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Abstract: Commercial aircraft fault diagnosis is an important means to ensure the reliability and safety
of commercial aircraft. Traditional knowledge-driven and data-driven fault diagnosis methods lack
interpretability in engineering mechanisms, making them difficult to promote and apply. To address
the issue of lack of interpretability, this paper conducts a fault knowledge graph for commercial
aircraft fault diagnosis, using the fault logic in the logic diagram to increase the interpretability of
diagnostic work. Firstly, to avoid the inefficiency of logic diagram applications, an executable logic
diagram model is established, which can perform mathematical analysis and achieve fault diagnosis
and localization using operational data as input. Then, the logic diagram is sorted out to obtain the
hidden fault knowledge in the logic diagram, which is used to construct a fault knowledge graph to
help achieve cause localization and rapid troubleshooting. The methods proposed in this paper are
all validated through case studies of abnormal low-pressure faults in domestic commercial aircraft
hydraulic systems. The results show that the logic diagram model can perform model simulation
and fault diagnosis based on operational data, and the fault knowledge graph can quickly locate
abnormal monitoring parameters and guide troubleshooting work based on existing information.

Keywords: commercial aircraft; logic diagram; fault diagnosis; operating data; knowledge graph

1. Introduction

Commercial aircraft are industrial products that comprehensively consider safety, reli-
ability, and economy, with safety being the most basic technical requirement for commercial
aircraft. Fault diagnosis, as an important technical means to ensure the high safety and
reliability of commercial aircraft, includes technical aspects such as fault detection, fault
location, and fault isolation [1-3]. At present, data-driven proxy model methods [4] and
knowledge graph methods based on technical manuals [5] are widely used in commercial
aircraft fault diagnosis.

The proxy model method is based on data to establish decision models and support
data analysis and feedback, solving practical engineering problems from a data perspec-
tive [6,7]. The core of the data-driven approach is data modeling. In the domain of
commercial aircraft fault diagnosis, researchers frequently employ methodologies rooted in
machine learning and deep learning to construct precise and efficacious predictive models.
Shao [8] introduced an enhanced deep forest approach to address the multi-mixed fault
scenario in aviation gearboxes with limited data samples. Mallikarjuna [9] leveraged both
time-domain and frequency-domain vibration data from aircraft gearboxes, applying long
short-term memory (LSTM) network models to achieve robust health monitoring and
accurate fault diagnosis. Meanwhile, Liu [10] developed a Bayesian network-based fault
diagnosis technique specifically for commercial aircraft’s environmental control systems,
offering ground crews an efficient tool for isolating faults within these critical systems. The
essence of the above research is to construct an explicit fault diagnosis model based on data,
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so that the model continuously approaches the implicit relationship between monitoring
data and fault states, thereby achieving data-driven fault diagnosis.

Knowledge graph (KG) methodology focuses on structuring expert knowledge [11],
maintenance manuals [12], and various technical documents to form a knowledge graph.
This endeavor aims to catalyze more expedient and precise identification and diagnostic
procedures for faults. The difficulty in constructing a knowledge graph lies in how to accu-
rately extract data entities and relationships from data files. Scholars have also conducted
many studies in this field: Xing [13] proposed the BMLSTM (Boyer-Moore long short-term
memory network) algorithm for unstructured commercial aircraft fault isolation manuals to
efficiently extract manual knowledge. Meng [14] introduced the ERNIE model on the basis
of LSTM based on manuals and fault cases, and constructed a fault knowledge graph for
aircraft health management. Nie [15] improved the bidirectional long short-term memory
network through an attention mechanism, and achieved the construction of fault maps and
intelligent question-answering applications for commercial aircraft power systems.

Looking at the above two methods, whether knowledge-based or data-driven, the
central focus in the realm of fault diagnosis research is undeniably algorithm optimiza-
tion, with a strong emphasis on enhancing model accuracy [16] and boosting operational
efficiency [17]. However, in terms of specific faults, neither method has good interpretabil-
ity, making it difficult to effectively promote and apply in engineering [18]. To address
the above issues, we should start from the fault logic of commercial aircraft products
themselves, and then combine operational data and knowledge graph methods to achieve
efficient fault diagnosis.

The main manufacturers of commercial aircraft have sorted out the logic of aircraft
failure occurrence through methods such as fault mode and effect analysis [19], fault
tree [20], and logic diagram [21]. The bottom layer of the logic diagram is directly or
indirectly related to aircraft sensor monitoring data, providing a foundation for combining
fault logic with operational data and conducting fault diagnosis work. Ground crews
usually use logic diagrams to infer all possible causes of a fault and troubleshoot them one
by one when the fault isolation manual cannot solve a certain fault. Given the inefficiency
of manual reasoning, this paper establishes a Simulink mathematical model based on logic
diagrams to provide efficient and accurate decision-making models for aircraft operation
data, thereby supporting rapid troubleshooting and fault location of commercial aircraft.
At the same time, in order to effectively apply the knowledge of the above fault causes
and triggering conditions, a knowledge graph is used to integrate the logical information
in the logic diagram, supporting the retrieval and localization of fault causes without
data support.

The main work of this article is organized as follows: Firstly, in Section 2, we introduce
the mathematical modeling methods of logic diagrams and the basic theory of knowledge
graphs. Subsequently, in Section 3, we illustrate our approach by developing a fault logic
diagram model, using characteristic failures in the hydraulic systems of commercial aircraft
as a practical scenario. This model facilitates fault diagnosis and localization by leveraging
operational data in tandem with logic diagram representations. Then, in Section 4, based
on the logic diagram, possible reasons for faults and monitoring parameters are sorted out,
and a knowledge graph is established between monitoring parameters, fault reasons, and
fault types. The application of knowledge graph in commercial aircraft fault diagnosis was
explored. Finally, Section 5 summarizes the work of the paper.

2. Basic Theory
2.1. Logic Diagram and Mathematical Modeling

Airbus used Electronic Centralized Aircraft Monitoring (ECAM) for the first time on its
A310 aircraft [22]. ECAM serves as a centralized monitoring, alarm, and decision feedback
system, reducing the operational pressure on pilots and effectively improving flight safety
and reliability. However, the introduction of electronic systems has brought enormous
challenges to ground crew handling in fault diagnosis work [23]. For this purpose, Airbus
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launched the ECAM System Logic Data (ESLD) manual [24], sorting out the underlying
logic of detectable faults, which details the working logic, operation, and troubleshooting
procedures of the ECAM system and its related components, providing assistance for
ground crew to conduct fault isolation and maintenance decisions. At present, Airbus has
built a full aircraft ESLD manual for A318-A321 models, which includes 1693 detectable
faults in various ATA chapters [25].

The logic diagram includes three parts: logic input, logic processing, and logic output.
Figure 1 shows the main structural information of the logic diagram. There are three
forms of logic inputs: Boolean input, continuous input, and logic table input. Boolean and
continuous input are usually aircraft monitorable parameters, while logic table input is the
logic output of a certain sub-level logic diagram. The implementation of logic processing is
based on logic components such as AND gates, OR gates, delayed excitation, conditional
judgment, and so on. Logic output refers to the current fault alarm form, such as sound
warning, visual warning, etc. Ground crew will check the ECAM alarm records after the
flight ends, find the fault information that has occurred, and carry out fault inference and
manual troubleshooting based on the logic diagram.
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Figure 1. Schematic diagram of the main structure of the logic diagram.

To further improve the efficiency of fault diagnosis based on logic diagrams, a math-
ematical model of logic diagrams can be established using Simulink. The model can use
aircraft Quick Access Recorder (QAR) data as input for model data processing and fault
diagnosis analysis. The general steps for constructing an electronic logic diagram model
based on Simulink are as follows:

(1) Input component modeling and design: In Simulink, input components can be
defined through the From WorkSpace component provided by the system, and different
input components are distinguished by component names and input parameter types.

(2) Logic processing component modeling and design: There are logic components
such as AND gates, OR gates, and NOT gates in the Simulink logic component library
that can be directly called and processed. However, for logic components that are not
available in Simulink, such as conditional judgment and delayed excitation, Simulink also
supports custom component design. By establishing Function components and defining
the mathematical relationship between their inputs and outputs, new logic components
can be constructed. Taking conditional judgment logic components as an example, their
mathematical relationship can be defined as:

Y, {1, X; > 40Kt

0 X < 40Kt(l =1,2,...n)

1)
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where X; is the input timing data, Y; is the output timing data after conditional judgment,
and i is time, counted every second. The conditional judgment component uses 40 Kt as
the judgment condition. If it is greater than or equal to 40 Kt, the output is one. Otherwise,
the output is zero. The conditional judgment component is mostly used to process con-
tinuous input data at the bottom of a logic diagram, converting them into fault logic for
backward transmission.

(3) Output component modeling and design: In the logic diagram model, it is not
possible to directly construct components such as sound warning and visual warning.
Usually, signal output components in Simulink are used to record output data curves,
which can intuitively reflect the fault status.

2.2. Knowledge Graph

The notion of knowledge graphs dates back to the 1950s, with initial research efforts
centered around semantic networks [26], an approach that intuitively depicts relationships
among entities. The concept gained widespread public recognition in 2012, following the
introduction of Google’s Knowledge Graph [27]—an initiative aimed at enhancing search
engine intelligence. Its objective is to refine query understanding and deliver more accurate,
direct responses by interpreting the semantic context of user inquiries.

A knowledge graph can be formally defined as a graph-based data structure compris-
ing entities, relations, and attributes. Mathematically, this structure can be represented as a
collection of triples:

Kg={(h,r,t)|hteEreP} ()

where E denotes the set of entities, and P represents the set of relations. The triplet (h, 7, t)
signifies a fact, wherein the head entity / is linked to the tail entity t via the relation r.

The graphical content of a knowledge graph mainly consists of nodes, edges, and
properties. The partial graph content involved in the field of commercial aircraft fault
diagnosis is shown in Figure 2. The circular shape in the graph is used to represent nodes,
which represent entities in the knowledge graph. They can be concrete things or abstract
concepts, and each node has a unique identifier to distinguish different entities in the
graph. Edge represents the relationship between nodes, with each edge having a direction
pointing from one node to another, indicating some kind of relationship between the
previous node and the next node. Attributes can be attached to nodes or edges to provide
additional information.

Associate

Solve measures

pport

Collect
Use Aerial
Material

Figure 2. Graphical structure of knowledge graph.

2.3. Proposed Method

To address the lack of interpretability in data-driven and knowledge-driven fault
diagnosis methodologies, our study employs the fault logic diagrams of commercial aircraft
for diagnostic analysis and the construction of a knowledge graph. The technical approach
outlined in this paper is depicted in Figure 3. As illustrated, we initially selected the
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fault logic diagrams pertinent to typical systems of commercial aircraft and collected
operational data specifically targeting the underlying monitoring parameters indicated by
these diagrams. Subsequently, to enhance the efficiency of applying the logic diagrams and
circumvent the inefficiencies of technical manuals reasoning, we established executable
models of the logic diagrams using Simulink. The collected operational data serve as inputs
to these models, enabling automated fault diagnosis procedures. Finally, the fault logic
embedded within the diagrams allows us to infer combinations of monitoring parameters,
intermediate faults, and top-level system faults that could potentially lead to a fault. These
three elements serve as knowledge inputs for the development of a commercial aircraft fault
diagnosis knowledge graph, thereby encapsulating the aforementioned diagnostic efforts
in graphical form for convenient reuse, thus eliminating redundant model simulation tasks
in future applications.

(
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Figure 3. Technical roadmap of the proposed method.

3. Cases Analysis of Fault Diagnosis Based on Logic Diagram Model

This Section takes the ARJ21 aircraft 1# hydraulic system as the analysis object, con-
structs a fault logic diagram for its abnormal low-pressure fault, uses Simulink to establish
a mathematical model of the logic diagram, and combines aircraft QAR data to carry out
fault diagnosis and location.

3.1. Logic Diagram of Abnormal Low-Pressure Fault in 1# Hydraulic System

The establishment process of the commercial aircraft fault logic diagram is as follows:
firstly, conduct functional hazard analysis, fault mode and effect analysis, and fault tree
analysis to determine monitoring faults, fault causes, and fault transmission logic, respec-
tively. Then, determine the sensor types and monitored parameters of the underlying
fault triggers combined with the Engine Indicating and Crew Warning System (EICAS)
manual. Finally, a logic diagram is established based on the monitoring parameters and
fault logic of the underlying sensors. The logic diagram of an ARJ21 aircraft 1# hydraulic
system abnormal low-pressure fault established based on the above process is shown in
Figure 4. As shown in Figure 4, it can be seen that the nine monitoring parameters that
cause abnormal low pressure in the 1# hydraulic system are left engine speed, 1# AC Motor
Pump (ACMP) power on status, 1# ACMP switch ON status, aircraft wheel load status,
airspeed, 1# Engine Driven Pump (EDP) low-pressure status, 1# ACMP low-pressure status,
1# system pressure, and 1# hydraulic system oil quantity.
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Figure 4. Logic diagram of abnormal low-pressure fault in 1# hydraulic system.

3.2. Mathematical Modeling of Abnormal Low-Pressure Logic Diagram

Based on the logic diagram of abnormal low-pressure faults in the 1# hydraulic system,
fault monitoring parameters and fault transmission logic can be determined. However, the
logic diagram is usually used for logical reasoning and cannot be directly used for data
analysis and fault diagnosis based on QAR data. Therefore, it is necessary to establish a
logic diagram model of abnormal low-pressure faults in the 1# hydraulic system based
on Simulink.

The underlying monitoring inputs in the logic diagram ultimately need to be trans-
formed into Boolean values for backward transmission. Therefore, for the four continuous
variables at the bottom, it is necessary to customize conditional judgment components in
the model to transform continuous parameters into Boolean values. Taking the continuous
monitoring parameter of left engine speed as an example, when the engine speed exceeds
20%, the output is one, otherwise, the output is zero. The mathematical relationship of
the custom left engine speed condition judgment component in the model is shown in
Equation (3).

3 o,
Y, {10 52522000//:(1':1,2,...71) 3)

The other five Boolean monitoring parameters can be directly passed back, but for the
parameter “1# ACMP switch ON status”, its duration needs to be determined and judged.
Therefore, a custom delay excitation element is needed to process this monitoring parameter.
The mathematical relationship of the delay excitation element defined as “whether ACMP
is in the ON position for 12 consecutive seconds” is shown in Equation (4), which means
that when ACMP is continuously started for 12 s, the output Boolean value one is passed
back, otherwise the output is zero.

[0, X;=0 L
Y"{ e ®

When the logic diagram ultimately triggers a fault, it is also necessary to use delayed
excitation elements to isolate abnormal data. The abnormal low-pressure fault is triggered
only when the logic diagram outputs one continuously for 3 s, otherwise, the fault will
not be triggered. At the same time, to highlight the fault information, after triggering



Aerospace 2024, 11,773

7 of 14

the fault with a delay of 3 s, the fault information is highlighted by outputting five. The
mathematical relationship of custom components triggered by fault delay is shown in
Equation (5).

Y=< [1Xdt, X;=1,(i=12,...n). 5)
0, X;=0

In addition to custom components, Simulink has built-in logic processing components
such as AND gates, OR gates, and NOT gates, and supports quick setting of input com-
ponents. Therefore, a logic diagram model for abnormal low pressure in the 1# hydraulic
system can be quickly established based on Simulink, as shown in Figure 5.
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Figure 5. Logic diagram model for abnormal low-pressure fault based on Simulink.

3.3. Diagnosis and Localization of Abnormal Low-Pressure Fault

During the post-flight inspection of a certain flight, the ARJ21 crew of a certain airline
discovered abnormal low-pressure fault alarm information in the 1# hydraulic system.
The ground crew obtained aircraft operation data from the quick access recorder and
screened 9 monitoring parameters that caused low-pressure faults, totaling 8432. Among
them, there are differences in the recording format of the monitoring data of Boolean
parameters, such as the recording format of “1# ACMP power on status” and “1# ACMP
switch ON status” being ON/OFF. The recording format for “aircraft wheel load status”
is GND/AIR. The recording format for “1# ACMP low-pressure status” and “1# EDP
low-pressure status” is LOW /NOT-LOW. For the convenience of the logic diagram model
to make logical judgments on Boolean inputs, it is necessary to unify the different record
formats mentioned above into 0/1 form. Therefore, “ON/AIR/LOW” should be changed
to “1”, while others should be changed to “0”.

Then, call QAR data in MATLAB as the model input of abnormal low-pressure logic
diagram, run the logic diagram model to carry out data analysis and fault diagnosis, and
use the “signal output” component to record the model output. The output results of QAR
data after fault diagnosis through a logic diagram are shown in Figure 6.
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Figure 6. QAR data fault logic analysis output results.

As is shown in Figure 6, it can be seen that the aircraft began to experience malfunctions
during Flight 6538, and an abnormal low-pressure fault occurred during Flight 6541, until
the fault disappeared during Flight 6543. Nine monitoring data items corresponding to
flight times 6538—-6543 were selected from the operating data, as shown in Table 1.

Table 1. QAR parameter data information table at Flight 6538-6543.

Parameter Name 6538s 6539s 6540s 6541s 6542s 6543s Normal Ranges
1# EDP low pressure 1 1 1 1 1 0 0
1# ACMP low pressure 0 0 0 0 0 0 0
System pressure 2457 2457 2455 2455 2453 2453 >1800
Left engine speed 64.6 64.8 65.0 65.0 65.2 65.2 >20
1# ACMP power on 1 1 1 1 1 1 1
1# ACMP switch ON 1 1 1 1 1 1 1
Aircraft wheel load 1 1 1 1 1 1 1
Airspeed 186 186 186 187 187 187 >20
System oil quantity 453 45.3 454 454 454 454 >14

The out-of-limit and abnormal situations of the nine monitoring data items were
judged: all nine monitoring parameters have normal parameter ranges, such as the rea-
sonable parameter range for “EDP low pressure” should be zero. However, the EDP
low-pressure monitoring parameters in the table below are all one from 6538s to 6542s,
which triggered a hydraulic system low-pressure fault. Therefore, fault location can be
carried out for the low-pressure factor of EDP, and problems such as EDP failure itself and
EDP pressure switch failure can be investigated.

4. Construction and Application of Fault Knowledge Graph

This Section uses a knowledge graph to record the knowledge information in the fault
logic diagram, forming a fault knowledge base to help ground personnel achieve rapid
troubleshooting and cause localization, thereby avoiding unnecessary model simulation
work. This Section first summarizes the fault knowledge based on the logical diagram
model fault diagnosis results, including monitoring parameters, intermediate faults, and
top-level fault entities and their relationships. Then, the Neo4j graph database manage-
ment system is used to establish a fault knowledge graph, achieving visual display and
knowledge storage of the graph. Finally, based on the Cypher query language in Neo4j, the
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intermediate faults and monitoring parameters are queried corresponding to a certain fault
to verify the effectiveness of the knowledge graph.

4.1. Fault Knowledge

Fault knowledge, as input to the fault knowledge graph, can be obtained from the
logic diagram. In the third Section, we input operational data into the logic diagram
model to monitor which monitoring parameters may cause faults, forming a complete fault
knowledge. This process requires a batch of abnormal operation data each time to obtain
fault knowledge. Therefore, if we want to obtain all the fault knowledge through operation
data, we need a huge amount of data and workload. In order to obtain fault knowledge
more efficiently, we can locate abnormal parameter combinations from the perspective of
logical reverse reasoning, thereby avoiding the huge workload of data simulation.

In order to efficiently obtain all possible combinations of abnormal parameters that
may cause faults, we use a logic diagram to infer possible combinations of abnormal
parameters in reverse. As shown in Figure 7, nodes M, R, K, and L are associated with
faults through a series of OR gates. Therefore, the occurrence of one or more of nodes
M, R, K, and L can lead to faults. The possible combinations of four nodes are shown in
Table 2. The fault combinations given in Table 2 are composed of nodes M, R, K, and L,
where nodes K and L are only related to one monitoring parameter. Node R is associated
with monitoring parameters R1 and R2 through AND gates. When both R1 and R2 have
data anomalies, it will cause an R fault. So, there is only one abnormal parameter situation
that causes the failure of nodes R, K, and L. However, for node M, it is associated with five
monitoring parameters M1, M2, M3, M4, and M5 through an OR gate. Therefore, if any
one or more of the five nodes have abnormal data, it will cause M to occur, leading to the
failure. Therefore, unlike nodes R, K, and L, node M includes 31 different combinations of
abnormal parameters.

Left engine speed

M1 §
1# ACMP power on state

M2 |-

1# ACMP switch ON position M
M3 }

Wheel load status

=

=
N
a4V aa - 4=

Airspeed

" S . 7( CODE
1# EDP low pressure 29-01-030

1# ACMP low pressure

.§

1# system pressure

1# system oil quantity

K
L

Figure 7. Assumed logic diagram and combination of fault causes.

In Table 2, there are eight types of node combinations that include M nodes. Consider-
ing that there may be 31 abnormal parameter combinations for the occurrence of M nodes,
there are 248 (8 x 31) abnormal parameter combinations for these 8 node combinations.
At the same time, considering the other seven node combinations in Table 2, they are only
related to seven parameter combinations. Therefore, there are a total of 255 abnormal pa-
rameter combinations that occurred in the case logic diagram. The above 255 combinations
of abnormal parameters will be used as inputs to construct a fault knowledge graph.
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Table 2. Fault cause combination and probability table.

Serial Number Fault Reason Serial Number Fault Reason

1 M 9 R, K
2 R 10 R, L
3 K 11 K, L
4 L 12 M, R, K
5 M, R 13 M,R,L
6 M, K 14 M, K, L
7 M, L 15 R, K, L
8 M,R,K, L - -

4.2. Fault Knowledge Graph

For the above fault combinations, a knowledge graph can be further established. The
two types of triplet information required to establish the graph are <monitoring parameters,
monitor, fault reason> and <fault reason, cause, fault type>. The monitoring parameters
in this case are one or more of the nine monitoring parameters involved in the abnormal
low pressure, and the fault type is the abnormal low-pressure fault. The fault reason is the
four intermediate faults in the logic diagram, namely, mechanical failure, hydraulic pump
failure, low oil level, and low-pressure output. Taking the case in Figure 7 as an example,
the fault knowledge involved is as follows: the monitoring parameters are “1# EDP low
pressure” and “1# ACMP low pressure”, the fault reason is “low-pressure output”, and the
fault type is “abnormal low-pressure fault”.

Neo4j is a visual knowledge graph software. We can store the above fault triplet infor-
mation in Neo4;j 5.15 software, and the stored fault knowledge is shown in Figure 8. Neo4j
software is a graph storage database that can retrieve graph content through structured
Cypher language. Assuming the current known abnormal low-pressure fault and fault
cause R, the monitoring parameters related to fault cause R can be retrieved using the
Cypher language, as shown in Figure 9. From the figure below, it can be seen that the abnor-
mal monitoring parameters “1# EDP low pressure” and “1# ACMP low pressure” can be
quickly retrieved based on the graph. Based on this, ground personnel can carry out inspec-
tion and replacement tasks on EDP and ACMP, thereby achieving rapid troubleshooting.

MATCH (n) RETURN n LIMIT 25
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Figure 8. Knowledge graph of abnormal low-pressure fault.
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MATCH (mp:Monitored_Parameter)-[m:Monitor]—(fc:Fault_reason {name:'Low oil level'})
-[c:Cause]—>(ft:Fault_Type{name: 'abnormal low pressure fault'})

Return *

UNION ALL

MATCH (mp:Monitored_Parameter)-[m:Monitor]—(fc:Fault_reason {name:'lLow pressure output'})
-[c:cause]—>(ft:Fault_Type{name: 'abnormal low pressure fault'})

Return *

N E

1# system MBrHoT Low pressure
pressure output

Cause

abnormal low
pressure fault

cavs®

1# system oil Monitor
quantity

Low oil level

Figure 9. Knowledge Graph Retrieval Results.

4.3. Deterministic Analysis of Knowledge Graph

The fault knowledge graph can store fault knowledge and help ground crews quickly
retrieve useful information to support troubleshooting work. But knowledge graphs cannot
quantitatively provide the probability of different fault causes occurring. Bayesian network
is a probabilistic graphical model that can further achieve quantitative inference of different
causes. Bayesian networks consist of nodes and directed edges connecting these nodes,
where nodes represent random variables and edges represent conditional dependencies
between these variables. The core of Bayesian inference is Bayes’ theorem, which describes
how to update probability estimates about a hypothesis based on prior knowledge and
newly obtained data. Bayes’ theorem can be expressed as Formula (6):

P(D|0)P(6)

P(eID) = —py

(6)
where P(0 | D) represents the posterior probability distribution of parameter 6 after ob-
serving data D; P(D | 0) is the probability of observing data D given the parameter 6; P(0)
represents the prior probability distribution of parameter 6 before observing any data; and
P(D) is the edge probability of data D, also known as the normalization constant.

We use logic diagrams to quickly construct Bayesian networks, where the conditional
probability distribution of nodes is provided by the AND or OR gates between nodes in
the logical graph, i.e., P(0 | D). Assuming we know the prior probability distribution P(6) of
each monitoring parameter and the current probability of fault occurrence P(D), we can
infer the posterior probability of each monitoring parameter under known fault occurrence
conditions through Bayesian inference, and thus determine which monitoring parameters
are most likely to cause faults. Then, we can locate relevant components and troubleshoot.

Genie 4.0 is a visualization modeling software for Bayesian networks, which has
built-in Bayesian inference algorithms. We can more intuitively and efficiently establish
Bayesian networks and achieve posterior probability solving. Based on the logic diagram of
the abnormal low-pressure fault in hydraulic system 1, we use Genie software to establish
a Bayesian network model as shown in Figure 10. The network model originates from
the basic structure of the logic diagram, where the left side of the model represents the
monitoring parameters, the middle part represents the defined logical relationship between
the AND or OR gate, and the right side represents the abnormal low-pressure fault. The
monitoring parameter node can determine the prior probability P(6) of the parameter by
calculating the proportion of anomalies in the operation data. The conditional probability
distribution P(D | 8) of event occurrence is defined mathematically with the AND and OR
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gate. When the probability of top event failure P(D) is known, the Bayesian network model
can reverse derive the conditional occurrence probability P(6 | D) of different monitoring pa-
rameters when the failure occurs, thereby providing support for the deterministic analysis
of monitoring parameters.
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Figure 10. Bayesian network model based on Genie.

4.4. Prospects for Future Research

A fault knowledge graph only constructs a knowledge database for fault information,
which can retrieve relevant fault reasons and monitoring parameters based on fault types,
but it is difficult to provide targeted troubleshooting suggestions based on specific problems.
By combining the above Bayesian network model, probability inference of fault causes can
be achieved. The inference results can be effectively combined with knowledge graphs to
achieve commercial aircraft fault diagnosis based on fault knowledge and operational data,
thereby enhancing the interpretability of fault diagnosis work. The schematic diagram
of the knowledge graph based on probabilistic reasoning is shown in Figure 11 below.
Compared to Figure 9, the following figure supplements the probability of different moni-
toring parameter failures, thereby supporting ground personnel in determining the actual
troubleshooting sequence. We have provided methods for constructing fault knowledge
graphs and quantitative fault inference, but both methods require further encapsulation to
provide convenient operational interfaces for ground handling.

=B 49%
1# system Monitor Low pressure
pressure output
i 8
Cauge £ g \5\
\
abnormal low |
| pressure fault |
\ 4/
cavs® \xu,//
1# system oil 310
Monit i
quantity onitor Low oil level

Figure 11. Schematic diagram of knowledge graph combined with probabilistic reasoning.
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5. Conclusions

To solve the lack of interpretability in knowledge-driven and data-driven approaches,
we conducted research on fault diagnosis and graph construction based on commercial
aircraft fault logic diagrams. The main tasks of this paper are as follows:

(1) We propose a logical diagram mathematical modeling method that enables logical
diagrams to be combined with operational data for mathematical analysis, fault diag-
nosis, and abnormal parameter localization. The proposed method provides a new
solution for the diagnosis of commercial aircraft faults, and provides interpretability
for fault diagnosis through fault logic.

(2) To expand the engineering application of logic diagrams, we conducted a deep anal-
ysis of the fault logic in logic diagrams, identifying the causes of faults and under-
lying monitoring parameters. The acquisition of fault logic knowledge provides
input for the construction of a fault knowledge graph and is a powerful tool for
later troubleshooting.

(3) We validate the above method using the abnormal low-pressure fault of the domestic
commercial aircraft hydraulic system. The validation showed that the logic diagram
model can accurately carry out fault diagnosis function in combination with operating
data, and the fault knowledge graph can accurately detect abnormal monitoring
parameters based on relevant information and guide troubleshooting work accurately.

(4) The fault knowledge graph and Bayesian network proposed in the paper can be
further encapsulated to provide a convenient interface for ground crews. Ground
crews can query the relevant causes of faults through the knowledge graph and
obtain the probability of different fault causes based on the Bayesian network, thereby
determining the priority of troubleshooting and supporting rapid troubleshooting
of routes.
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