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Abstract: In the non-deterministic, large-scale navigation environment under the Mars exploration
mission, there is a large space for action and many environmental states. Traditional reinforcement
learning algorithms that can only obtain rewards at target points and obstacles will encounter
the problems of reward sparsity and dimension explosion, making the training speed too slow or
even impossible. This work proposes a deep layered learning algorithm based on the goal-driven
layered deep Q-network (GDH-DQN), which is more suitable for mobile robots to explore, navigate,
and avoid obstacles without a map. The algorithm model is designed in two layers. The lower
layer provides behavioral strategies to achieve short-term goals, and the upper layer provides
selection strategies for multiple short-term goals. Use known position nodes as short-term goals
to guide the mobile robot forward and achieve long-term obstacle avoidance goals. Hierarchical
execution not only simplifies tasks but also effectively solves the problems of reward sparsity and
dimensionality explosion. In addition, each layer of the algorithm integrates a Hindsight Experience
Replay mechanism to improve performance, make full use of the goal-driven function of the node,
and effectively avoid the possibility of misleading the agent by complex processes and reward
function design blind spots. The agent adjusts the number of model layers according to the number
of short-term goals, further improving the efficiency and adaptability of the algorithm. Experimental
results show that, compared with the hierarchical DQN method, the navigation success rate of the
GDH-DQN algorithm is significantly improved, and it is more suitable for unknown scenarios such
as Mars exploration.

Keywords: mars exploration; no map obstacle avoidance; autonomous scene exploration; hierarchical
reinforcement learning

1. Introduction

Planetary surface exploration is a significant branch in the field of deep space explo-
ration [1]. To gain a better understanding of an extraterrestrial body, the most effective
approach is to land on its surface and conduct reconnaissance and exploration [2,3]. Cur-
rently, the main countries involved in the development of planetary surface rovers are the
United States, the European Space Agency (ESA), and China [4]. The National Aeronautics
and Space Administration (NASA) Mars 2020 Perseverance Rover and Ingenuity helicopter
landed in the Jezero Crater in February 2021 [5]. China’s Mars rover, Zhurong, touched
down on Utopia Planitia in the northern lowlands of Mars in May 2021 [6]. In the field of
Mars exploration simulator research, the National Aeronautics and Space Administration
(NASA) has developed a Mars exploration game to simulate the exploration of the Martian
terrain and the completion of tasks such as searching for water sources. The European
Mars Probe Challenge in Poland began in 2014 with the establishment of a live simulation
field. Harbin Institute of Technology in China has also built a simulation environment for
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Martian landscapes, considering irregular contact areas and simulating phenomena such
as wheel slippage [7].

Planetary surface rovers are highly integrated, compact, and intelligent semi-autonomous
or fully autonomous mobile robots designed for exploring planetary surfaces [8]. These rovers
autonomously navigate and explore planetary terrains, often requiring them to complete
navigation and obstacle avoidance tasks between multiple waypoints and ultimately reach
their destination [9]. Faced with unpredictable and unknown environments, mobile robots
not only need to reach specified locations but also need to intelligently plan efficient paths,
avoid obstacles, successfully reach each waypoint, and accomplish their respective tasks [10].
Conventional navigation methods, such as the A* algorithm [11] and the artificial potential
field technique [12], require accurate map data of the surrounding area to ensure safe and
efficient planning. However, the current Mars probe lacks terrain information and needs to
travel without more frequent communications between Earth and Mars [13]. To elucidate, any
malfunction of the sensors or delays in data processing will significantly impede the subsequent
execution of the path planning algorithm. This segmented robot planning method has low
intelligence and cannot deal with complex environments. The low efficiency of path-planning
algorithms in complex environments with dense obstacles has become one of the main factors
hindering the development of robotic rovers [14].

Reinforcement learning stands as a computational approach employed to understand
and automate the process of goal-driven learning and decision-making [15]. Within this
framework, reinforcement learning techniques acquire suitable actions based on the prevail-
ing environmental state. As the agent interacts with the external environment, it integrates
the reward signal through exploratory actions and iterative trial-and-error learning. This
amalgamation of processes allows the agent to gather environmental insights and itera-
tively refine its navigation strategy [16]. To further enhance the ability of reinforcement
learning to perceive the environment, Google’s DeepMind team proposed a deep rein-
forcement learning (DRL) algorithm for the first time [17], which combined deep learning
and reinforcement learning to understand high-dimensional input and make intelligent
decisions using information. DRL enables robots to sense the environment, such as humans,
in the absence of accurate maps and to efficiently complete navigation tasks by interacting
with the environment and learning. The popularity of DRL has enabled smarter robots
to navigate and avoid obstacles, which could potentially be used to enable autonomous
navigation for Mars rovers.

The main contributions of this work can be itemized as follows:

• Addressing the current dependency of Mars rover motion control on ground-based
remote operations, this study proposes a reinforcement learning method called GDH-
DQN to enable the Mars rover to have autonomous movement and path planning
capabilities.

• Given the vast scale of the Martian environment, the lack of prior maps, and the
prevalence of numerous, densely packed, and irregularly-shaped obstacles, our GDH-
DQN method effectively addresses the challenges of sparse rewards and the explosion
of state dimensions in large-scale Mars exploration scenarios.

• Integrating the hindsight experience replay mechanism into the hierarchical reinforce-
ment learning algorithm eliminates the need for complex reward function design,
fully harnessing the intrinsic potential of the data, enhancing sample efficiency, and
expediting model convergence. We conducted extensive training and testing experi-
ments, demonstrating the high performance and robust adaptability of the GDH-DQN
method in large-scale planet exploration scenarios.

2. Related Works
2.1. Deep-Reinforcement-Learning-Based Navigation Methods

Deep reinforcement learning (DRL) has made great progress in recent years and has
become a key area of artificial intelligence research. By integrating the advantages of deep
learning and reinforcement learning, the DRL algorithm can learn effective strategies in
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high-dimensional and complex environments. In 2013, DeepMind [18] proposed the Deep
Q Network (DQN), demonstrating the potential of DRL to solve complex tasks and marking
the beginning of a new era of deep reinforcement learning research. In 2016, DeepMind [19]
launched the Asynchronous Advantage Actor-Critic (A3C) algorithm, which improves
the efficiency and stability of training by exploiting asynchronous parallelism. In 2017,
OpenAI [20] introduced the Proximal Policy Optimization (PPO) algorithm, which has
since become one of the most widely used methods in deep reinforcement learning due to
its simplicity, robustness, and performance.

However, there are still some challenges in applying deep reinforcement learning to
Mars rover navigation. There are two main problems: on the one hand, the mechanism
where agents receive positive rewards only upon reaching the goal point leads to the
sparse reward problem. On the other hand, due to the independent exploration scene, the
algorithm has a dimension explosion in the training process. These two problems increase
the difficulty of DRL training, and it is difficult to agree on the optimal strategy.

In reinforcement learning, rewards guide the learning direction of the agent [21,22],
and the lack of reward information will lead to the slow learning progress of the agent or
even the inability to learn the optimal strategy, which is the sparse reward problem [23].
In the navigation environment, rewards and experiences are generated solely when the
agent reaches obstacles or target points. At other times, rewards are zero, impacting the
ability of DRL to gather sufficient useful experience, thus affecting algorithm performance.
Approaches to address the challenge of sparse rewards encompass reward shaping [24], the
hindsight experience replay mechanism (HER) [25], as well as hierarchical reinforcement
learning, among others.

Reward shaping is a prevalent technique. It involves the incorporation of prior knowl-
edge to construct an augmented reward function that steers the agent toward accomplishing
the intended task. Jagodnik et al. [26] used distance information calculation and subjective
evaluation as the reward function to control the manipulator, and the effect was better
than that of the optimized proportional differential controller. Brito et al. [27] used deep
reinforcement learning to recommend sub-goals for model predictive control, in which the
Euclidean distance to the target point was used as a reward to accelerate learning.

However, reward shaping is limited and often benefits from a well-designed reward
function, which requires a large amount of prior knowledge in the corresponding field
and has poor generalization. For obstacle avoidance tasks, the commonly used Euclidean
distance will mislead the agent, and it is difficult for the agent to deal with complex
environments such as dead corners and corridors [28,29], which makes it difficult for the
algorithm to be applied to environments with high requirements for dynamic confrontation
and real-time decision-making. Different from reward shaping, the hindsight experience
replay [30] mechanism adds the input information of the goal and generates the successful
sample by correcting the goal of the failed sample generated in the learning process so
that the agent can obtain the positive reward faster, greatly improving the algorithm
training efficiency. Moreover, it reduces susceptibility to the complexity of obstacle-laden
environments and proves adaptable to scenarios involving multi-goal learning.

Although deep reinforcement learning has achieved good results in no-map naviga-
tion, the data efficiency of deep reinforcement learning is low, and it is very sensitive to
environmental disturbance. Therefore, navigation based on deep reinforcement learning is
mostly limited to small-range scenarios.

2.2. Mars Rover Navigation Methods

The Opportunity and Curiosity rovers possess only 5% of their potential autonomous
navigation distance, with minimal autonomous navigation capability. Although the Per-
severance rover is equipped with an automatic navigation system [31], its maximum
autonomous navigation distance is less than 700 m [32]. This indicates that current Mars
rover missions have not achieved fully autonomous navigation and remain heavily reliant
on human remote operation [33]. The vast distance between Earth and Mars, combined
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with the limited computing resources of the Mars rovers, imposes significant constraints
on human remote operation and control. These constraints include the infrequent issuance
of remote commands, typically only once every 1 to 3 days; the limited operational time
available for the rovers, usually around 3 h of driving per Martian day; and the restricted
processing power due to the low CPU clock frequency of the radiation-hardened processor
boards used. Overall, reducing the dependence of Mars navigation missions on human
intervention remains a significant challenge. Future Mars exploration missions necessitate
the development of truly autonomous rover systems capable of effective navigation, along
with intelligent methods tailored for systems with limited resources [32].

Since the surface of the planet is covered with unknown, uncertain, and discontinuous
craters, ravines, and sandy areas, as shown in Figure 1 [34], the environmental range is
large, and the conditions are diverse [35]. Therefore, the performance of the algorithm will
plummet due to problems such as dimension explosions [36]. Faust et al. [37] combined
probabilistic road maps with RL. Probabilistic road maps divided a large flat map into
several small local maps and then used RL to learn local map navigation and obtain a map
with only signpost points. The final deployment only needs to find the shortest path in
the case of a given goal and then go one by one through the landmark point and reach the
target point. This method effectively solves the problem of long-distance navigation, but it
still needs to obtain the plan in advance and can only be navigated on the trained map at
a time.
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Hierarchical reinforcement learning can solve the original problem by dividing the
complex problem into several small problems and solving the small problems separately.
Hierarchical reinforcement learning can effectively solve the dimension explosion problem
of reinforcement learning by studying how to abstract complexity into different levels
and using hierarchical structure to learn strategies at different levels to better solve the
problem [38,39]. Its essence is to decompose the task into sub-tasks at different levels of
abstraction; the low level provides the optimal strategy for completing the sub-tasks, and
the upper level provides the appropriate sub-tasks for the low level to obtain the optimal
strategy for solving the overall task. At the same time, the hierarchical deep reinforcement
learning method further solves the sparse reward problem by reducing the action sequence
space of each layer strategy.
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Hierarchical reinforcement learning includes two methods based on options and
subgoals. In the option-based approach, the upper level is responsible for selecting from
the low-level policy, and then the low-level policy outputs the control action. Lu et al. [40]
solved the horizontal and vertical motion planning problem at the low planning level,
while the upper level simulated and evaluated various scenarios, therefore completing
the optimization decision in the complex traffic environment. The subgoal-based method
generates subgoals through high-level policies and completes subgoals through low-level
policies. Naveed et al. [41] proposed a kind of robust hierarchical reinforcement learning
in which the upper level is used for maneuver decision-making and the low level is
used for waypoint trajectory generation, which solves the trajectory safety problem of
automatic driving.

Although hierarchical reinforcement learning can solve the dimensional explosion
problem in long-distance navigation, its ability to cope with complex environments depends
on the single-layer goal completion strategy, so it is necessary to optimize the model of
each layer while adopting the hierarchical framework. Robert et al. [42] proposed planning-
reinforcement hierarchical reinforcement learning (PAHRL), which extracted multiple
subtasks from the original problem and performed navigation tasks from one state to
another in the subtasks. The feasibility of this hierarchical idea was verified on a robotic
arm. Jan et al. [43] proposed a new framework that combined the plan in the high-level
state space with the subgoals in the original continuous state space and introduced the
value-iteration-based planning strategy. Even if the low-level strategy failed to achieve the
subgoals, it could still maintain good performance in the complex terrain environment by
adjusting the high-level model using the collected data.

The current Mars rover still uses traditional signal transmission to control movement
and has not yet applied reinforcement-learning navigation strategies. This work attempts
to apply a hierarchical reinforcement learning navigation algorithm to the autonomous
navigation system of Mars probes. Due to the large scope of the Mars exploration mission,
the large and dense obstacles, and the lack of prior map information, the reinforcement
learning mechanism faces challenges such as sparse rewards and dimensional explosion.
To address these issues, which can lead to difficulties in algorithm convergence, this paper
proposes a hierarchical deep reinforcement learning algorithm, GDH-DQN, based on goal
drive for the no-map obstacle avoidance of robots. In this method, a two-layer structure is
adopted. A single-goal-driven model is designed at the low level to provide the behavior
strategy, and a multi-goal selection strategy is provided at the upper level. The hindsight
experience replay mechanism is used in each layer to improve the performance of the
algorithm, which effectively avoids the possibility of misleading the agent in the complex
process of designing the reward function and the complex environment, such as dead
corners. In addition, the method can select the number of model layers according to the
size of the environment and the number of targets, give full play to the role of each layer
model, and improve the obstacle avoidance efficiency.

3. Principles of Algorithms

The Mars surface exploration mission has a large scope and no prior environmental
information. To address the issue of sparse rewards during navigation in unknown envi-
ronments and the convergence difficulties caused by dimension explosion in long-distance
navigation with DRL, we constructed a two-layered obstacle avoidance framework based
on goal-driven methods. In this framework, the high-level policy responsible for achieving
the overall goal provides the suggested goal for the low-level policy, and the low-level pol-
icy is responsible for planning the reasonable path for the agent to reach the goal provided
by the high-level policy. This method effectively solves the sparse reward problem and
simplifies the exploration process by using the hierarchical strategy of goals to decompose
complex tasks into multiple subtasks. The high-level policy solely necessitates identifying
the accurate succession of goals, whereas the low-level policy is simplified to achieve the
designated objective.
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Considering the complex structures such as rock fissures and dead zones that exist in
the Martian environment and the fact that the design reward function is not generalized,
we employ a hindsight experience replay mechanism as a form of reward. The high-level
policy, tasked with accomplishing the overarching objective, receives sparse environmental
rewards aligned with that specific goal. Furthermore, it obtains a slight positive reward for
each achieved sub-goal attained through the selection of lower-level strategies. To enhance
this, a minor penalty is applied when a previously attained waypoint is chosen, deterring
the strategy from becoming ensnared in local minima originating from the initial position.

3.1. Reinforcement Learning Theoretical Framework

The algorithmic principle of reinforcement learning is grounded in the concept of
an agent learning an optimal policy through experimentation and feedback within an
environment. At each state, the agent selects an action and updates its strategy based on
feedback from the environment, which usually consists of rewards or penalties. The agent’s
goal is to optimize its actions to maximize the long-term cumulative rewards from the
starting point to the target point while avoiding obstacles. Through continuous interaction
with the environment, the agent gradually learns the most effective actions to take in
different states, thus achieving successful path planning to reach the target point.

Research has shown that Markov Decision Processes (MDP) can effectively address
most reinforcement learning problems and have thus become the foundational framework
for reinforcement learning theory [44]. MDP abstracts the reinforcement learning problem
as a quintuple (S, A, P, R, γ) [45], where:

• State space S: Represents all possible states of the environment.
• Action space A: Represents all possible actions that the agent can take in each state.
• State transition probability P (s′|s, a): Describes the probability of transitioning to the

next state s′ after taking action a in state s.
• Reward function R (s, a): The immediate reward received by the agent for taking

action a in state s. Reflects the agent’s progress toward its goal.
• Discount factor γ: Balances the importance of current and future rewards, with values

between 0 and 1.

The agent’s goal is to find the optimal policy π∗(a|s) , which is a rule for selecting
actions in each state s that maximizes the expected cumulative future rewards. This can be
described using the state value function Vπ(s) and the state-action value function Qπ(s, a):

State value function Vπ(s) is defined as the expected cumulative reward when fol-
lowing policy π starting from state s:

Vπ(s) = Eπ [
∞

∑
t=0

γtR(st, at)|s0 = s]

State-action value function Qπ(s, a) represents the expected cumulative reward when
taking action aaa in state sss and then following policy π:

Qπ(s, a) = Eπ [
∞

∑
t=0

γtR(st, at)|s0 = s, a0 = a]

The Bellman equation for the state value function is given by:

Vπ(s) = ∑
a∈A

π(a|s) ∑
s′∈S

P(s′
∣∣s, a) [R(s, a) + γVπ(s′)]

Through the recursive computation of state and action values, the Bellman equation
enables the agent to assess the relative merits of different paths and to select the optimal
route that maximizes cumulative rewards. This mechanism allows the agent to effectively
plan the most efficient path to the target in complex environments.
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3.2. Deep Q-Network

The deep Q-network combines the advantages of deep learning and traditional rein-
forcement learning algorithms in Q-learning. Based on the MDP theoretical framework, the
optimal policy can be derived through Q-values [46]. The traditional Q learning algorithm
uses the Q table to store the reward obtained by taking a certain action in each state, which
is the state-value function. However, when the environment is too complex and there is
too much data, the Q table is not only difficult to store but also difficult to search, which is
prone to problems such as dimension explosion [47]. To solve the above problems, the deep
neural network is used as a function approximation instead of the Q-value table, and the
value function is calculated. However, simply using neural network superposition in Q-
learning will cause instability and even non-convergence. To this end, the deep Q-network
is optimized, and the experience pool and dual network structure are used to stabilize the
training process.

The deep Q-network includes four parts: environment, target network, estimation
network, and experience pool.

3.2.1. Environment

The type of environment depends on the problem being studied. The agent chooses
and executes the action according to the strategy in a certain state and obtains the next state
and corresponding reward value by interacting with the environment.

3.2.2. Estimation Network

In reinforcement learning methodologies, updates occur based on the reward of the
current moment and the value estimation of the subsequent moment. Owing to the inherent
volatility within the data, each iteration may introduce fluctuations that promptly influence
the computation in the ensuing iteration, rendering the attainment of a stable model
challenging. To reduce the impact of related problems, it is necessary to decouple the two
parts of the current time and the next time value estimation as much as possible, thus
introducing a dual network structure. The estimation network and the target network have
the same structure, where the estimation network is used to interact with the environment,
obtain interaction samples, and predict the Q estimate of the current action to select the
best action.

3.2.3. Target Network

The target network is used to calculate the target Q value based on the state of
the next step. After a specific number of iterations, the parameters of the estimated
network are synchronized with the target network. As a result, the parameters of the target
network become older than those of the estimated network. The approach of utilizing
the subsequent state to compute the target value in the target network model maintains
stability for a defined duration. This temporal stability diminishes the association between
the current Q value and the target Q value to a certain extent, thereby enhancing the overall
algorithmic stability.

3.2.4. Experience Pool

Reinforcement learning methods will directly use the data generated by the interaction
to learn and not retain the generated samples. To ensure sufficient training samples and
prevent more time to interact with the environment and collect samples after discarding
samples, the experience pool replay mechanism is used, that is, to establish an experience
pool for storing sample data of past experiences and help to disrupt the correlation between
samples. The experience pool stores samples from interactions with the environment in
chronological order. If the experience pool is already full, the new sample overwrites the
oldest sample. When the network needs to update parameters, a sample is randomly
selected from the experience pool for training. The training effect of this method is more sta-



Aerospace 2024, 11, 692 8 of 23

ble, which not only improves the utilization rate of samples but also reduces the correlation
of data.

The DQN training process is shown in Figure 2. The agent randomly selects behaviors
from the environment to obtain experience tuples and stores them in the experience pool
for continuous updates. Then, as the input of the estimation network and the target
network, the output difference between the two is input as a loss function, the weight
parameters of the estimated network are updated with the gradient descent algorithm, and
actions are taken again. The estimated network copies the parameters to the target network
after a fixed number of iterations. When the network training converges, the estimated
network will approximate the optimal value function and realize the purpose of optimal
strategy learning.
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3.3. Hindsight Experience Replay Mechanism

In the DQN algorithm, an experience playback mechanism is adopted. This mech-
anism aims to create an experience pool for storing sample data generated throughout
the training process. Samples are drawn from this pool using random selection to disturb
interdependencies between samples. Sample forms are generally (st, at, st+1, rt). For the
robot obstacle avoidance environment, if there are only two reward forms of obstacle and
goal point, then only a binary reward of rt = 0, 1 will be generated. During the training
phase, although the agent intends to move toward the direction of the highest cumulative
reward, the cumulative reward value is always kept near zero. As a result, the neural
network updates slowly, hindering model convergence. Therefore, it is hoped that the
problem of reward sparsity can be solved by reducing useless experience (rt = 0) and
increasing valuable experience without modifying the environment.

Considering that obstacle avoidance is the task characteristic of training the agent
to reach several different target points, the determination of the target value and the
organization of the experience pool encompass not only the state “s” but also the goal
“g”. Adding a goal only influences the agent’s decision-making regarding actions without
impacting the dynamic alterations within the environment. This insight allows for the
adaptation of goals within the trained experiences, accompanied by the corresponding
reward value adjustments. This strategic maneuver facilitates the expansion of the current
experience pool and significantly augments the reservoir of valuable experiences [48].

Fixed goal g in each training round and stored experience (st, at, st+1, rt, g). At the end
of this round of training, a hindsight experience replay is conducted for the experience
generated in this round. From the states encountered in the whole training process, k states
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are randomly selected as the replay goal. Based on this goal, rt in this round of experience
is judged again based on (1):

r′t =
{

1 st+1 = g′

0 st+1 ̸= g′
(1)

After the new experience (st, at, st+1, rt′ , g′) is stored in the experience pool, the next
round of learning begins.

Through effectively assimilating insights from sparse binary rewards, the hindsight
experience replay mechanism maximizes the intrinsic value of the data, circumventing the
necessity for intricate reward function engineering [25]. This mechanism can be perceived
as a variant of a concealed curriculum. This is because the replayed objectives inherently
progress from elementary, and sometimes arbitrary, agents to more intricate goals without
necessitating any alterations in the distribution of initial environmental states.

3.4. Algorithm Structure

The GDH-DQN algorithm is a hierarchical reinforcement learning method based on
subgoals that consists of two layers of deep reinforcement learning algorithms; each layer
adopts the DQN algorithm. The Deep Q-Network (DQN) algorithm represents a pivotal
advancement in the domain of reinforcement learning. Characterized by its simplicity
and ease of implementation, the DQN algorithm’s most notable feature is its capability for
offline learning. This attribute enables DQN to effectively harness past experiences, thereby
conferring a significant advantage in environments that are volatile or hazardous. In
contrast to the Asynchronous Advantage Actor-Critic (A3C) algorithm, which necessitates
continuous interaction with the environment for learning [49], DQN’s ability to learn from
historical data stands as a distinctive and beneficial characteristic. Simultaneously, the
simplistic network architecture of DQN, compared to other more complex and advanced
algorithms, imposes lower computational resource requirements, making it more suitable
for scenarios such as Mars exploration where computational resources are limited.

DQN has an experience replay mechanism, so it can be modified for samples in the
experience pool, thus improving the efficiency of sample use. To solve the sparse reward
problem and the non-stationary problem of parallel training, the hindsight experience
replay mechanism is added to each layer to correct the sample, generate the forward
sample guidance algorithm training direction, and improve the algorithm performance.
The block diagram of the GQH-DQN algorithm is shown in Figure 3.
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The low layer of the GDH-DQN algorithm is the obstacle avoidance control model,
and the upper layer is the goal selection model. The design details of each layer model are
as follows:
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3.4.1. Low-Level Obstacle Avoidance Control Model

The low-level controller is mainly used for obstacle avoidance control, which selects
appropriate actions for the mobile robot to avoid obstacles so as to achieve the effect of safe
navigation from the starting point to the target point. However, due to the sparse reward
problem in the navigation process, the agent cannot obtain effective samples in the training
process, and the training efficiency decreases. Therefore, the hindsight experience replay
mechanism is adopted to modify the goal passed by the high-level and change the original
goal to the arrived state, thus changing the obtained reward value, generating positive
samples, and solving the sparse reward problem.

Taking the sample {current state = s0, action = a, reward = 0, next state = s1, goal =g0}
as an example, the agent takes g0 as the target to explore, moves from state s0 to s1 after
taking action a, and then the agent stops exploring due to step limitation and other reasons.

This means that the training round is over without reaching the goal. The samples
generated in this round are not optimal strategies, so the hindsight experience replay
mechanism can be used to select the next state reached in the samples as the goal of the
current level, so as to ensure that there will be samples with positive rewards.

Therefore, the next state s1 in the original sample is selected as the goal, and the sample
is modified to {current state = s0, action = a, reward = 1, next state = s1, goal = g1}. After
the sample is modified, the reward value is no longer 0, and such a sample can provide
more information for the training of the agent, thus improving the training efficiency of
the algorithm.

During the training process, if a goal has not been reached after a long time of ex-
ploration, then the goal is not suitable for the subgoal of the initial state at that time. In
order to reduce the influence of this invalid target and shorten the invalid exploration time
in the training process, the parameter of exploration step number is set in the low-level
obstacle avoidance control model. Once the number of steps is exceeded, the training round
is stopped.

The state space of the low-level controller is the set of all states that the agent can
reach, and the action space is still four discrete actions.

3.4.2. High-Level Target Selection Model

The high-level controller is mainly used to select subgoals from the set of possible
states. Therefore, the original complex large-scale navigation process can be simplified to
select feasible node target sequences at the high-level and perform navigation tasks step by
step according to the provided subgoals at the low-level.

The reasons for non-stationary problems in hierarchical reinforcement learning are
as follows: On the one hand, the constantly adjusted strategies at the low level will lead
to unstable empirical data at the high-level [50]. On the other hand, the algorithm at the
low level adopts random strategies for coupling exploration into the sampling process,
and the random behavior leads to unstable state distribution, which affects the learning
transfer function at the high level. For example, the ε-greedy strategy used in DQN has a
certain probability of taking a random action. To allow the high-level and the low-level
to train in parallel and obtain stable data, the high-level controller adopts the hindsight
experience replay mechanism. After each training round, the action in the sample generated
by the round is modified to the actual state reached by the low level, which is equivalent to
generating the optimal strategy sample of the low level to solve the non-stationary problem.

Taking the sample {current state = s0, action = a0, reward = 0, next state = s1, goal = g}
as an example, the final goal of the navigation task is g, the original action of the high level
is g0, that is, the subgoal g0 is selected for the low level. However, the actual state reached
by the agent is s1. Therefore, to generate the optimal strategy sample, the original sample is
modified to {current state = s0, action = a1 reward = 1, next state = s1, goal = g}.

The pseudo-code is shown in Algorithm 1.
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Algorithm 1 GDH-DQN algorithm

01: Initial high-level and low-level controller parameters
02: Initialize the experience pool capacity and learning rate of each layer
03: for episodes← 1 to N do
04: Initialization state s0, goal g
05: Execute the train function in layers and complete hindsight experience replay
06: Network parameters are synchronized after an update period
07: end for
08: function Train ()
09: Initializes the layer state and goal
10: for within exploration steps or have not yet reached the goal do
11: The action is obtained using the ε-greedy strategy
12: Take action and change the state to the next state
13: The experience pool stores samples
14: end for
15: The low-level performs hindsight experience replay
16: The high layer replays based on the low layer execution
17: end function

After sample modification, the sample obtained by the high-level is not only in line
with the optimal strategy but also a valuable positive sample, which effectively solves the
non-stationary problem and the sparse reward problem.

Because the number of exploration steps is set at the low level, when the number of
steps is reached, the agent will stay in a certain state, and after the hindsight experience
replay of the high-level, a certain state will be treated as a generated subgoal and stored as
a sample in the experience pool. In this way, the high-level strategy can find the goal that
can be reached within the specified number of steps, improve the selection probability of
some reasonable states, and eliminate unreasonable subgoal states.

The action space and state space of the high-level model are the same, and both
are the state space of the low-level obstacle avoidance control model, that is, the state
position that each agent may reach. Places in the high state space should remove certain
obstacles to prevent them from being selected as subgoals. However, this method is not
easy to implement, not only because the environment is unknown and it is impossible
to eliminate the obstacle coordinates in advance, but also because if the state space of
the high-level and the low-level are different, it will occur that the low-level reaches an
unreasonable state position during training, and after the hindsight experience replay of
the high-level, subgoals that do not belong to the state space of the high-level will appear.
That said, you cannot fix this problem by modifying the state space, so consider engaging
in a hindsight experience replay process. When the low-level agent encounters an obstacle,
it will obtain a reward value of −1. In order to avoid the value function of the high-level
policy starting from such a state, the high-level will not play back the experience after
the state, preventing the high-level from selecting this obstacle state several times after
generating positive samples.

4. Experimental Verification
4.1. Experimental Environment

Due to its simplicity, effectiveness, and straightforward implementation, the grid
environment has found extensive utility in the realm of path planning [51]. This technique
partitions the two-dimensional map into discrete rectangular grid units, with the grids
being assigned values corresponding to obstacles or open spaces. Modeling is accom-
plished via a two-dimensional matrix, with grids devoid of obstacles set to 0 and those
with obstacles set to 1. The quantity of information contained within the grid environment
is contingent upon the grid size. Opting for smaller grids yields higher environmental
resolution and augmented information storage, but slower decision-making. Conversely,
selecting larger grids results in reduced environmental resolution, diminished information
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storage, and faster decision-making. However, this comes at the cost of weakened pathfind-
ing capabilities within densely obstacle-laden environments, consequently impacting the
precision of the obtained paths [52].

Based on the Mars surface features depicted in Figure 4 [53], which exhibit a large
environmental range and densely packed obstacles, we have established a rasterized map
with the same characteristics. The black grid represents an immovable obstacle, resembling
the large and dense nature of the Martian terrain. Furthermore, grid maps of varying
sizes have been developed. Each grid is equivalent to the size of a Mars rover (3 m × 3 m).
At this scale, the 20 × 20 and 20 × 30 grids can effectively replicate a wide range of the
Martian environment. This simplified yet distinctive map has been utilized for experimental
validation of the algorithm’s efficacy.
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Gym is a toolkit for developing and comparing reinforcement learning algorithms
under openAI (San Francisco, CA, USA) and provides the environment required for re-
inforcement learning. Gym makes no assumptions about the structure of the agent and
is compatible with any digital computing library (such as TensorFlow (Mountain View,
CA, USA) or Theano (Montreal, QC, Canada)) that can be used to formulate reinforcement
learning algorithms. These environments have shared interfaces that make it possible to
write regular algorithms. Therefore, this paper uses a Gym to build a grid environment for
reinforcement learning training. The action space in reinforcement learning determines the
output of the decision. According to the characteristics of the raster environment, this paper
adopts a discrete action space, including the four actions of up, down, left, and right in the
first-person perspective, to move vertically and horizontally in the raster, and refers to 0, 1,
2, and 3 numbers in the algorithm. We utilize a discrete action space, a choice that adheres
to the regulations governing the agent’s behavior within the grid while simultaneously
streamlining the action process. This simplification contributes to algorithmic convergence.
In summary, we employ a discrete action space for simulating operations on the grid.

4.2. Neural Network and Parameter Design

Different from the neural network of a single-layer algorithm, the action output range
of the high-level target selection model should be the size range of the map. Therefore, it
is necessary to consider the normalization of the output of the neural network and then
expand the output to the specified range according to the size of the map.

The design of the high-level neural network is illustrated in Figure 5, featuring
512 × 256 fully connected layers. The activation function for the hidden layers is ReLU,
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while the Tanh function is used for the output layer. Tanh not only restricts the output to
the range [−1, 1] but also offers a fast convergence rate. Once the neural network output
is obtained, it must be further processed to match the range of the map. The calculation
method is described in (2).

a = a0 ∗ k + b (2)

where a0 is the output of the neural network, a is the subitem point obtained, k represents
the map range, and b is the bias quantity. If the map parameters are L in length and W in
width, then k is the vector [L/2, W/2] and b is the vector [L/2, W/2]. After calculation,
the final coordinate range is [0, L] horizontally and [0, W] vertically. Since the calculated
range is continuous, whereas each coordinate on the raster map is an integer, the computed
coordinates should be rounded. This ensures the output of the high-level neural network
aligns perfectly with the action space of the high-level model.
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The architecture of the low-level neural network is depicted in Figure 6, mirroring
the high-level neural network structure. The low-level action selection process involves
computing the Q values for all potential actions and choosing the action with the highest
Q value. As there is no requirement to restrict the output range of the neural network,
the hidden layer activation function is set to ReLU, obviating the need for any specialized
design considerations.
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Reward shaping necessitates the pre-design of a reward function based on prior
knowledge to furnish the agent with supplemental reward information to overcome the
sparse reward problem. This paper conducts a comparative analysis of the reward-shaping
methods employed in the experiment. Our aim is to guide the agent to maintain proximity
to the target point while simultaneously minimizing the time required and the path cost
incurred to reach the target. To achieve this, a reward function is devised wherein the robot
garners progressively larger rewards as it draws closer to the designated target point. The
reward function of the low-level obstacle avoidance control model is shown in (3).

Reward =


−1, | (xrobot, yrobot) = (xobstacle, yobstacle)

1,
∣∣∣ (xrobot, yrobot) =

(
xgoal , ygoal

)
0, | otherwise

(3)

(xrobot, yrobot) indicates the current position of the mobile robot,
(

xgoal , ygoal

)
indicates

the subgoal position provided by the high layer, and (xobstacle, yobstacle) indicates the obstacle
position.

Reward =


−1, | (xrobot, yrobot) = (xobstacle, yobstacle)

1, | (xrobot, yrobot) = (xaction, yaction)
0, | otherwise

(4)

where (xaction, yaction) indicates the subgoal position that the high-level outputs in the form
of an action. When the reward value is −1, no hindsight experience replay is performed.

The algorithm hyperparameter settings in this chapter are shown in Table 1. It is
important to note that when a parameter is not explicitly distinguished between the low
layer and the high layer in the table, it is shared and has an equivalent size for both
layers. Furthermore, the exploration steps specified for each round are proportional to the
dimensions of the map, with the parameter value being the aggregate of the length and
width of the grid map.

Table 1. Parameters of the GDH-DQN algorithm.

Parameter Parameter Value

Experience pool capacity 100,000
Batch size 128

Learning rate 0.001
Loss factor 0.98

Exploration factor 1 to 0
Sample proportion of HER 4:1

Exploration steps per round L + W

4.3. Analysis of Computational Complexity and Resource Consumption

The Deep Q-Network (DQN) model used in this study is relatively simple, comprising
two hidden layers and one output layer with 256, 64, and 4 neurons, respectively. We
use the total number of parameters and Floating Point Operations per Second (FLOPs) to
evaluate the model’s computational complexity and resource requirements [54,55]. The
model has a total of 17,988 parameters and involves 18.31 KMac FLOPs, indicating that the
model is computationally lightweight and does not rely on a GPU for inference, making it
suitable for operation in the highly resource-constrained environment of the Mars rover.

The computer used in this experiment is equipped with an Intel Core i7-11700K
processor (Intel, Santa Clara, CA, USA), with a base clock frequency of 3.60 GHz and
a maximum turbo frequency of up to 5.0 GHz. The CPU usage of the process running
the model was measured at 0.0%, indicating that the model’s demand on CPU resources
during execution is extremely low and can be practically ignored. This suggests that even
with multiple inference operations, the model would not place a significant burden on
the system’s central processing unit (CPU). Additionally, the model’s memory usage was
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measured at 239.484375 MB, which is relatively low compared to typical machine learning
tasks [56], demonstrating good memory efficiency during execution.

Execution time measurements showed that the model’s inference speed is extremely
fast, with single inference operations taking between 8.4 microseconds and 230.6 microsec-
onds, with a median inference time of around 10 microseconds. This indicates that the
model is highly efficient for single inference operations, and its low-latency characteristics
make it suitable for navigation tasks in Mars exploration.

Considering the computational resources of the Mars rover, which is equipped with
a RAD 750 PowerPC CPU(BAE Systems, Manassas, VA, USA) running at 133 MHz [32],
and assuming the RAD 750 CPU is a scalar processor, the maximum number of operations
per second (FLOP/s) would be 133 MFLOP/s. Based on the computational complexity
and memory requirements of the DQN model in this study, along with factors such as
instruction latency and resource contention, it is conservatively estimated that the time
required to run inference tasks on the rover’s CPU would be in the range of tens of
microseconds. Therefore, this model can provide real-time decision-making and navigation
support on the Mars rover, making it well-suited for deployment in Mars exploration tasks
where quick response and low computational resource usage are critical.

4.4. Single-Goal Experiment

In order to improve the sparse reward problem and improve the obstacle avoidance
success rate between goals, we added the hindsight experience replay mechanism to the
low-level obstacle avoidance control model so that the agent can learn from the failure
experience and improve the sample utilization. When there is only one goal in the envi-
ronment, GDH-DQN only needs to use the low-level obstacle avoidance control model to
make decisions. To verify the effectiveness of the obstacle avoidance model of the algo-
rithm, we designed a set of experiments to compare the DQN algorithm, the DQN-HER
algorithm (low-level of GDH-DQN), and the DQN algorithm using the reward shaping
method (DQN-SHAPE) in the presence of a single goal in the grid environment.

We designed maps of two sizes, 10 × 10 and 20 × 20, as shown in Figure 7. The red
square indicates the starting position of the agent, and the yellow circle marks the target
destination, which is randomly generated for each iteration. The static black grids represent
immutable obstacles that remain fixed throughout the training process.

Following 100,000 epochs of training, the results are depicted in Figure 8. The figure
illustrates the training progress, with the x-axis indicating the number of training epochs
divided by 100 and the y-axis representing the navigation success rate, which is the number
of successful training epochs out of every 100. The success rate graph is obtained from mul-
tiple experimental iterations, where the solid line denotes the average success rate across
these iterations, and the shaded region illustrates the fluctuation range of the algorithm’s
navigation success rate. The training curve demonstrates that the DQN-HER approach
achieves convergence to the optimal path within the allocated training timeframe across
various grid environments. Moreover, the convergence speed is swifter, and the success
rate is higher compared to the other two methods. By observing the shadow of the training
curve, it can be seen that the shadow area of the DQN-HER algorithm is smaller than that
of the DQN-SHAPE and DQN algorithms, indicating that the success rate of the DQN-HER
algorithm has less fluctuation and its performance is more stable.

The average number of steps is shown in Figure 9. In this figure, the x-axis corresponds
to the number of training rounds divided by 100, while the y-axis represents the mean
number of steps required for navigation during each set of 100 training rounds.

The navigation success rate of each algorithm is shown in Table 2. The table includes
the highest success rate observed across multiple experiments and the average success rate,
which is calculated by dividing the total number of successful trials by the total number of
training rounds. In the 10 × 10 maps, DQN-HER achieved the highest navigation success
rate of 94%, outperforming DQN-Shape by 6% and DQN by 17%. On the 20 × 20 maps,
DQN-HER reached a high of 81%, showing a 20% improvement over DQN-SHAPE and a
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38% improvement over DQN. The average success rates for DQN and DQN-SHAPE are
lower due to factors such as slower convergence speeds and performance instability, which
affect the overall calculated averages.
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Integrating the analysis of the navigation success rate, the DQN-HER algorithm
exhibits rapid convergence, capable of reaching the target point with a reduced number of
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steps while sustaining a high success rate. The DQN-SHAPE algorithm performs slightly
less effectively than DQN-HER, requiring a greater average number of steps to converge.
The DQN algorithm displays significant fluctuations in the average number of steps,
suggesting that it often wanders aimlessly in the environment, engaging in indiscriminate
exploration. At the end of the training, the DQN’s average number of steps converges to a
lower level than the DQN-HER, which occurs because the DQN is prone to bumping into
obstacles during navigation, resulting in the end of the training round and thus fewer steps.

Table 2. Comparison of the navigation success rate of each algorithm.

Algorithm DQN-HER DQN DQN-SHAPE

10 × 10
Highest success rate 94% 77% 88%

10 × 10
Average success rate 75.5% 20.8% 67.3%

20 × 20
Highest success rate 81% 43% 61%

20 × 20
Average success rate 63.6% 12.6% 36.7%

The comparative analysis of the various metrics clearly demonstrates that the DQN-
HER algorithm not only achieves a higher success rate but also exhibits greater resilience
to variations in map size. As the map dimensions increase, the performance of the DQN
and DQN-SHAPE algorithms significantly degrades. In contrast, the DQN-HER algorithm
experiences minimal performance fluctuations and continues to preserve robust navigation
capabilities, even on larger maps.

In conclusion, the DQN-HER algorithm, which serves as the low-level component of
the GDH-DQN framework, outperforms the original DQN and the reward shaping method
DQN-SHAPE in terms of navigation success rate, stability, and efficiency in reaching the
target point with fewer steps. DQN-HER effectively addresses the sparse reward issue and
equips mobile robots with robust mapless navigation capabilities and enhanced intelligent
decision-making abilities.

4.5. Multi-Goals Experiment
4.5.1. Comparative Experimental Design

The GDH-DQN algorithm introduced in this chapter is a two-tiered architecture
that integrates the DQN algorithm with the addition of the hindsight experience replay
mechanism to each layer to enhance the algorithm’s performance. To validate the efficacy
of the enhanced GDH-DQN algorithm, an ablation study is conducted, comparing it to
the H-DQN algorithm, which lacks the hindsight experience replay mechanism. This
experiment aims to assess the performance of the single-layer DQN-HER algorithm against
the GDH-DQN algorithm, demonstrating the impact of the proposed hierarchical structure
and the hindsight experience replay on navigation success.

To underscore the advantages of the GDH-DQN algorithm in navigating expansive
environments, this chapter designs a series of maps and incorporates dead-end structures to
enhance environmental complexity. In addition to the 10× 10 and 20× 20 maps in Figure 7,
an additional 20 × 30 map is introduced, as depicted in Figure 10, further challenging the
navigation algorithms with a larger and more intricate space.
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4.5.2. Performance Index Design

The algorithm in this chapter adds a restriction on the number of exploration steps in
the training process, so the performance index is different. In addition to the highest and
average success rates in each environment, add collision and timeout rates. The collision
rate is the proportion of the training round that is stopped due to hitting an obstacle and is
calculated as the number of obstacles encountered per 100 training rounds. The timeout
rate is the percentage of a training round that is stopped because it exceeds the required
number of exploratory steps, calculated as the number of steps exceeded per 100 training
rounds. The quantitative relationship between indicators is in (5):

Success rate + Collision rate + Timeout rate = 100% (5)

The training outcomes are presented in Figure 11. A comparison of the success rate
curves reveals that the GDH-DQN algorithm outperforms the other two algorithms, with
a peak navigation success rate of 100%, suggesting that GDH-DQN is resilient to the
complexities introduced by structures such as dead ends. The convergence speed of the
DQN-HER algorithm is notably slower in this chapter due to the increased number of
exploration steps, while GDH-DQN and H-DQN converge within the specified number of
training rounds, indicating their effectiveness in learning optimal strategies and their rapid
learning capabilities. The size of the shaded areas in the figure reflects the variability in
algorithm performance: the broad shadow area for H-DQN signifies significant fluctuations
and a non-stationary issue during training, whereas the narrow shadow area for GDH-DQN
points to stable performance and effective mitigation of the non-stationary problem. Table 3
details the navigation success rates and other performance metrics for each algorithm. The
collision rate and trek rate represent the navigation outcomes at the peak success rate, while
the average success rate is the mean success rate across all training rounds.
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In the 10 × 10 maps, GDH-DQN achieved a peak success rate of 100%, outperforming
H-DQN by 1% and DQN-HER by 23%. In the 20 × 20 maps, GDH-DQN reached a high
success rate of 93%, which was 12% higher than H-DQN and 29% higher than DQN-HER.
In the 20 × 30 maps, GDH-DQN secured the highest success rate of 93%, surpassing
H-DQN by 19% and DQN-HER by 42%. When comparing the collision rate and timeout
rate, it is evident that the timeout rate exceeds the collision rate, suggesting that while
the agent finds it relatively easier to learn obstacle avoidance, mastering the optimal path
strategy presents a greater challenge. GDH-DQN demonstrates resilience to environmental
variations, effectively learning both obstacle avoidance and optimal paths. Moreover, the
average success rate of GDH-DQN is notably higher, indicating that the algorithm sustains
a high success rate throughout training and consistently maintains a performance edge.

Table 3. Results of navigation training.

Test
Environment Algorithm Highest

Success Rate Collision Rate Timeout Rate Average
Success Rate

10 × 10
GDH-DQN 100% 0% 0% 90.3%
H-DQN 99% 0% 1% 71.0%
DQN-HER 77% 8% 15% 45.9%

20 × 20
GDH-DQN 93% 3% 4% 77.6%
H-DQN 81% 7% 12% 59.1%
DQN-HER 64% 13% 23% 33.1%

20 × 30
GDH-DQN 93% 2% 5% 68.9%
H-DQN 74% 10% 16% 49.9%
DQN-HER 51% 20% 29% 27.7%

In summary, despite the constraints imposed by the number of exploration steps, the
GDH-DQN algorithm maintains a high success rate even as environmental complexity
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increases. It effectively addresses the sparse reward problem and overcomes the non-
stationary issue. In addition, GDH-DQN can learn the optimal strategy with fewer training
steps, and the navigation path is shorter, indicating that it has a higher degree of intelligence
and is suitable for large-scale and complex scene navigation.

4.6. Comprehensive Analysis of Performance Metrics
4.6.1. Navigation Success Rate

The results in Table 3 show that the GDH-DQN algorithm outperforms other baseline
algorithms by more than 30% in terms of the highest navigation success rate. Notably,
this advantage becomes more pronounced as the navigation scenario expands. In larger
scenarios, the average navigation success rates of the baseline algorithms H-DQN and
DQN-HER drop significantly to 50% and 28%, respectively, indicating that these two
baseline algorithms are almost incapable of effective navigation. In contrast, GDH-DQN
maintains an average success rate of 69% in these complex and large-scale scenarios. This
demonstrates the superior navigation performance of GDH-DQN in the Mars surface
navigation task under large-scale unknown scenarios.

4.6.2. Collision Rate

GDH-DQN and H-DQN both have a collision rate of 0% on a 10 × 10 map. However,
on larger maps, GDH-DQN maintains a lower collision rate (2%) compared to H-DQN
(10%) and DQN-HER (20%), indicating its superior obstacle avoidance capability. This
suggests that even as the size of the environment increases, GDH-DQN almost never
collides, demonstrating higher stability and safety.

4.6.3. Timeout Rate

The results in Table 3 show that GDH-DQN exhibits a lower timeout rate (5%) com-
pared to H-DQN (16%) and DQN-HER (29%), especially on larger maps. This indicates
that GDH-DQN can find shorter target paths more quickly. Analyzing this metric further
reveals that while H-DQN and DQN-HER algorithms learn to avoid obstacles, they do
not always find the optimal strategy and are prone to getting lost and timing out. This is
especially true for DQN-HER, which has a high timeout rate (15%) even on the smallest
maps. In contrast, the GDH-DQN algorithm demonstrates higher stability and intelligence.

4.6.4. Range of Success Rate Fluctuation

The shaded areas of the training curves in Figures 8 and 11 indicate that GDH-DQN
has smaller success rate fluctuations compared to H-DQN and DQN-HER, suggesting more
stable navigation performance.

4.6.5. Convergence Speed

The training curve results in Figures 8–11 show that GDH-DQN achieves higher
success rates with fewer training steps compared to H-DQN and DQN-HER. This demon-
strates the algorithm’s fast learning speed and quick convergence, as well as its ability to
save computational resources.

4.6.6. Average Steps to Reach the Target

According to the data in Figure 9, the DQN-HER algorithm requires significantly
fewer steps to reach the target compared to the DQN and DQN-SHAPE algorithms. This
indicates that the DQN-HER algorithm not only has a higher navigation success rate but
also finds shorter and more efficient paths, demonstrating higher efficiency in navigation.

5. Conclusions

This article primarily investigates a machine navigation algorithm for large-scale Mars
exploration scenarios based on deep hierarchical reinforcement learning. A novel deep
hierarchical reinforcement learning approach, GDH-DQN, is designed to decompose the in-
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herently complex problem into multiple subtasks. This not only enhances sample efficiency
but also mitigates the non-stationarity issues encountered during parallel training.

This algorithm is goal-driven, with a high-level target selection model choosing loca-
tion nodes as short-term goals, while a low-level obstacle avoidance control model provides
behavioral policies to achieve these short-term objectives, guiding the agent’s progress
toward long-term navigation goals. Each level employs a Hindsight Experience Replay
mechanism to enhance algorithm performance.

Various map sizes were used for experimentation, and the results validate the algo-
rithm’s navigation advantages in Large-scale planetary exploration scenarios. Experimental
data shows the algorithm’s high performance and strong adaptability when exploring com-
plex navigation environments. In the future, with appropriate modifications, this algorithm
can be extended to practical exploration applications in three-dimensional, unknown, and
complex scenarios.
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