Shock-Dominated Flow
Acknowledgments
Conflicts of Interest
References
- Küchemann, D. Hypersonic aircraft and their aerodynamic problems. Prog. Aerosp. Sci. 1965, 6, 271–353. [Google Scholar]
- Van Wie, D.M. Hypersonics: Past, present, and potential future. Johns Hopkins APL Tech. Dig. 2021, 35, 335–341. [Google Scholar]
- Zhao, D. Ramjets/Scramjets aerodynamics: A progress review. Prog. Aerosp. Sci. 2023, 143, 100958. [Google Scholar]
- Urzay, J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 2018, 50, 593–627. [Google Scholar]
- Tracy, C.L.; Wright, D. Modeling the performance of hypersonic boost-glide missiles. Sci. Glob. Secur. 2020, 28, 135–170. [Google Scholar]
- Matsuo, K.; Miyazato, Y.; Kim, H.D. Shock train and pseudo-shock phenomena in internal gas flows. Prog. Aerosp. Sci. 1999, 35, 33–100. [Google Scholar]
- Gnani, F.; Zare-Behtash, H.; Kontis, K. Pseudo-shock waves and their interactions in high-speed intakes. Prog. Aerosp. Sci. 2016, 82, 36–56. [Google Scholar]
- Huang, H.; Tan, H.; Li, F.; Tang, X.; Qin, Y.; Xie, L.; Xu, Y.; Li, C.; Gao, S.; Zhang, Y.; et al. A review of the shock-dominated flow in a hypersonic inlet/isolator. Prog. Aerosp. Sci. 2023, 143, 100952. [Google Scholar]
- Ahmed, M.Y.M.; Qin, N. Forebody shock control devices for drag and aero-heating reduction: A comprehensive survey with a practical perspective. Prog. Aerosp. Sci. 2020, 112, 100585. [Google Scholar]
- McQuellin, L.P.; Neely, A.; Currao, G. Considerations for a hypersonic flight test investigating fluid-thermal-structural interactions. In Proceedings of the 23rd AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Montréal, QC, Canada, 10–12 March 2020. [Google Scholar]
- Chang, J.; Li, N.; Xu, K.; Bao, W.; Yu, D. Recent research progress on unstart mechanism, detection and control of hypersonic inlet. Prog. Aerosp. Sci. 2017, 89, 1–22. [Google Scholar]
- Huang, W.; Wu, H.; Yang, Y.; Yan, L.; Li, S.-B. Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows. Acta Astronaut. 2020, 174, 103–122. [Google Scholar]
- Rabault, J.; Kuchta, M.; Jensen, A.; Réglade, U.; Cerardi, N. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control. J. Fluid Mech. 2019, 865, 281–302. [Google Scholar]
- Ma, Y.; Guo, M.; Tian, Y.; Le, J. Recent advances and prospects in hypersonic inlet design and intelligent optimization. Aerosp. Sci. Technol. 2024, 146, 108953. [Google Scholar]
- Holger, B.; Harvey, J.K. (Eds.) Shock Wave-Boundary-Layer Interactions; Cambridge University Press: Cambridge, UK, 2011; Volume 32. [Google Scholar]
- Gao, S.; Huang, H.; Meng, Y.; Tan, H.; Liu, M.; Guo, K. Transient Flow Evolution of a Hypersonic Inlet/Isolator with Incoming Windshear. Aerospace 2023, 10, 1021. [Google Scholar] [CrossRef]
- Lv, Z.; Xu, J.; Song, G.; Li, R.; Ge, J. Review on the aerodynamic issues of the exhaust system for scramjet and turbine based combined cycle engine. Prog. Aerosp. Sci. 2023, 143, 100956. [Google Scholar]
- Yu, Y.; Mao, Y.; Yu, T.; Yang, Y.; Xu, S.; Liang, S. The Influence of External Flow Field on the Flow Separation of Overexpanded Single-Expansion Ramp Nozzle. Aerospace 2023, 10, 958. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Qin, Q.; Guan, R.; Cai, L. Experimental Investigation of the Shock-Related Unsteadiness around a Spiked-Blunt Body Based on a Novel DMD Energy Sorting Criterion. Aerospace 2024, 11, 188. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Zhang, Y.; Cheng, D.; Tan, H.; Wang, K.; Gao, S. Control of Cowl Shock/Boundary Layer Interaction in Supersonic Inlet Based on Dynamic Vortex Generator. Aerospace 2023, 10, 729. [Google Scholar] [CrossRef]
- Yu, F.; Gao, Z.; Zhang, Q.; Yue, L.; Chen, H. Mitigation of Shock-Induced Separation Using Square-Shaped Micro-Serrations—A Preliminary Study. Aerospace 2024, 11, 148. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y. Progress and outlook of plasma flow control. Acta Aeronaut. Astronaut. Sin. 2015, 36, 381–405. [Google Scholar]
- Huang, H.-X.; Tan, H.-J.; Sun, S.; Zhang, Y.-C.; Cheng, L. Transient interaction between plasma jet and supersonic compression ramp flow. Phys. Fluids 2018, 30, 041703. [Google Scholar]
- Yang, H.; Liang, H.; Yang, B.; Zong, H.; Li, J.; Zhang, D.; Xiong, Y.; Wu, Y.; Li, Y. Experimental study on the hypersonic double incident shock wave/boundary layer interaction regulated by plasma actuation array. Phys. Fluids 2024, 36, 066116. [Google Scholar]
- Yang, B.; Yang, H.; Zhang, C.; Zhao, N.; Liang, H.; Zhang, D. Experimental Investigation on the Control of Hypersonic Shock Wave/Boundary Layer Interaction Using Surface Arc Plasma Actuators at Double Compression Corner. Aerospace 2023, 10, 1016. [Google Scholar] [CrossRef]
- Yang, B.; Yang, H.; Zhao, N.; Liang, H.; Su, Z.; Zhang, D. Experimental Study on Hypersonic Double-Wedge Induced Flow Based on Plasma Active Actuation Array. Aerospace 2024, 11, 60. [Google Scholar] [CrossRef]
- Cai, H.; Zhang, Z.; Li, Z.; Li, H. Noise Prediction and Plasma-Based Control of Cavity Flows at a High Mach Number. Aerospace 2023, 10, 922. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Chen, C.; Huang, H. Effects of different constrained boundary structures on the evolution of shock waves and vortexes in muzzle jets. J. Mech. Sci. Technol. 2023, 37, 5239–5249. [Google Scholar]
- Qin, Y.; Huang, H.X.; Tang, X.B.; Tan, H.-J.; Li, F.-B. On the double-sided shock diffractions in quiescent and supersonic crossflows. Phys. Fluids 2024, 36, 016111. [Google Scholar]
- Li, Z.; Wang, H. Evolution of Shock Waves during Muzzle Jet Impinging Moving Bodies under Different Constrained Boundaries. Aerospace 2023, 10, 908. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H. Mechanism of Evolution of Shock Wave of Muzzle Jet under Initial Interference and Its Simplified Model. Aerospace 2024, 11, 381. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-X. Shock-Dominated Flow. Aerospace 2024, 11, 686. https://doi.org/10.3390/aerospace11080686
Huang H-X. Shock-Dominated Flow. Aerospace. 2024; 11(8):686. https://doi.org/10.3390/aerospace11080686
Chicago/Turabian StyleHuang, He-Xia. 2024. "Shock-Dominated Flow" Aerospace 11, no. 8: 686. https://doi.org/10.3390/aerospace11080686
APA StyleHuang, H. -X. (2024). Shock-Dominated Flow. Aerospace, 11(8), 686. https://doi.org/10.3390/aerospace11080686