highly dependent on data, have relatively long
computation times, and cannot handle sudden unknown fault issues. Therefore, it is neces-
sary to choose a suitable fault-detection algorithm based on the specific requirements of
the detection object and its operational needs.

Fault-localization research methods can be categorized into two forms: model-based [20]
and data-driven [21]. Model-based methods involve studying and analyzing the internal
fault mechanisms of models to infer fault localization. Their advantage lies in their lower
dependency on data, and models can better reflect the internal structure and characteris-
tics of systems. However, accurately modeling complex systems poses a challenge. For
instance, He Feng et al. [22] proposed a single-phase grounding fault-localization method
for distribution networks, which utilizes a network description matrix to depict network
topology, demonstrating its effectiveness in utilizing fault data for localization. Xu Yuxin
et al. [23] introduced a method for large steam generator stator grounding fault localization,
considering the distribution of winding potentials. They established equations for the
magnitude and phase of zero-sequence voltage based on fault characteristics and winding
potential distribution. Zhang Rongsheng et al. [24] presented a distributed power distribu-
tion network fault-localization method based on an improved bat algorithm, constructing a
topological model for fault localization in distribution network zones using the principle
of equivalent dual ports. On the other hand, data-driven methods do not require analy-
sis and modeling of the internal structure of systems, thus avoiding complex nonlinear
analysis and computation. Among these, deep learning-based methods are prominent,
wherein deep learning networks are utilized to construct mapping models from system
states to fault locations. For example, Zhang Zhuo et al. [25] conducted fault-localization
experiments using three representative deep learning architectures: convolutional neural
networks, recurrent neural networks, and multilayer perceptrons, concluding that convolu-
tional neural networks are the most effective method for fault localization in the studied
system architecture. M. Dashtdar et al. [26] employed artificial neural networks for fault
diagnosis in transmission networks, demonstrating that extracting the maximum scale
of horizontal components can reveal fault features suitable for training neural networks,
including fault type, angle, and position information. Simulation results showed that
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neural network-based fault-localization algorithms can estimate fault distance based on
fault type under different conditions effectively.

Methods based on deep learning require high requirements for the format and ac-
curacy of data [27,28], necessitating many data samples to obtain a network model. It is
challenging to analyze systems with insufficient data samples or data loss. Additionally,
deep learning networks are often considered black-box models, making it difficult to inter-
pret their decision-making processes [29]. Model-based fault-localization methods require
the establishment of a working model or reference model of the system. This typically
necessitates a deep understanding of the system’s structure and operation principles, and
the modeling process may be complex. However, its advantages lie in its ability to fully
utilize the internal structure and logical relationships of the system. It can provide relatively
accurate fault-localization results without requiring many data samples while also offering
good interpretability and adaptability.

This study considers the characteristics of missile objects and focuses on typical faults
in missile control surfaces and lifting surfaces. The research aims to investigate suitable fault
detection and fault-localization methods for these specific faults. The remainder of the study
is organized as follows. First, Section 2 of this paper presents the problem statement, which
includes Section 2.1, an introduction to the challenges and limitations of existing research
in missile fault detection and localization, and Section 2.2, an analysis of typical fault types
and mathematical models related to missile rudder surfaces and lifting surfaces. Section 2.3
provides an overview of the overall algorithm structure and discusses the contributions
of the proposed fault detection and localization approach in this paper. Section 3 presents
the principles and structure of the fault-detection algorithm, while Section 4 outlines the
principles and structure of the fault-localization algorithm. In Section 5, a simulation-based
verification and comparative experiment on a semi-physical missile platform is conducted
to evaluate the fault detection and fault-localization algorithms. Finally, Section 6 provides
a summary of the findings.

2. Problem Formulation and Overall Approach
2.1. Problem Formulation

Missiles, as critical strategic defense weapons, possess unique characteristics compared
to other objects. Considering the specific features of their actual flight scenarios, the
following requirements are posed for their fault detection and localization algorithms:

• Real-time responsiveness: Missiles have significant dynamic responses, causing
faults to quickly affect the stability of the system. Therefore, real-time monitoring of
the missile’s state data is essential, requiring algorithms to have excellent real-time
capabilities to provide monitoring results quickly.

• Uncertainty: Missiles encounter various uncertain factors during flight, including envi-
ronmental conditions, aerodynamic characteristics, mass inertia, sensor measurements,
wind speed, etc. Algorithms need to effectively handle uncertain data.

• Limited fault samples: It is challenging to collect many fault data samples under real-
world conditions, with most of the data representing normal missile flight. Therefore,
the dataset follows a long-tail distribution. Algorithms should not rely heavily on
large datasets and should be able to achieve accurate fault detection and localization
even in the presence of data imbalance.

• Interpretability: For specialized systems like missiles, which are crucial to national
defense and security, it is essential that fault detection and localization results are un-
derstandable and that the detection and localization processes are traceable. Therefore,
the corresponding fault detection and localization algorithms must possess a certain
level of interpretability.

Due to the nonlinear nature of missile models, coupled with uncertainties and noise
interference, it is challenging to establish accurate models. Existing model-based fault
detection and localization algorithms struggle to be applicable. Data-driven approaches
heavily rely on the quantity and quality of datasets, with current methods largely tailored
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to simulated environments. However, in practical scenarios, fault data are scarce or difficult
to obtain, with most data being non-faulty, leading to imbalanced dataset distributions.
Therefore, existing data-driven methods face challenges in direct application. Currently, no
research simultaneously addresses these points in fault detection and localization.

2.2. Typical Faults of Rudder Surfaces and Lifting Surfaces

Let the positive direction of the X-axis be along the missile body, pointing forward,
and the positive direction of the Y-axis be perpendicular and pointing upward. According
to the right-hand coordinate system, the positive direction of the Z-axis is horizontally
pointing to the right. The rudder is designated as follows: 1, 2, 3, and 4 correspond to
the right upper, left upper, left lower, and right lower positions, respectively. The sign
convention for the deflection angles is defined as follows: when looking forward from the
tail of the missile, a positive deflection angle is when the trailing edge of the control surface
is deflected upward.

δx, δy and δz represent the desired roll, pitch, and yaw commands generated by the
missile guidance controller. Their relationship with the four rudder surfaces is described
by the following equations:

δx = 1
4 (δ1 − δ2 − δ3 + δ4)

δy = 1
4 (δ1 − δ2 + δ3 − δ4)

δz =
1
4 (δ1 + δ2 + δ3 + δ4)

(1)

when a fault occurs in the missile’s rudder surfaces, the resulting aerodynamic forces and
moments may prevent the missile from responding to the desired commands generated by
the control law, leading to mission failure. The missile’s lifting surfaces primarily affect the
magnitude of lift. When a fault occurs in the lift surfaces, the missile may fail to generate
sufficient lift, which similarly impacts the missile’s ability to complete its mission.

Therefore, missile rudder surfaces and lifting surfaces are susceptible to faults due
to adverse flight conditions and potential attacks from enemy anti-missile systems. Such
faults can immediately affect the stability of the missile flight attitude, posing challenges
to the successful completion of designated missions. Typical faults include rudder stuck,
rudder loose, rudder damage, and lifting surface damage [30].

Rudder stuck fault refers to the motor shaft being stuck at a certain angle, preventing
the rudder surfaces from reaching the desired angle [31,32].

δa = δ
p
a p ∈ (−30◦, 30◦) (2)

where a represents the number of the fault surface, δ
p
a represents the rudder effect generated

when surface a is stuck at angle p, considering a maximum deflection angle of 30◦ for the
rudder surface.

Rudder loose fault refers to the loosening of the motor shaft and rudder surface shaft,
complete failure of the hinge torque, and the complete disappearance of the rudder effect
of the faulty rudder surface [33,34].

δa = 0 a = 1, 2, 3, 4 (3)

The structural damage in the rudder and lifting surfaces results in rudder damage faults
and lifting damage faults, leading to the loss of rudder effectiveness on the faulty surfaces.

δa = ηδ′a a = 1, 2, 3, 4 (4)

δL = ηδ′L L = left, right (5)

where η represents the degree of rudder surface deficiency. δ′a represents the rudder
effectiveness when rudder a has no deficiencies. δ′L represents the effectiveness of the
control surface when the left or right lifting surfaces have no deficiencies.
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The missile measures its current state through sensors and uses guidance control
algorithms to steer toward the desired trajectory. The states in the guidance control loop
generally include missile attitude, position, velocity, etc., and typically do not include
rudder surface information (such as rudder deflection angle, motor current, etc.). Therefore,
if only rudder surface information is used for fault detection and localization, disturbances
affecting the sensors collecting rudder surface information could lead to erroneous infor-
mation being provided, resulting in misdiagnosis by the fault detection and localization
algorithms. To avoid this scenario, an algorithm based on the missile’s flight state for fault
detection and localization is needed.

2.3. Overall Approach

Based on the aforementioned requirements, this paper adopts the Histogram-based
Outlier Score method for fault detection. The HBOS algorithm offers simplicity and
speed, meeting the real-time requirements of the algorithm. Additionally, HBOS employs a
dynamic histogram model that adapts according to the data distribution, making it effective
in handling uncertain and long-tailed data distributions [35]. The dynamic histograms
fitted by HBOS exhibit clear and visible histogram structures, ensuring the interpretability
of the fault-detection algorithm.

A fault-localization method for missile systems based on hierarchical directed graphs
and adaptive thresholds is proposed. The hierarchical directed graph reasoning model
operates at high speed and provides high real-time performance. The adaptive threshold is
established based on extreme value distribution theory and adjusts adaptively according to
the data distribution, demonstrating good adaptability to uncertain data. Moreover, the
hierarchical directed graph relies on the missile’s dynamic and kinematic models, offering
good interpretability. The overall process of the fault detection and localization algorithm
proposed in this paper is shown in Figure 1.
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The fault detection and localization algorithms proposed in this paper, based on flight
state data, exhibit good real-time performance, effectively handle uncertain data, and do
not rely heavily on a large number of data samples, thus meeting practical requirements.
The contributions of this article include the following points:
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• The missile’s flight dynamics and kinematic model are used to obtain the fault propa-
gation and mutual influence relationships between different missile flight states. These
relationships are cleverly expressed using a hierarchical directed graph model while
also leveraging relevant mechanisms to constrain the data.

• In fault detection and fault-localization algorithms, the utilization of adaptive thresh-
olds for data processing is considered. This approach not only leverages their adaptive
characteristics to adapt to the differences in missile flight state balancing under various
parameter deviations but also effectively distinguishes between noise and faults.

• The fault-detection model can be constructed using only normal data, while the fault-
localization model is built based on the fault propagation mechanisms and the mutual
influence relationships among flight states. Both fault detection and fault localization
achieve high accuracy and good real-time performance without relying on fault data.
They can adapt well to practical scenarios.

This article proposes fault detection and fault-localization algorithms specifically de-
signed for typical faults in missile control surfaces and lifting surfaces. By combining flight
state propagation mechanisms and data-driven approaches, the algorithms eliminate the
need for complex mechanistic models while utilizing a relatively concise parameter propa-
gation influence mechanism to constrain the data model. This removes the dependency
on fault data samples. The algorithms aim to provide timely alerts and accurately locate
faults once they occur, which is of great importance and significance in ensuring the safety
of missile flights.

3. Online Fault-Detection Algorithm
3.1. The Principle of HBOS Anomaly Detection

The HBOS anomaly detection algorithm first performs histogram probability density
modeling. This modeling method does not model the dependence between data features
but constructs histograms (i.e., binning) for each data dimension separately, making each
dimension independent of each other. Subsequently, the algorithm computes the relative
frequencies (bin heights) of data falling into bins for each dimension of the input data. The
relative frequency represents an estimate of the density of the data for that dimension, with
higher density resulting in lower anomaly scores for data points. If the input data for a
dimension is categorical, the relative frequency is obtained by calculating the frequency of
each input value.

The commonly used method for constructing histograms and computing relative
frequencies is the dynamic width histogram method. In the dynamic width histogram
method, the input data samples are first sorted, and a fixed number of N/k consecutive
values are placed into each bin, where N is the total number of instances (i.e., the number
of input data samples), and k is the number of bins. Therefore, the sum of the areas of all
bins in the histogram equals the number of instances N. By setting the area of each bin
equal, the width of the bin is determined by the first and last data values falling into that
bin, which, in turn, determines the height of the bin, yielding the relative frequency. After
establishing histograms for each dimension and determining the bin heights, normalization
is performed to ensure that the maximum bin height is 1, resulting in a normalized fitted
probability density model. Dynamic histograms can adaptively adjust the width and
number of bins based on the distribution of the data, which enhances their robustness and
generality when dealing with uncertain and long-tailed distributed data.

For each dimension of the fault-free data, construct the corresponding histogram to
estimate the probability density function of the normal sample data. The probability of the
detection data being normal can be calculated as follows:

P(p) = P1(p)P2(p) . . . Pi(p) . . . Pd(p) (6)
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where d is the total number of features of the detection data, Pi is the probability density
function of the nth dimension. Taking the logarithm of Equation (5) yields Equation (6).

log(P(p)) = ∑d
i log(Pi(p)) (7)

The larger the probability density, indicating a higher likelihood of the sample being
normal data, the smaller the anomaly score. Therefore, we take the negative of Equation (6)
to construct the anomaly score (i.e., HBOS) as shown in Equation (7):

HBOS(p) = − log(P(p)) = ∑d
i

1
log(Pi(p))

(8)

The HBOS value indicates the degree of anomaly for a given sample point. A higher
value represents a higher degree of anomaly. Additionally, the HBOS algorithm classifies
sample points based on their HBOS values using an anomaly threshold. A label of “0”
indicates that the sample point is in a normal state, while a label of “1” indicates that the
sample point is in an abnormal state.

3.2. Missile Online Fault Detection
3.2.1. Feature Selection

Due to the numerous flight states of missiles, extracting time-domain features for each
state as inputs to HBOS can result in information redundancy. This not only increases
the computational burden and affects the real-time performance of the algorithm but also
allows less influential features to impact fault detection, therefore reducing the accuracy of
the algorithm. Therefore, both flight states and time-domain indicators need to be filtered
or selected carefully to mitigate these issues. Combined with the missile object, its flight
status data is measured by sensors. Focus on typical faults of missile actuators: rudder
stuck, rudder loose, rudder damage, lifting surface damage.

As shown in Figure 2, the feature selection approach in this paper involves selecting the
missile flight states and time-domain indicators that are most affected by faults. The time-
domain indicators for each flight state are computed as features. By utilizing information
entropy, the feature with the maximum difference between the total entropy and the
conditional entropy corresponding to each feature is selected, as shown in Equation (8).
The selected features are the most advantageous for fault detection.
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Select the most prominent time-domain indicators representing faults from the flight
status data as multidimensional feature data.

The missile sensor can measure various states, including angle of attack, sideslip
angle, acceleration, and angular acceleration. Attitude angles, velocity, latitude, longitude,
altitude, etc., can be derived from the measured states. Attitude control serves as the
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inner loop control of the missile and is most significantly affected by faults. Therefore,
it is considered to utilize the time-domain feature information of the control inner loop
states for fault detection. The selected states include angle of attack, sideslip angle, pitch
angle, roll angle, yaw angle, X-axis angular velocity, Y-axis angular velocity, and Z-axis
angular velocity.

In the time-domain analysis technique, different traditional time-domain statistical
indicators (TDSIs) are used for signal analysis, which involves peak, peak-to-peak, mean,
root mean square, crest factor, skewness, kurtosis, clearance factor, shape factor [36] and
so on.

Considering that during fault-free stages, the missile flight state tends to be stable,
and faults typically manifest as spikes in the signal. Therefore, it is essential to choose time-
domain features sensitive to spike signals [37,38]. As a result, the selected time-domain
features include peak-to-peak, shape factor, peak, kurtosis, and crest factor.

Information entropy has extensive applications in information theory and probability
statistics [39], primarily for measuring the uncertainty or information content of random
variables. It is commonly used to assess the importance of features.

Suppose the sample set is denoted by D, consisting of N samples, each containing
K features. Let Xi represent the i-th feature of the sample, and y represent the label. The
mathematical expression for the entropy H(D) is [40]:

H(D) = −∑|y|
k=1

|yk|
N

log2
|yk|
N

(9)

Here, |yk| denotes the number of samples belonging to class yk, and |y| represents the
total number of classes. Then, compute the conditional entropy H(D|Xi) for feature Xi
over the sample set D:

H(D|Xi) = ∑|Xi |
j=1

∣∣Dj
∣∣

N
H(Dj) (10)

where |Xi| denotes the number of possible values for feature Xi,
∣∣Dj
∣∣ represents the number

of samples with the value X j
i for feature Xi, and H

(
Dj
)

is the entropy of the sample set

when feature Xi takes the value X j
i . Finally, calculate the information gain IG(Xi) for

feature Xi:
IG(Xi) = H(D)− H(D|Xi) (11)

By computing the information gain for all features, we can obtain the importance
ranking of each feature. For the selected eight flight states of the missile, time-domain
features are extracted for each state, resulting in a total of 40-dimensional features. The
aim is to select the most important features based on information entropy. The importance
ranking of the 40 features is shown in Figure 3.

Based on Figure 3, the importance of the top 8 features is significantly higher than
that of the other features, specifically Features 31, 30, 26, 28, 33, 27, 38, and 25. These
features are most susceptible to faults. Therefore, we select these eight features as inputs
for HBOS. These features correspond to the angle of attack—peak-to-peak, angle of attack—
shape factor, roll angle—peak-to-peak, pitch angle—peak value, pitch angle—kurtosis,
Y-axis angular velocity—kurtosis, Y-axis angular velocity—crest factor, and Y-axis angular
velocity—peak value.



Aerospace 2024, 11, 679 9 of 24

Aerospace 2024, 11, 679 9 of 24 
 

 

 
Figure 3. Chart of feature importance ranking. 

3.2.2. Drifting Peak Adaptive Threshold Based on Extreme Value Theory 
Due to the presence of uncertainties during normal missile flights, the same parame-

ters exhibit different curve characteristics in each flight, making it challenging to deter-
mine the state of nodes in the case of minor faults. Therefore, the adaptive threshold 
method is adopted to generate real-time thresholds for various real-time flight parameters 
under different fault types, ensuring accurate node state determination. This method ad-
justs thresholds in real time to maintain precision, operates at a fast speed, and exhibits 
strong robustness. Hence, the Drift Streaming Peaks-Over-Threshold (DSPOT) method 
[41,42] based on the Extreme Value Theory is utilized to handle the HBOS anomaly scores 
of missile online samples. 
1. Extreme Value Theory 

The objective of Extreme Value Theory (EVT) is to analyze and synthesize the occur-
rence patterns of extreme events based on historical data or events. The distribution rep-
resenting these extreme events is referred to as Extreme Value Distributions (EVDs), 
which can be mathematically expressed as: 𝐺ఊ: 𝑥 → exp ൬−(1 + 𝛾𝑥)ିభം൰ , 𝛾 ∈ 𝑅, 1 + 𝛾𝑥 > 0  (12)

where 𝛾 represents the extreme value index; its value depends on the initial distribution 
pattern. All commonly observed standard extreme value distributions adhere to the above 
equation. 
2. Peak-Over Threshold (POT) method 

The second theorem of EVT, also known as the Peak-Over Threshold (POT) method, 
is as follows: It holds if and only if 𝜎(𝑡) exists, satisfying: 𝐹ത௧(𝑥) = 𝑃(𝑋 − 𝑡 > 𝑥|𝑋 > 𝑡)௧→ఛ~(1 + ఊ௫ఙ(௧))ିభം  𝑥 ∈ 𝑅 𝑠. 𝑡. 1 + 𝛾𝑥 > 0  (13)

where 𝑋 represents the data points, and the part exceeding the threshold is denoted as 𝑋 − 𝑡. 𝑋 − 𝑡 follows a Generalized Pareto Distribution with shape parameter 𝛾 and scale 
parameter 𝜎, which need to be estimated. 
3. Maximum Likelihood Estimation 

Compared to traditional methods, such as the Method of Moments and the Probabil-
ity Weighted Moments [19], the Maximum Likelihood Estimation method [43] exhibits 
higher efficiency and robustness. The estimation forms for γ  and σ  are as follows: 

Figure 3. Chart of feature importance ranking.

3.2.2. Drifting Peak Adaptive Threshold Based on Extreme Value Theory

Due to the presence of uncertainties during normal missile flights, the same parameters
exhibit different curve characteristics in each flight, making it challenging to determine
the state of nodes in the case of minor faults. Therefore, the adaptive threshold method
is adopted to generate real-time thresholds for various real-time flight parameters under
different fault types, ensuring accurate node state determination. This method adjusts
thresholds in real time to maintain precision, operates at a fast speed, and exhibits strong
robustness. Hence, the Drift Streaming Peaks-Over-Threshold (DSPOT) method [41,42]
based on the Extreme Value Theory is utilized to handle the HBOS anomaly scores of
missile online samples.

1. Extreme Value Theory

The objective of Extreme Value Theory (EVT) is to analyze and synthesize the oc-
currence patterns of extreme events based on historical data or events. The distribution
representing these extreme events is referred to as Extreme Value Distributions (EVDs),
which can be mathematically expressed as:

Gγ : x → exp
(
−(1 + γx)−

1
γ

)
, γ ∈ R, 1 + γx > 0 (12)

where γ represents the extreme value index; its value depends on the initial distribution
pattern. All commonly observed standard extreme value distributions adhere to the
above equation.

2. Peak-Over Threshold (POT) method

The second theorem of EVT, also known as the Peak-Over Threshold (POT) method, is
as follows: It holds if and only if σ(t) exists, satisfying:

Ft(x)= P(X − t > x|X > t)t→τ ∼
(

1 +
γx

σ(t)

)− 1
γ

x ∈ R s.t. 1 + γx > 0 (13)

where X represents the data points, and the part exceeding the threshold is denoted as
X − t. X − t follows a Generalized Pareto Distribution with shape parameter γ and scale
parameter σ, which need to be estimated.



Aerospace 2024, 11, 679 10 of 24

3. Maximum Likelihood Estimation

Compared to traditional methods, such as the Method of Moments and the Probability
Weighted Moments [19], the Maximum Likelihood Estimation method [43] exhibits higher
efficiency and robustness. The estimation forms for γ and σ are as follows:

logλ(γ, σ) = −Ntlogσ − (1 +
1
γ
)∑Nt

i=1 log
(

1 +
γ

σ
Yi

)
(14)

where Yi = Xi − t, Yi > 0 denotes the exceedance of Xi over the threshold and Nt is the
number of exceedances of the threshold. To address this numerical optimization problem,
Grimshaw’s trick is employed to transform the two variables in the equation into a single-
variable problem. Let ζ(γ, σ) = logL(γ, σ), if ζ has a maximum, then the solution for the
system ∇ζ(γ, σ) = 0 exists, denoted as (γ∗, σ∗) At this point, x∗ = γ∗/σ∗ is the solution to
the scalar equation u(x)v(x) = 1, which is expressed as:

u(x) =
1

Nt
∑Nt

i=1
1

1 + xYi
, v(x) = 1 +

1
Nt

∑Nt
i=1 log(1 + xYi) (15)

From the above equation, γ* = v
(
x*)− 1, σ* = γ*/x* can be solved. The adaptive

threshold th based on Maximum Likelihood Estimation is given as follows:

th = t +
σ∗

γ∗

((
qn
Nt

)−γ∗

− 1

)
(16)

where q is the risk coefficient and n is the number of data inputs. Based on the above
equation, the adaptive threshold th, for subsequent input node parameter sequence points
Xi, if Xi > th, it is considered that the point is in an abnormal state. If Yi = Xi − t,
then the exceeding part is updated in the algorithm by computing the updated γ∗, σ∗,
and the threshold th. The name of this thresholding method is Streaming Peaks-Over-
Threshold (SPOT).

4. Drift Distribution for Streaming Data Anomalies

However, when the missile system malfunctions, the distribution of the original flight
state data changes. Therefore, the precision of the Pareto distribution parameters obtained
using Maximum Likelihood Estimation will significantly decrease, leading to an inability
to describe the extreme value distribution of the faulty data. To address this issue, the
DSPOT method is introduced to complement the shortcomings of SPOT. Unlike SPOT,
which models absolute value data, DSPOT models relative value data. DSPOT assumes
that the local relative changes in the data generally follow the same distribution, allowing
it to more sensitively detect abnormal changes in the data after a fault occurs, i.e., at time i,
the input data changes from Xi to Xi − Mi where Mi is the average of the data selected in
the sliding window, Mi = ∑d

k=1 Xi−k/d,d is the window length, and Xi−1, . . . , Xi−d is the
last d normal data points.

Based on the Drift Streaming Peaks-Over-Threshold principle, the algorithm takes as
input a sequence of anomalous values to be detected and calculates the size of the adaptive
threshold in real time. At a given moment, if the anomaly output from HBOS exceeds
the adaptive threshold, it is determined that a system fault has occurred, and the current
timestamp is recorded.

3.2.3. Overall Flow of the Detection Algorithm

The online fault-detection algorithm based on the HBOS method constructs a his-
togram probability density model by collecting online feature value data under normal
operating conditions. The real-time multidimensional data to be detected is input into the
histogram probability density model to obtain anomaly scores. Combined with the current
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anomaly scores and adaptive threshold, the real-time fault-detection structure is obtained.
The detection algorithm process is shown in Figure 4.
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4. Fault-Localization Algorithm Based on Symbolic Directed Graphs

Fault localization follows fault detection closely, requiring accuracy and real-time
performance. This paper adopts a hierarchical approach to establish a hierarchical directed
graph for fault-localization inference algorithms. Real-time monitoring of node parameters
is conducted, and the first fault state of each node is obtained through adaptive thresholds,
determining the effectiveness of fault propagation for each layer of nodes. Finally, a fault-
localization inference algorithm based on the principle of compatible paths is proposed.

4.1. Hierarchical Symbolic Directed Graph
4.1.1. Symbolic Directed Graph

The symbolic directed graph (SDG) is a type of directed graph model used to represent
and analyze the dynamic behavior of systems in a qualitative graphical manner. It is
typically employed to describe target objects and reveal the interrelationships among the
internal components of these objects. The SDG model offers convenience in modeling,
provides a visual representation, and enables qualitative reasoning analysis without the
need for precise mathematical models [44].

The symbolic directed graph is represented as G = (V, E), where V = (v1, v2, . . . , vn)
represents the set of nodes; the status symbol of a node is ψ = (i), i ∈ {+, 0,−}, where “+ ”
indicates the node exceeding the normal level, “0” represents the node at the normal level,
and “ − ” indicates the node below the normal level; E = (e1, e2, . . . , ek) represents the set
of directed edges where ek =

(
vi, vj

)
indicates the directed edge from node vi to node vj,

and the symbols of directed edges φ = (ek) ∈ {+,−}, where “ + ” denotes positive action
and “− ” denotes negative action. Generally, dashed lines represent negative actions, while
solid lines represent positive actions.

4.1.2. The Hierarchical Approach Based on Warshall

The symbolic directed graph contains information about several nodes, representing
only the simplest connectivity between them. It is difficult to reflect the specific location of
each node within the system and its interaction with the overall system from individual
nodes. In short, the symbolic directed graph contains limited information that is insufficient
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to provide comprehensive details for the effectiveness of fault propagation and cannot
ensure the efficiency of fault-localization reasoning logic [45].

By employing a hierarchical strategy algorithm to process nodes in the symbolic
directed graph, nodes are divided into several layers, making the overall system structure
clearer and indirectly improving the efficiency of fault-localization reasoning. In this
hierarchy, the first layer consists of source nodes, typically representing the nodes where
faults originate. The higher the level of a node in the hierarchical directed graph, the less
it is affected by the source nodes and the later it is affected. The steps of the hierarchical
strategy are as follows:

• The adjacency matrix of the directed graph obtained based on the symbol-directed
graph model is represented by the following formula.

Aij =

{
1, If there is an edge from vertex i to vertex j

0, Otherwise
(17)

• Based on the reachable matrix Aij, the Warshall algorithm is utilized to compute the
reachability matrix of the directed graph, which is defined as follows:

Rij =

{
1, There exists a path from node i to node j
0, There is no path from node i to node j

(18)

• Based on the reachable matrix Rij, determine whether the directed graph satisfies
the hierarchical conditions, i.e., whether there exists a permutation matrix T such
that TT AT is a block triangular matrix. If the hierarchical conditions are satisfied,
based on the intersection of the reachable set and the antecedent set, the node can
be categorized as a first-layer node. By traversing and computing all nodes, the set
of first-layer nodes is obtained. After removing the nodes categorized as first-layer
nodes, repeat the process iteratively until the directed graph is completely layered.
The reachable set is defined as the set of nodes corresponding to the elements with a
value of 1 in the i-th row of the reachable matrix. The antecedent set is defined as the
set of nodes corresponding to the elements with a value of 1 in the j-th column of the
reachable matrix.

4.2. Bilateral Drift Streaming Peaks-Over-Threshold

Symbolic directed graph nodes can abstractly represent subcomponents in an object
system or parameters within a system. As indicated, the states of these nodes can be
categorized as “+1”, “−1”, or “0” [46,47]. These three states are determined based on a
comparison between the current state of the node and the historical normal operational
states. In other words, leveraging historical prior knowledge, the current state of the node
is assessed to be either within normal operational bounds, beyond normal bounds or below
normal bounds. Consequently, corresponding upper and lower threshold values need to
be set, enabling online anomaly detection for node parameters.

The threshold generation principle of the Bilateral Drift Streaming Peaks-Over-Threshold
method is similar to that of the DSPOT method. The upper threshold is derived from the
extreme value distribution of the data through Maximum Likelihood Estimation, while the
lower threshold is derived from the distribution of the minimum values in the data through
Maximum Likelihood Estimation. If a node parameter’s input sequence point is above
or below the respective threshold, it is deemed as an outlier point, denoted as an upper
outlier point X f u

i or lower outlier point X f d
i accordingly. Let the time of fault occurrence

be t f , and t be a time point after the fault occurrence. During the time interval t − t f , if
the node parameter does not exist or falls within the normal range, it is considered that
the node is not affected by the fault at time t, and the node’s state at time t is considered
to be “0”. Conversely, if the node parameter exists and is an outlier point during the time
interval t − t f , it is considered that the node is affected by the fault at time t. Moreover, if
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the number of upper outlier points X f u
i exceeds the number of lower outlier points X f d

i
within this time interval:

A =
{

X f u
i

}
, B =

{
X f d

i

}
, card A > card B (19)

it is considered that the node’s state at time t is “1”; otherwise, it is considered to be “−1”.

4.3. Propagation Effectiveness and Fault Inference Localization Strategy

In an SDG model, if ψ(vi) ̸= 0, it indicates that node vi has been affected by a fault,
making it an effective node; otherwise, it is an ineffective node [44]. The principle of
compatible pathways can be utilized to assess propagation effectiveness. The fundamental
logic for determining propagation effectiveness is to assess whether there exist effective
propagation parent nodes within the set of nodes beyond the second layer in a hierarchical
directed graph.

The principle of compatible pathways can be utilized to assess propagation effec-
tiveness. The fundamental logic for determining propagation effectiveness is to evaluate
whether there exist effective propagation parent nodes within the set of nodes beyond the
second layer in a hierarchical directed graph. Let node i belong to the set of nodes beyond
the second layer. If its initial fault state is ψi, and if there exists a connected parent node j
with an initial fault state ψj, where the connection line state between the parent and child
nodes is φij, then:

ψi ∗ φij ∗ ψj = 1 (20)

Satisfying Equation (14) indicates that the child node i is an effective node, and the
node j is an effective propagation parent node of the child node i. The connection branch
between the parent and child nodes is a compatible branch, indicating that the fault
propagates to the child node through this branch.

Once propagation effectiveness is ensured, the basic logic for tracing and locating
faults involves inferring the fault location based on the initial fault states of the second-layer
node set. When there are multiple connection pathways between the second-layer nodes
and the first-layer fault source nodes, and the states of these connection pathways can be
either −1 or 1, some of these pathways may become compatible pathways for propagating
faults when faults occur in the first-layer nodes. Based on the initial fault states of the
second-layer nodes, if there exists a change in the first-layer nodes such that all pathways
pointing towards the second-layer nodes become compatible pathways, then the node in
question is considered a fault source node.

K =
{

ψi
1

∣∣ψi
1 represents the states of all nodes in the first layer

}
F =

{
ψi

2

∣∣ψi
2 represents the states of all nodes in the sec ond layer

}
U =

{
i
∣∣∣ψi

1 ∈ K, ∀ψ
j
2 ∈ F, ψi ∗ φij ∗ ψj = 1

} (21)

where U represents the final set of located fault source nodes.

5. Experiment and Verification
5.1. Missile Flight Semi-Physical Simulation Platform

This paper focuses on the analysis of control surface and lifting surface faults of missile
systems during cruising, considering the influence of stochastic environments and errors
inherent to the aircraft. A semi-physical real-time simulation platform for missile flight, as
shown in Figure 5, is developed. The platform consists of three main components:

• Real-time simulation computer: Deployed to simulate missile aerodynamic parame-
ters, dynamic kinematics, navigation, guidance control algorithms, and injection of
lifting surface faults.

• Three-degree-of-freedom platform: Used to respond to the real-time simulation com-
puter’s output of missile flight attitude. Simultaneously, it utilizes onboard inertial
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sensors to collect attitude information and transmit it back to the simulation engine,
forming a closed-loop control.

• Servo loading platform: Responds to the simulation engine’s output of servo deflection
angle information. Simultaneously, it transmits the encoder-collected servo surface
angle back to the simulation computer. Additionally, this platform is equipped with
clutches and load-loading platforms to simulate typical faults in control surfaces.
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By engaging and disengaging the clutch, the connection between the motor shaft and
the rudder surface shaft is simulated. The torque generated by the torque motor is used to
simulate normal aerodynamic drag of the rudder surface as well as a stuck fault. The digital
simulation of rudder surface damage and lifting surface damage is performed within the
real-time simulation system.

Set the aerodynamic parameter random deviation to ±10% and mass and moment
of inertia random deviation to ±5%. By introducing random perturbations to the missile
parameters, the flight states after each trim process are intentionally offset, simulating the
uncertainties in missile flight. This random offset in the flight state captures the inherent
unpredictability and variability in actual missile flight conditions. Initial attitude angles
are all set to 0◦, cruise speed is set to 240 m/s, cruise altitude is set to 1 km, and random
wind speed is set to ±5 m/s. Since the rudder loose fault corresponds to the complete loss
of rudder effect, the rudder loose fault does not exist as the fault scope. Experimentally set
the fault types and occurrence times as shown in Table 1:

Table 1. Fault Information Settings.

Fault Type Fault Time (s) Fault Scope

Rudder Stuck 70 [−30◦, 30◦]
Rudder Damage 70 [5%, 100%]

Rudder Loose 70 ----
Lifting Surface Damage 70 [5%, 100%]

5.2. Evaluation Metrics

Fault-detection metrics mainly include fault-detection rate (FDR), detection accuracy,
detection time, and false-alarm rate (FAR). TP (true positive) represents the number of
positive samples that are correctly detected as positive. FP (false positive) represents the
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number of negative samples that are incorrectly detected as positive. FN (false negative)
represents the number of positive samples that are incorrectly detected as negative. TN
(true negative) represents the number of negative samples that are correctly detected as
negative [48].

Fault-Detection Rate reflects the sensitivity of the model and its ability to detect fault
samples. A value closer to 1 indicates higher accuracy and stronger detection capability of
the model. Correctly detected samples are defined as samples successfully detecting faults
within 0.5 s after the fault occurrence. Otherwise, they are considered undetected faults,
classified as missed samples. Detection time Td reflects the speed of the model in detecting
faults. T represents the moment when the fault is detected compared to the actual time of
fault occurrence t f . A smaller value indicates faster detection speed and better real-time
performance of the model. False-Alarm Rate FAR reflects the proportion of incorrectly
detected faults by the model. A value closer to 0 indicates better detection performance of
the model.

Fault localization mainly focuses on localization accuracy and localization time. Their
calculation formulas are shown in Equation (13):

P = Number of correct locations
Total number of test samples ∗ 100%

Tl =
∼
T − t f − Td

(22)

The accuracy P reflects the effectiveness of the localization algorithm, which is actually
related to the total number of experiments. The closer the accuracy is to 100%, the better the
performance of the localization algorithm. Localization time Tl is defined as the difference

between the time
∼
T when the fault is located and the time t f when the fault occurred,

minus the time consumed for fault detection. A smaller value indicates better real-time
performance of the localization algorithm.

5.3. Fault-Detection Algorithm Validation

Based on the missile semi-physical simulation platform, the online fault-detection
algorithm was tested, and multiple experiments were conducted for each type of fault. Eight
features were selected as detection inputs, which best represent the fault characteristics.
Using fault-free flight data samples, histogram fitting was performed for each feature
dimension, as shown in Figure 6. The number of bins was set to 10. The features in the
figure represent the eight time-domain features mentioned in Section 3 of this paper’s
Feature Selection chapter.
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Based on Equation (15). The risk coefficient q for our thresholds is set to 10−3, and
the length of the time-window d is set to 11. Based on the fitted histogram models and
adaptive thresholds, real-time fault-detection results can be obtained. The detection results
for some fault scenarios are depicted in Figure 7.
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It can be seen from the figure that the HBOS value does not exceed the threshold when
no fault occurs (the time is less than 70 s), and the HBOS value quickly exceeds the adaptive
threshold when the fault occurs.

To validate the performance of the algorithm, a large number of test samples are
used to test the accuracy, false positive rate, detection time, and other metrics of the fault-
detection algorithm. These test samples consist of data from the missile semi-physical
simulation platform, including physical parameters and deviation information, to sim-
ulate the uncertainties present in real missile flights. The detection results statistics are
summarized in Table 2.

Table 2. Statistical results of fault-detection effect.

Fault Type Total Samples Average
Detection Rate

Average False
Negative Rate

Average
Detection Time

Rudder Stuck 400 groups 99.4% 0.23% 0.07 s
Rudder Loose 320 groups 98.9% 0.17% 0.11 s

Rudder Damage 240 groups 99.2% 0.31% 0.08 s
Lifting Surface

Damage 160 groups 99.7% 0.21% 0.06 s

In the four types of fault scenarios, the online fault-detection algorithm demonstrates
excellent performance with a relatively short average detection time and a high fault-
detection rate. In many simulation experiments, there were only a few cases of false
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negatives and false positives. False negatives occurred when significant fault characteristic
values were unable to capture the subtle changes caused by minor faults, especially when
the fault changes almost do not affect the normal flight of the missile, making it challenging
for the algorithm to detect. False positives, on the other hand, happened due to fluctuations
exceeding detection thresholds in some parameters affected by random conditions before
the fault occurred or due to outliers in some flight parameters, leading to misjudgments by
the detection algorithm.

To further validate the superiority of the algorithm, appropriate comparative experi-
ments are set up using the same data samples. The comparison includes anomaly detection
algorithms such as HBOS, KNN, LOF, and CBLOF [49]. A variable, denoted as k, represents
the number of bins for the dynamic histogram in HBOS and the number of neighbors in
the other algorithms. The Area Under the Curve (AUC) values [50] for each algorithm are
then calculated and depicted in Figure 8.
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To better demonstrate the results of the comparative experiments, the AUC values of
each algorithm will be presented in the format of Table 3, with data points taken at intervals
of k = 15 from the graph.

Table 3. Comparison of AUC values of the four algorithms.

Algorithms k = 15 k = 30 k = 45 k = 60 k = 75 k = 90

HBOS (AUC) 0.99744 0.99835 0.99770 0.99830 0.99808 0.99996
KNN (AUC) 0.99000 0.99000 0.99000 0.99000 0.98750 0.98750
LOF (AUC) 0.81887 0.89337 0.93930 0.93662 0.93662 0.93126

CBLOF (AUC) 0.97929 0.70004 0.93759 0.95030 0.95720 0.95848

From the comparative experiments, it can be observed that due to the influence
of uncertainty factors in the data, conventional anomaly detection algorithms struggle
to maintain satisfactory classification performance. However, the proposed detection
algorithm based on HBOS and adaptive thresholds leverages the advantages of HBOS
in handling long-tail distribution data and uncertainty data. Additionally, the adaptive
thresholding capability for real-time adjustment of data distribution helps maintain high
classification performance in uncertain data.

To ensure the real-time performance of the algorithm, the computation time of each
algorithm is recorded and depicted in Figure 9.

Experimental results reveal that on the same computational platform processing
identical data, the HBOS algorithm exhibits the shortest computation time, thus ensuring
the highest real-time performance among other algorithms. This fulfills the real-time
requirements for missile flight scenarios.
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5.4. Fault-Localization Algorithm Validation

According to the overall topology and component composition of the aircraft, com-
bined with the collection of fault types in flight information, the selected main components
and their corresponding flight parameters are shown in Table 4.

Table 4. Node Names and Symbols.

Node Name Symbol Node Name Symbol

1 Angle Of Attack α 11 Pitch Angle θ
2 Sideslip Angle β 12 Yaw Angle ϕ
3 X-axis Acceleration Ax 13 Rudder 1 D1
4 Y-axis Acceleration Ay 14 Rudder 2 D2
5 Z-axis Acceleration Az 15 Rudder 3 D3
6 X-axis Angular Velocity p 16 Rudder 4 D4
7 Y-axis Angular Velocity q 17 Flight Altitude H
8 Z-axis Angular Velocity r 18 Thrust Command TC
9 Velocity V 19 Left Lifting Surface SL

10 Roll Angle γ 20 Right Lifting Surface SR

According to all the indicated flight parameters, abstract them into directed graph
nodes; based on empirical knowledge and principles of aircraft kinematics and dynamics,
determine the connections and influence relationships between each node to obtain the
symbolic directed graph model of the aircraft, as shown in Figure 10.
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As well as solid and dashed lines representing increase and decrease actions, respec-
tively, there exists a special type of green dash-dot line. Its significance lies in that regardless
of any changes in the parent node, it will always exert an increase effect on the child node.

Based on this model, we establish an adjacency matrix and conduct layering deter-
mination, meaning there exists a permutation matrix T, such that TT AT becomes a block
triangular matrix. After determining the layering of this directed graph, we utilize the
Warshall algorithm to compute the reachability matrix. Following the layering strategy, the
directed graph is partitioned into six layers, as shown in Figure 11.
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Using the aircraft simulation platform, experiments on online fault-localization al-
gorithms were conducted, with multiple trials for each fault type. The same number of
simulated fault groups as in fault detection were maintained. The final results are shown in
Table 5.

Table 5. Simulation results of fault-localization algorithms.

Fault Type Total Samples Fault-Localization
Accuracy

Average Fault-
Localization Time

Rudder Stuck 400 groups 98.50% 0.324 s
Rudder Loose 320 groups 98.12% 0.319 s

Rudder Damage 240 groups 97.91% 0.321 s
Lifting Surface Damage 160 groups 98.75% 0.318 s

In a large number of simulation experiment samples, a few cases of localization
failure occurred, which can be classified into cases of propagation ineffectiveness and
mislocalization. The propagation ineffectiveness error cases are mainly due to certain
deviations in the node parameter data and the failure to capture the first fault characteristic
state of the corresponding parameter within the length of 0.3 s of collected data, while the
mislocalization cases are mainly caused by occasional effects of random conditions and
deviations, resulting in erroneous judgments of the first fault characteristic state of some
nodes by the adaptive threshold, leading to final fault-localization errors. In summary,
despite the existence of a few cases of localization failure, the localization accuracy of the
aforementioned simulation experiments remains at an excellent level.

Taking the example of the fault of the second rudder stuck at −14◦, after detecting
the fault, the real-time fault-localization algorithm was run. The missile flight status data
(taking the angle of attack, sideslip angle, Y-axis acceleration, and roll angle as examples)
and adaptive thresholds after the fault are shown in Figure 12.
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The state of the node is obtained by marking with red circles and arrows whether the
flight state exceeds the upper or lower bounds of the threshold. When the flight status
exceeds the upper threshold, the first fault characteristic state of the node is “1”; when it
falls below the lower threshold, the node state is “−1”. If it does not exceed the threshold,
the node state is “0”. The first fault characteristic state of all nodes was obtained, as shown
in Table 6.

Table 6. Stuck fault Node status in a flight condition.

ID 1 2 3 4 5 6 7
NodeSymbol p q r γ θ ϕ α
Node Status 1 −1 1 1 −1 1 −1

ID 8 9 10 11 12 13
NodeSymbol β Ax Ay Az V H
Node Status −1 1 1 1 0 0

At this point, the fault’s influence has not propagated to the sixth layer yet, and neither
the speed nor the altitude exceeds the adaptive threshold. Therefore, the state of the nodes
is “0”. Thus, it is only necessary to validate the propagation validity of the nodes from the
second layer to the fifth layer. Based on Equation (14), it is determined that the data satisfies
propagation validity, where effective fault sub-nodes located at or above the second layer
all have effective propagation parent nodes.

According to the second-layer effective fault nodes and the localization strategy, the
final localization result D2 is output. When the first fault feature state of D2 is “−1”, it can
become an effective propagation parent node for all nodes in the second layer, indicating
correct localization with a localization time Tl of 0.315 s.

In some localization cases, there are situations where the localization result contains
two nodes in the fault source set. In such cases, precise localization can be achieved
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based on the deflection status of the rudder nodes in the localization result. The specific
verification results are shown in Table 7.

Table 7. Locating the fault source multi-node scenario.

Fault Type Number of
Experiments Localization Result Rudder Inferred

State Rudder Actual State

Stuck third rudder 20 D3/SL 1 1
Stuck fourth rudder 20 D4/SR −1 −1

Left lifting surface damaged 20 D3/SL 1 −1
Right lifting surface damaged 20 D4/SR 1 −1

Based on Table 6, it can be inferred that when there are multiple fault source nodes
in the preliminary localization results, if the corresponding rudder deflection states can
uniquely locate the fault source node, then when the inferred rudder state matches the
actual rudder deflection state, it indicates a rudder fault; when the inferred rudder state is
opposite to the actual rudder deflection state, it indicates the exclusion of a rudder fault and
implies a lifting surface fault. In the aforementioned simulation experiments, the accuracy
of this method reached over 97%, demonstrating the precision of online fault localization
based on this approach.

6. Conclusions

This paper proposes fault detection and fault-localization methods specifically de-
signed for typical faults in missile rudder surfaces and lifting surfaces. We analyze the
unique characteristics of the research object and identify the limitations of existing fault
detection and localization methods when applied to the research object in this paper.

For fault detection, we propose a fault-detection algorithm based on HBOS and adap-
tive thresholding. After optimal feature selection, the algorithm fits a dynamic histogram
model to normal data features. The algorithm then identifies outliers from the input
data based on whether their values exceed the adaptive threshold, which indicates the
occurrence of a system fault.

To address the fault-localization problem, we propose a hierarchical symbolic directed
graph model that captures the interdependencies among missile flight states and fault
propagation mechanisms. Using bilateral adaptive thresholding, we determine the states
of each node and infer the location of the fault by reasoning upward through the layers
of nodes.

The proposed algorithms effectively address the fault detection and fault-localization
issues related to control surfaces and lift surfaces in practical missile scenarios. Through
testing on a semi-physical platform, the following conclusions are drawn:

1. For the fault-detection algorithm, multiple sets of rudder surface and lifting surface
data with typical faults are collected under random perturbations of aerodynamic
parameters, mass, and moment of inertia. The average accuracy of the proposed
fault-detection algorithm is no less than 98.9%, with an average false-alarm rate of
no more than 0.31% and an average detection time of no more than 0.11 s. When
comparing the AUC values and computation time of the proposed fault-detection
algorithm with typical anomaly detection algorithms, the proposed algorithm shows
the highest accuracy and the shortest computation time, making it better suited for
missile fault-detection scenarios.

2. For the fault-localization algorithm, multiple sets of rudder surface and lifting surface
data with typical faults are collected under random perturbations of aerodynamic
parameters, mass, and moment of inertia. In a few specific node state scenarios,
there may be two possible fault locations during the upward reasoning process of
the constructed layered directed graph. However, combining the actual position
of the control surface enables accurate fault localization without compromising the
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localization accuracy. Therefore, the fault-localization algorithm achieves an accuracy
of no less than 97.91% and an average localization time of no more than 0.324 s.

The work in this paper can be applied to the analysis of other complex aircraft fault
types, suitable for scenarios with few fault data samples and complex flight environments.
It contributes to simplifying the research on fault detection and localization algorithms for
complex systems, providing a foundation and support for system health management and
fault diagnosis.
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