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Abstract: Aircraft envelope expansion during the installation of new underwing stores
presents significant challenges, particularly due to the aeroelastic flutter phenomenon.
Accurate modeling of aeroelastic behavior often necessitates flight testing, which poses
risks due to the potential catastrophic consequences of reaching the flutter point. Traditional
methods, like frequency sweeps, are effective but require prolonged exposure to flutter
conditions, making them less suitable for transonic flight validations. This paper introduces
a robust deep learning approach to process sine dwell signals from aeroelastic flutter flight
tests, characterized by short data lengths (less than 5 s) and low frequencies (less than
10 Hz). We explore the preliminary viability of different deep learning networks and
compare their performances to existing methods such as the PRESTO algorithm and
Laplace Wavelet Matching Pursuit estimation. Deep learning algorithms demonstrate
substantial accuracy and robustness, providing reliable parameter identification for flutter
analysis while significantly reducing the time spent near flutter conditions. Although the
results with the networks trained show less accuracy than the PRESTO algorithm, they are
more accurate than the Laplace Wavelet estimation, and the results are promising enough to
justify extended investigation on this area. This approach is validated using both synthetic
data and real F-18 flight test signals, which highlights its potential for real-time analysis
and broader applicability in aeroelastic testing.

Keywords: aeroelastic flutter; flight testing; deep learning; convolutional neural network;
deep neural network; multi-layer perceptron; sine dwell; system identification; damping;
natural frequency; PRESTO algorithm; Laplace wavelet matching pursuit; real-time
analysis; aircraft envelope expansion; real data analysis

1. Introduction
The validation of aircraft airworthiness during flutter flight tests is a critical step in

expanding the flight envelope of new or modified aircraft designs, as described in [1,2].
These tests involve different steps, one of which is the identification of aeroelastic flut-
ter, a condition where aerodynamic forces couple with structural dynamics, resulting in
self-excited oscillations. One of the final steps during flutter testing is the analysis of
signals captured during flight (at different dynamic pressure flight conditions) to estimate
parameters, such as natural frequencies and damping, which are essential for determining
safe flight conditions at each point of the flight envelope.
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Traditional methodologies, such as frequency sweeps, remain the most commonly
used approach in flutter flight tests [3]. These methods, often analyzed using the Rational
Fraction Polynomials technique [4–6], have been enhanced by advanced modal estimation
techniques such as Polymax and Stochastic Subspace Identification (SSI) [7,8]. Although
effective, these techniques require a significant amount of time near flutter conditions,
particularly during transonic regime testing, where aeroelastic behavior becomes highly
nonlinear and less predictable [9,10]. This prolonged exposure significantly increases safety
risks and operational complexity.

An alternative to frequency sweeps is the use of sine dwell excitations, which involve
short-duration, low-frequency signals [3]. Although sine dwell excitations offer significant
advantages in minimizing the time spent near critical flutter conditions, their use in flutter
analysis has been limited, mainly due to the complexity of analyzing short-duration and
low-frequency signals. For this reason, few researchers have explored this approach in
depth. Notable examples include Lind [11], who applied Laplace Wavelet techniques to
estimate modal parameters, and Barros-Rodriguez et al. [12], who utilized Singular Value
Decomposition (SVD) filtering to address noise challenges. Mehra [13] used the Prony
method for parameter identification, while Chabalko et al. [14] investigated the use of
continuous wavelet transforms to analyze short-duration signals. A more recent method,
the Power Spectrum Short Time Optimization (PRESTO) approach, was introduced in [15].
This technique begins with a rapid initialization of parameters using basic spectral analysis,
providing a robust starting point. It then refines these parameters through a time-domain
optimization process employing a trust-region-reflective algorithm, ensuring precise and
reliable results.

Although these methods have shown promise in specific applications, they face notable
limitations, such as computational inefficiency, reduced accuracy in low signal-to-noise
ratio environments, and difficulties in handling short data lengths characteristic of sine
dwell signals. These challenges highlight the need for innovative approaches to effectively
and reliably analyze such data.

Deep learning (DL) has emerged in recent years as a transformative tool in fields such
as signal processing, image recognition, and system identification [16]. Convolutional
Neural Networks (CNNs) and Deep Neural Networks (DNNs), in particular, have shown
exceptional performance in processing complex, noisy datasets. However, their application
in flutter flight testing remains largely unexplored to date. Although studies like [17–19]
have utilized DL to classify flutter conditions or predict airspeed thresholds, the direct
estimation of aeroelastic parameters from flight test data has received limited attention.
This is particularly true for sine dwell signals. Challenges such as adapting DL architectures
to the specific nature of flutter data and ensuring robust performance with noisy, short-
duration signals remain unresolved.

This paper proposes a novel application of DL techniques, including CNNs and DNNs,
to process sine dwell signals for accurate parameter identification in flutter testing. By
leveraging synthetic datasets for training and comparing DL methods against established
techniques such as PRESTO [15] and Laplace Wavelet Matching Pursuit estimations [11],
we aim to demonstrate the feasibility and advantages of DL in this domain. The proposed
approach addresses key limitations of existing methods, such as computational inefficiency
and reduced accuracy in noisy environments, while facilitating the development of real-
time in-flight analysis.

The remainder of this paper is structured as follows. Section 3 provides an overview of
the materials and methods, including the generation of synthetic datasets, DL architectures,
and evaluation metrics. Section 4 presents the experimental results, comparing DL methods
with traditional approaches on both synthetic and real flight test data. Finally, Section 5
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examines the implications of these findings and outlines future directions for research in
this area.

2. Scope and Limitations
The objective of this paper is to present a novel deep learning-based method to analyze

sine dwell flutter signals, subject to the following limitations:

1. Preliminary viability analysis. The resources available to the authors to train net-
works are limited, and therefore a small-scale model has been presented. This factor
affects the number of networks that were trained and the characteristics of the inputs
and outputs.

2. Limited number of modes. Although it is possible to generate an unlimited number
of signals with any number of modes, each new mode introduces at least four new
parameters, and therefore the number of different combinations increases exponen-
tially with the power of 4. While it is not uncommon to see interactions of three
different modes in real flutter flight tests, this analysis will take into consideration the
simplest case of two different modes. However, note that the model is not limited
by the nature of the interacting modes, meaning that the modes do not need to be
perfectly orthogonal for the analysis to yield useful results.

3. Real data parameters are not validated. The F-18 signals were acquired during flutter
flight tests from a real source. However, data on the estimated parameters, airspeeds,
or altitudes were not provided either before (preparation) or after (analysis) the
tests. This imposes a strong limitation on the metrics available for real data analysis,
allowing only a plot of real vs. reconstructed data to be used.

3. Materials and Methods
This section describes the methodology and resources used in this study. The aim is

to evaluate the use of deep learning techniques to identify aeroelastic flutter parameters
from sine dwell signals. The generation of synthetic datasets, the design of neural network
architectures, and the evaluation metrics are explained. Comparisons with traditional
methods such as the PRESTO algorithm and Laplace Wavelet Matching Pursuit estimation
are also provided for reference.

PRESTO and Laplace Wavelet Matching Pursuit are similar processing techniques that
rely on models described in standards [20,21], offering precise solutions. However, the
application of machine learning in this field remains largely unexplored. To date, no study
has specifically focused on flutter parameters identification from flight test data.

Regarding recent investigations, [17] employed DNN-based methods to predict flutter
airspeed during the analysis phase, prior to flight testing. Although their work focuses
on pre-flight analysis, it does not address the direct identification of flutter parameters
during flight.

In [18,19], the authors presented approaches that align more closely with the objectives
of this paper by utilizing CNN models. Their methods were applied to flight test data, but
validation was primarily based on wind tunnel test data. Instead of identifying system
parameters, these studies classified flight conditions as flutter or no-flutter.

Similarly, [22] applied a DNN to analyze flight test data. However, their study focused
on modeling the global behavior of the structure rather than on identifying specific flutter
parameters.

Perhaps the most comparable work is that of [23], who explored techniques such
as CNNs and Multi-Layer Perceptrons (MLPs), in the context of helicopter rotor blade
applications. While their work is similar to this study, it does not involve the analysis of
sine dwell data analysis.
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The method proposed by the authors focuses on accurately identifying the flutter
parameters of the aeroelastic equations of motion. The main advantages of this method
include the ability of MLPs, DNNs, and CNNs to provide near-instantaneous results once
trained, even on a low-end personal computer. This capability could enable effective
real-time analysis. Additionally, if the training set includes a sufficiently broad range of
training parameters, it might be possible to identify accurate flutter parameters for a given
number of modes, not just two.

The main limitation of this method is the need for an accurate model to provide
reliable data. Obtaining reliable real flight data with accurate output parameters, such as
those derived from Ground Vibration Tests, is challenging. There is no public source of
reliable data to match estimated mode values with the signals themselves. Instead, the
signal model from [20] was used to generate synthetic training sets (and will be the model
employed to fit the data and identify parameters) using Equation (1):

x(t) =
N

∑
j=1

aj · e−ζ jωnjt sin (ωdjt + φj) + ν(t), (1)

where N is the number of vibration modes, aj is a constant representing the initial amplitude
of mode j, ζ j is the damping factor of mode j, ωnj represents the natural angular frequency

of the structure, t is the time variable in seconds, ωdj = ωnj

√
1 − ζ2

j is the damped angular

frequency of mode j, φj represents the phase angle of mode j at t = 0, and ν(t) accounts for
structural and aerodynamic noise, which is assumed to be random.

The parameters required to characterize the aeroelastic behavior of the j-th mode are
the amplitude aj, the damping factor ζ j, the natural angular frequency ωnj, and the phase
angle φj.

Even though this model may seem simplistic by assuming a linear relationship be-
tween various factors (aerodynamic and other linear and nonlinear interactions, such
as gaps, hysteresis from structural damping, etc.) that are not properly modeled in
Equation (1), [20] ultimately calls for monitoring two main parameters for the critical
flutter modes: modal frequency and damping. Assuming that the mechanism responsible
for flutter can be modeled by a second-order linear Ordinary Differential Equation (ODE),
all interactions are simplified to Equation (1).

It is important to note that the authors are not dismissing the significance of other
nonlinear interactions with the natural modes by assuming that the second-order linear
ODE will govern the flutter mechanism. These interactions will influence the approach to
the flutter phenomenon, either accelerating or delaying flutter onset, which is crucial given
the severe consequences of reaching a flutter point. This limitation must be considered
when applying any analysis technique. Experienced engineers shall develop a sensible
test plan based on all available information, noting that the methodology described in this
paper will not provide information on flutter onset.

Considering all caveats and limitations, the potential of this technique is sub-
stantial, and it is worth exploring to develop accurate trained networks with the
described advantages.

3.1. Input Layer

Two processes are defined for adapting the input data, depending on the network
type: MLP-based (including MLPs and DNNs) and CNNs.
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3.1.1. MLP-Based Networks Input Layer

The adaptation process for MLP-based networks, including data transformation steps,
is illustrated in Figure 1. The initial dataset consists of a time signal extracted from one of
the aircraft sensors, typically a 5 s signal sampled at 80 Hz. However, the duration may
vary depending on the expected modal frequencies of the critical flutter modes.

The following algorithm is followed:

1. A Discrete Fourier Transform (DFT) is applied to the time-domain signal, and the real
and imaginary parts are separated.

2. From each subset, 70 frequency samples are extracted (corresponding to a maximum
frequency of 14 Hz if 5 s signals are used).

3. The positive frequency components of both the real and imaginary parts of the DFT
are then concatenated.

This process results in a new signal, 140 samples long, composed of the concatenated
real and imaginary parts of the DFT, which will be used as input for the MLP-based network.

Figure 1. Diagram of data preparation for MLP and DNN networks.

3.1.2. CNNs Input Layer

For CNNs, a different approach must be followed. A 2D matrix of input data is
required instead of a vector. Additionally, the authors emphasized the need to introduce
as much phase information from the signals as possible. Given the characteristics of the
different stages of the CNN, which reduce the number of neurons on each pooling process,
a sensitive measure is to create an input layer with enough rows as to allow for the pooling
process to reduce without losing information, and therefore redundancy in the form of
projections was chosen.

The starting dataset is the same as for MLP-based networks. To convert it into a 2D
matrix, the following preprocessing steps are performed:

1. Define a list of unitary vectors on the complex plane, which will constitute the basis
for a vector space V ∈ Rk, defined by a set of vectors vk. Each vector is calculated as:

vk = ℜ
{

ei· 2πk
K · Xn

}
(2)

where k is the index of the vector, K is the total number of vectors (in this applica-
tion, K = 16, which includes 14 unitary vectors, along with the real part and the
imaginary part), and Xn represents the frequency data points. These vectors are
equally distributed around the unit circle in the complex plane. Refer to Figure 2 for
visualization.

2. Trim the original time series signal to 5 s samples, or apply zero-padding until 5 s of
signal are reached.
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3. Calculate the DFT of the time series. The result is a vector V ∈ C with 200 elements
defined on the base B.

4. Select the first 70 data points, which correspond to a maximum frequency of 14 Hz.
5. Project each frequency vector onto the vector space defined in step 1 above. The

projection values will be used to introduce redundancy, and the 16 projection values
will constitute the rows of the input matrix. See Figure 2.

Figure 2. Construction of the input matrix for CNN processing. Once the time series dataset is
transformed into a complex frequency spectrum, each point (example as a blue vector) will be
represented in the base B (red vectors) and projected onto the vector space V (black vectors). Note
that the unit vectors B are a subset of V.

Finally, the input will be a 16 × 70 matrix including redundant information.

3.2. Output Layer

In all cases, the output layer will consist of 4 neurons, corresponding to the natural
frequencies and damping factors of the two modes analyzed (2 natural frequencies and
2 damping factors).

Note that the original parameter list to be identified also includes the amplitude and
phase angle for each mode. These amplitudes and phase angles were estimated using a
classical matching pursuit process [24].

3.3. Networks Design

Three types of neural networks are utilized: MLPs, DNNs, and CNNs. While de-
tailed descriptions of each network are beyond the scope of this paper, refer to [16] for
foundational information.

3.3.1. Multi-Layer Perceptron Design

The MLPs consist of an input layer with 140 neurons, one hidden layer with a varying
number of neurons depending on the network configuration, and an output layer with
4 neurons. The hidden layer employs the sigmoid activation function, enabling nonlinear
transformations to capture complex relationships within the data. A diagram of these
networks is shown in Figure 3.
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In this paper, the number after each MLP designation indicates the number of neurons
in the hidden layer. For example, MLP 20 indicates that the network has 20 neurons in its
hidden layer.

Input
140

w

b

+

x20

w

b

+

x20

w

b

+

x4

w

b

+

x4

Output
4

Figure 3. Multi-Layer Perceptron sample network diagram. This example depicts an MLP with
20 neurons in the hidden layer.

3.3.2. Deep Neural Networks Design

DNNs are an extension of MLP networks. In this case, the network comprises
more than one hidden layer, but follows exactly the same approach as MLP networks
in Section 3.3.1 above. An example of the DNN design can be found in Figure 4. As in the
case of the MLPs, our application also considers 140 input samples and 4 outputs, with a
different number of hidden layers. Again, the activation function selected for the hidden
layers is the sigmoid function.

In the case of DNNs, the DNN designation indicates the number of hidden layers and
the number of neurons in each hidden layer. For example, DNN 2 × 20 indicates a DNN
with 2 hidden layers and 20 neurons in each hidden layer.

Input
140

Output
4

w

b

+

x40

w

b

+

x40

w

b

+

x40

w

b

+

x4

w

b

+

x4

w

b
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x4

w

b

+

x40

w

b

+

x40

w

b

+

x40

w

b

+

x40

w

b

+

x40

w

b

+

x40

Figure 4. DNN sample. In this case, a DNN with one input layer, three hidden layers, and one output
layer is depicted. Each hidden layer has 40 neurons.

3.3.3. Convolutional Neural Networks Design

CNNs are similar to DNNs as they both consist of multiple hidden layers. However,
the primary difference lies in how they compute the output parameters of the layers.
CNNs use a convolution operation between the input matrices and the different layer
parameter matrices, unlike DNNs that rely on compositions of linear transformations.
The complete block diagram of a CNN with two hidden layers is depicted in Figure 5.
Although there are various CNN architectures, the one used in this paper is detailed below
with two hidden layers. Each layer involves different steps, and the process applied to our
system is as follows:

1. Input Layer. The inputs are matrices for each dataset, which are formatted to represent
a regular pattern, typically an image. In our case, the input is a data matrix as
described in Section 3.1.2. So, the input layer will consist of 70 × 16 neurons.
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2. Convolutional process. Each convolutional process, depicted in Figure 5 as an el-
liptic box, includes a convolutional layer followed by several processes to improve
operational performance:

(a) Convolutional Layer. This layer performs the convolution operation on the
input matrix using the weights matrix.

(b) Normalization Process. This step normalizes the outputs to control their range
and prevent saturation. A bias is added and a multiplier is applied, both of
which are adjusted during training.

(c) Rectification Process. This step converts negative values to zero.
(d) Pooling Process. The convolutional matrices are downsampled using smaller

windows.

3. Connection Layer. This layer connects and reduces all outputs from the final convo-
lutional block to the four output parameters. It functions as a classical perceptron
layer, collecting outputs from the convolutional layers and generating outputs for the
regression problem.

4. Regression Layer. Before returning the final parameters, a regression layer is applied
to optimize the outputs.

Input
layer

Convolutional
Process 1

Convolutional
Layer 1

Normalization
process

Rectification
process

Pooling
Process

Convolutional
Process 1

Convolutional
Layer 1

Normalization
process

Rectification
process

Pooling
Process

Convolutional
Process 2

Convolutional
Layer 2

Normalization
process

Rectification
process

Pooling
Process

Convolutional
Process 2

Convolutional
Layer 2

Normalization
process

Rectification
process

Pooling
Process

Connection
Layer

Regression
Layer

Figure 5. Sample CNN. This example illustrates a CNN with one input layer, two convolutional
layers, one connection layer, and one regression layer. Each convolutional layer employs a different
number of neurons and convolutional processes.

This example illustrates a CNN with two hidden convolutional blocks. However,
more or fewer blocks can be used. In this paper, the trained CNNs employ 5 and 6 hidden
layers for different networks.

In the case of CNNs, the designation specifies the number of convolutional blocks and
the number of neurons in each convolutional layer within the convolutional blocks. For
example, CNN 5 × 100 indicates a Convolutional Neural Network with 5 convolutional
processes and 100 neurons in each convolutional layer.

3.4. Training Process

The training signals were synthetically generated using Equation (1), with parameters
randomly sampled from Table 1. The training process was carried out using backpropaga-
tion on a workstation provided by the Universidad de Alcalá, implemented in MATLAB.
The workstation had the following characteristics:
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• CPU: The CPU used was an AMD Ryzen 9 5950X 16-Core 3.4GHz.
• Memory: The workstation had 128 GB of RAM.
• GPU: The GPU used was an NVIDIA RTX 2090 with 24 GB of memory.

With this workstation, the average training times were as follows:

• MLPs: ≈2500 s;
• DNNs: ≈9000 s;
• CNNs: ≈11,000 s.

Table 1. Signal parameters ranges.

Parameter Ranges

Frequency ranges 4–6 Hz
Damping ranges 0.01–0.2

Phase ranges 0 rad–2π rad
Amplitude ranges 0–1

Other Characteristics

Damping values Upscaled by a factor of 15

The noise in the training dataset was modeled as white noise with a signal-to-noise
ratio (SNR) of 5 dB. Random seeds were used to generate unique noise profiles for each
signal. Additionally, a separate synthetic dataset, independent of the training dataset,
was created to evaluate the performance during the testing process. A comprehensive
summary of the training dataset distribution is presented in Table 2, while details of the
DNN techniques and architectures explored are outlined in Table 3.

Table 2. Distribution of training datasets.

Total

Combined training signals 300,000
Training 240,000

Validation 60,000

Test signals (different dataset) 120,000

Table 3. Neural network architectures.

CNN DNN MLP

100 × 6, 128 100, 100, 100 100
100 × 5, 128 100, 100 c80
80 × 6, 128 80, 80, 80 60
80 × 5, 128 80, 80 40
60 × 6, 128 60, 60, 60 20
60 × 5, 128 60, 60
40 × 6, 128 40, 40, 40
40 × 5, 128 40, 40
20 × 6, 128 20, 20, 20
20 × 5, 128 20, 20

Several additional considerations were taken into account during the training process:

• Signal Ranges: The limited range of frequencies is due to the preliminary nature of
this study. A broader range of frequencies, representative of the frequencies found
in the real data available, will be employed in future papers, possibly including a
different network design.
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• Dampings Upscaling: The dampings were upscaled by a factor of 15 to reach a range
of values in the same order of magnitude as the rest of the parameters. The upscaling
was applied in the following manner. The training dataset was created with the actual
damping values, but during the backpropagation process, the output damping values
provided were upscaled. The formula employed is as follows:

Declared damping = Real damping × 15 (3)

After the estimation is finished, the damping results will need to be adjusted inversely
using the same scaling factor.

3.5. Analysis Methodology

To study the results, two sets of experiments were conducted: one with synthetic data
and another with real data:

1. Synthetic data processing: A set of 10,000 synthetic signals dataset was created with
known parameters and no noise addition. Taking this dataset as a baseline, and
following the same approach as with the training dataset, 5 dB SNR white noise
was added. The synthetic process measured the standard deviations of errors in
parameters (frequency and damping), skewness, kurtosis, and histograms of errors.

2. Real data processing: A set of real data from F-18 flutter tests was employed. The
datasets were analyzed using all the previously described techniques (PRESTO,
Laplace Wavelet Matching Pursuit, and all the deep learning models). The data
were reconstructed using Equation (1) with the estimated parameters, and the results
of the original vs. reconstructed data were plotted. From there, the Mean Square Error
(MSE), the Mean Absolute Error (MAE) and the Maximum Absolute Error (MaxAE),
along with the regression coefficients (R2, slope, and y-intercept) were compared. The
networks employed were trained with the synthetic datasets. It would be possible to
use networks trained with real datasets. However, in absence of truth source parame-
ters data, only an estimation on the parameters can be made. The techniques used to
estimate those signals parameters were employed also to compare the performance
of the networks. Consequently, training with real data would introduce a bias in
the results.

4. Results
This section presents the experimental results, comparing DL methods with traditional

approaches on both synthetic and real flight test data. After processing the data, the
following key results were obtained:

4.1. Synthetic Data Processing

As described in Section 3.4, several processing techniques were employed. All the
DNNs were compared to two reference methods: Laplace Wavelet Matching Pursuit
processing [11] and PRESTO processing [15] as reference. Table 4 shows the results for an
SNR of 5 dB, considering the case closest to the real conditions. The analysis of this table
reveals several noteworthy insights.
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Table 4. Statistical summary for modes and damping with 5 dB SNR synthetic data.

Frequency Damping

Time/Signal [ms] Std. Kurt. Skew. Std. Kurt. Skew.

PRESTO 60.1 1.127 7.002 −0.476 2.444 43.45 −5.508
Laplace 62.3 0.906 4.806 0.054 0.672 11.95 −2.228
MLP 20 0.01 0.734 2.593 0.390 0.649 4.651 −1.435

DNN 20 × 20 0.01 0.725 3.322 0.677 0.631 6.052 −1.633
DNN 20 × 20 × 20 0.01 0.783 3.526 0.694 0.581 7.153 −1.560

MLP 40 0.01 0.724 2.975 0.552 0.699 4.907 −1.448
DNN 40 × 40 0.01 0.796 3.790 0.857 0.772 7.055 −1.654

DNN 40 × 40 × 40 0.02 0.737 2.923 0.342 1.476 13.65 −2.603
MLP 60 0.02 0.724 3.223 0.631 0.677 4.980 −1.454

DNN 60 × 60 0.02 0.744 3.187 0.734 0.899 9.617 −2.029
DNN 60 × 60 × 60 0.02 0.718 3.145 0.757 0.948 17.81 −2.722

MLP 80 0.02 0.721 3.322 0.679 0.657 5.176 −1.470
DNN 80 × 80 0.02 0.774 2.837 0.512 1.885 9.221 −2.018

DNN 80 × 80 × 80 0.02 0.844 2.878 0.520 1.554 11.33 −1.969
MLP 100 0.02 0.720 3.314 0.676 0.638 5.227 −1.476

DNN 100 × 100 0.02 0.812 3.421 0.702 1.071 6.088 −0.080
DNN 100 × 100 × 100 0.03 0.714 3.379 0.828 0.724 9.376 −2.049

CNN 20 × 5, 128 0.82 0.716 3.599 1.171 0.672 11.55 −2.461
CNN 20 × 6, 128 0.83 0.716 3.610 1.180 0.672 11.70 −2.493
CNN 40 × 5, 128 1.02 0.716 3.595 1.190 0.685 12.72 −2.610
CNN 40 × 6, 128 1.04 0.716 3.598 1.197 0.703 12.50 −2.623
CNN 60 × 5, 128 1.09 0.718 3.605 1.195 0.694 12.93 −2.632
CNN 60 × 6, 128 1.10 0.719 3.586 1.194 0.695 12.90 −2.666
CNN 80 × 5, 128 1.13 0.719 3.585 1.184 0.690 12.53 −2.565
CNN 80 × 6, 128 1.28 0.718 3.580 1.186 0.689 12.46 −2.587

CNN 100 × 5, 128 1.24 0.720 3.589 1.187 0.692 13.47 −2.673
CNN 100 × 6, 128 1.48 0.719 3.594 1.189 0.695 12.38 −2.596

PRESTO and Laplace Wavelet Matching Pursuit were included in the analysis as refer-
ence methods for comparison. PRESTO returns the highest standard deviation compared
to the average across the neural networks, with values 50% higher for frequency and 200%
higher for damping. However, it is strongly leptokurtic, noticeably above the rest of the
methods also (4 points above for frequency and 30 points above for damping). Regarding
the skewness coefficient, even though it is the only method that returns a negative skewness
in frequency, it is still within the limits of symmetry, like the rest of the methods. How-
ever, for damping, the skewness is also the highest among the techniques. Even though
most methods are skewed to the left due to the negative coefficient, PRESTO exhibits the
most pronounced skewness. The conclusion is that PRESTO returns more accurate results
than the neural network-based techniques, at the cost of the most extreme outliers and a
significantly longer processing time (approximately 3 orders of magnitude).

On the other hand, Laplace Wavelet Matching Pursuit returns similar values to the
rest of the neural network methods. Even though the standard deviation in frequency is
20% higher than the other neural networks, in damping it is 20% below the average. The
damping values are specifically around the same as the CNNs, as several DNNs increase
the overall average substantially. For kurtosis, both frequency and damping is more
leptokurtic than the average, with values 1.5 points above in frequency (including CNNs)
and 2 points higher for damping, although still below the CNNs. Lastly, the frequency
skewness is substantially low, at one order of magnitude below the average, indicating
a strongly symmetric distribution compared to the rest of the methods. For damping,
it is also skewed to the left, but remains around the average of the other methods. The
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conclusion is that it is a method similar to the other neural network techniques. However, its
nominal processing time is approximately 3 orders of magnitude higher, which introduces
a significant limitation. To achieve similar accuracy to the other techniques, it was necessary
to fine-tune the dictionaries to the data being analyzed, keeping them as small as possible
to avoid memory limitations on the computers used. If the dictionary ranges were the
same as those used for PRESTO, the processing time was estimated to increase by at least 3
additional orders of magnitude (resulting in being 6 orders of magnitude higher than the
neural network techniques). This fact may also account for the relatively low values for
standard deviation, although this cannot be confirmed.

Figure 6 presents a comparison between the error histograms of PRESTO, Laplace Wavelet
Matching Pursuit, a CNN with 100 × 6 neurons, and a DNN with 100 × 100 × 100 neurons
as samples for comparison. It should be noted that the other neural network processing
techniques exhibit a similar behavior. The plot reveals a very similar distribution for
the CNN and Laplace methods. The CNN demonstrates notably better performance in
damping and frequency, while the DNN performs slightly worse in frequency.
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Figure 6. Error histograms for frequency and damping for PRESTO, Laplace Wavelet Matching
Pursuit, CNN 100 × 6, and DNN 100 × 100 × 100 chosen as sample methods. The other neural
network methods exhibit a similar distribution to those depicted here. The damping plot for the
PRESTO method was truncated at −6 relative damping due to the tail extending to −35.

4.2. Real Data Processing

A set of F-18 flutter flight test data, from the Spanish Air Force CLAEX, was pro-
cessed and analyzed by the aforementioned techniques. Table 5 shows the results of the
analysis process.

The dataset comprised 640 signals, extracted from 10 extensometers (6 torsion and
4 bending) and 8 flight envelope test points. Additionally, 8 excitation frequency runs
were performed for each test point, resulting in a total of 640 signals. Note that in real-
world scenarios, pure bending–torsion flutter modes rarely appear. Usually, the nodes
lines are not parallel and perpendicular to the cord line, but hold particular shapes, and
therefore it is common to see energy from both modes in each sensor. However, only
approximately 1/8 to 3/8 of the 640 signals carried information related to the natural
modes of the structure, since during the sine dwell runs the frequencies are changed with
every excitation. Depending on the natural mode frequencies and the test run frequency, it
was possible to capture energy from one, two, or three excitation runs, but rarely more.
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Considering the aforementioned, even though the 640 signals were analyzed, only the
150 best signals participated in the statistics in Table 5. The original data were processed
by the different techniques and the signals reconstructed from the estimated parameters.
The original signal values were assigned to the x-axis, while the reconstructed signal
values were assigned to the y-axis. This process generated a scatter plot of original vs.
reconstructed data (Figure 7) and enabled the calculation of regression metrics. Note that
the datasets analyzed by the different methods are identical. The 150 filtered signals plotted
were selected as the best fits for the DL-processed signals.

Figure 7. Scatter plot comparing the regression curves of real data and synthetic reconstructed data.
A comparison between Laplace Wavelet Matching Pursuit, PRESTO, and a CNN 100 × 6, taken as a
sample method, is shown. The horizontal axis shows the normalized original time series data, while
the vertical axis represents the respective reconstructed normalized signals. The red line represents
the linear regression curve.

The analysis of the data allows drawing several conclusions. In general, the behavior
of the DL techniques on real data is similar to the results on synthetic data, being globally
slightly worse than PRESTO but similar or slightly better than Laplace. It does not constitute
a validation of the synthetic results, but is still significant. Another conclusion is that all
the DNN techniques exhibit a similar behavior compared to each other. The comparison
between different deep learning techniques focuses on the relationship between m (slope
of the regression curve), R2, and the different error metrics. Note that even though all the
confidence intervals overlap, these differences cannot be assumed significant. However,
there is a consistent trend in the averages of certain metrics being higher than others. In
general, the error metrics for DNNs and MLPs are similar, with slightly higher values for
CNNs. Conversely, the regression metrics exhibit the opposite trend.

Comparing the DL results with Laplace, the aforementioned conclusions can also be
extrapolated. Assuming only the average values and ignoring the confidence intervals,
Laplace can be positioned between CNNs and MLPs, which is very similar to DNNs.
However, the results for PRESTO are sensibly higher than the rest of the techniques, out of
the confidence intervals. In this case, given that the average values of the CNN techniques
consistently lie in the upper bound of the rest of the techniques, the distance to PRESTO is
lower, although not particularly significant. This behavior is consistent across all the error
metrics and regression coefficients. The slope is closer to 1 in PRESTO, indicating that the
large values of amplitude are better fitted. The error metrics for PRESTO are lower also,
meaning that the lower values in amplitude do not impact a biased fit (for example, if one
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method tends to fit higher values but ignores lower, then those errors end up accumulating
in the error metrics). There is also no significant difference between the MSE and MAE
across methods, indicating that no significant outliers impacted one method above another.
This is further confirmed by a similar trend in MaxAE.

Table 5. Statistical summary for real data. The parameters m, n, and R2 correspond to the regression
curve parameters, where the equation is y = mx + n. The second half of the table presents the average
statistics comparing all the DL methods (CNNs, DNNs, and MLPs) with the values from PRESTO
and Laplace.

m n R2 MSE MAE MaxAE

PRESTO 0.922 −0.003 0.770 0.054 0.131 0.843
Laplace 0.783 −0.003 0.692 0.059 0.139 0.948
MLP 20 0.637 −0.003 0.551 0.058 0.140 0.931

DNN 20 × 20 0.759 −0.002 0.657 0.056 0.137 0.924
DNN 20 × 20 × 20 0.798 −0.004 0.690 0.057 0.137 0.924

MLP 40 0.681 −0.004 0.597 0.057 0.138 0.920
DNN 40 × 40 0.794 −0.002 0.681 0.056 0.136 0.921

DNN 40 × 40 × 40 0.787 −0.003 0.677 0.057 0.138 0.916
MLP 60 0.734 −0.003 0.639 0.057 0.138 0.930

DNN 60 × 60 0.808 −0.003 0.684 0.057 0.137 0.924
DNN 60 × 60 × 60 0.768 −0.003 0.656 0.057 0.138 0.919

MLP 80 0.719 −0.004 0.631 0.057 0.138 0.929
DNN 80 × 80 0.754 −0.003 0.644 0.056 0.137 0.921

DNN 80 × 80 × 80 0.763 −0.003 0.661 0.057 0.137 0.922
MLP 100 0.756 −0.004 0.638 0.057 0.138 0.930

DNN 100 × 100 0.746 −0.003 0.648 0.057 0.138 0.919
DNN 100 × 100 × 100 0.766 −0.003 0.651 0.057 0.138 0.917

CNN 20 × 5, 128 0.764 −0.003 0.660 0.062 0.142 0.980
CNN 20 × 6, 128 0.810 −0.003 0.700 0.060 0.140 0.952
CNN 40 × 5, 128 0.800 −0.004 0.697 0.058 0.138 0.944
CNN 40 × 6, 128 0.817 −0.003 0.700 0.059 0.139 0.953
CNN 60 × 5, 128 0.784 −0.003 0.679 0.060 0.141 0.963
CNN 60 × 6, 128 0.811 −0.003 0.699 0.061 0.141 0.955
CNN 80 × 5, 128 0.812 −0.003 0.691 0.060 0.140 0.955
CNN 80 × 6, 128 0.807 −0.004 0.701 0.060 0.140 0.953

CNN 100 × 5, 128 0.820 −0.004 0.699 0.060 0.140 0.960
CNN 100 × 6, 128 0.836 −0.003 0.720 0.060 0.140 0.965

DL avg. 0.773 −0.003 0.666 0.058 0.139 0.937
DL Std. 0.0451 0.0004 0.0374 0.0016 0.0015 0.0187

PRESTO norm. by DL avg. 1.192 0.840 1.165 0.934 0.946 0.899
Laplace norm. by DL avg. 1.012 0.862 1.038 1.016 1.003 1.012

CNNs avg. 0.806 −0.003 0.695 0.060 0.140 0.958
CNNs Std. 0.0198 0.0005 0.0158 0.0008 0.0010 0.0098

PRESTO norm. by CNNs avg. 1.144 0.822 1.117 0.905 0.936 0.879
Laplace norm. by CNNs avg. 0.970 0.843 0.995 0.984 0.992 0.990

DNNs avg. 0.774 −0.003 0.665 0.057 0.137 0.921
DNNs Std. 0.0210 0.0004 0.0166 0.0003 0.0004 0.0029

PRESTO norm. by DNNs avg. 1.190 0.892 1.167 0.957 0.955 0.915
Laplace norm. by DNNs avg. 1.010 0.915 1.040 1.041 1.013 1.030

MLPs avg. 0.705 −0.003 0.611 0.057 0.138 0.928
MLPs Std. 0.0469 0.0002 0.0376 0.0005 0.0008 0.0044

PRESTO norm. by MLPs avg. 1.307 0.784 1.270 0.949 0.948 0.908
Laplace norm. by MLPs avg. 1.109 0.805 1.131 1.032 1.005 1.022



Aerospace 2025, 12, 34 15 of 17

5. Discussion
The results presented in this study indicate that, although the PRESTO technique

currently outperforms DL methods in terms of accuracy, the latter show significant potential
for analyzing sine dwell excitations during flutter tests. This represents a promising
advance, in particular for transonic regime envelope expansion. The main advantage of
deep learning techniques lies in their extraordinarily short processing times compared
to PRESTO and Laplace Wavelet Matching Pursuit. This makes them highly suitable for
real-time analysis during flight tests, where rapid decision-making is critical.

When comparing the deep learning techniques, no single method demonstrated clearly
superior performance. While the increased complexity of CNNs led to slightly better results
in some cases, the necessity to artificially construct a 2D input matrix with redundant data
probably impacted the benefits of this architecture. Consequently, the improvements in
accuracy were not proportional to the additional architectural complexity, as seen when
comparing the performance of the simplest MLP configuration (20 neurons) with the most
sophisticated CNN, which did not yield the expected gains in performance.

This observation suggests that further refinement of the architecture may be necessary.
Potential modifications may include redesigning the input and output layers to better
capture the relationships between parameters or adopting a multi-network approach. For
example, individual networks could be dedicated to identifying specific parameters, and
their outputs could be integrated into a higher-level network along with the input data.
This hierarchical approach would resemble the iterative structure of the PRESTO technique,
potentially leading to more accurate and efficient parameter identification.

6. Conclusions
This study explored the application of deep learning techniques for identifying aeroe-

lastic flutter parameters from sine dwell excitations, presenting a potential alternative to
traditional methods such as PRESTO and Laplace Wavelet Matching Pursuit. The find-
ings highlight several advantages and challenges associated with the application of deep
learning techniques.

Deep learning techniques, particularly MLPs, DNNs, and CNNs, demonstrate sig-
nificant potential due to their extraordinarily short processing times, which entitles them
as a promising solution for real-time analysis during flight tests, in particular during the
transonic regime, where the numerical models cannot provide a reliable estimation of
the aeroelastic behavior. However, in terms of accuracy, the traditional PRESTO method
outperforms the evaluated deep learning models, whose performance is comparable to, or
slightly better than, Laplace Wavelet Matching Pursuit. This highlights the necessity for
further refinement before deep learning can fully replace established methods.

The analysis revealed no substantial differences in accuracy among the tested deep
learning architectures, despite the varying levels of complexity. For example, while CNNs
showed slightly better results in some cases, their higher computational demands and
the need for redundant input data limited their overall effectiveness. This lack of a clear
performance advantage among architectures suggests that the current designs may not be
fully optimized for the specific challenges posed by flutter parameter identification.

To address these limitations, future work should focus on redesigning the input
and output layers of the networks and potentially adopting a multi-network architecture.
Specialized networks dedicated to identifying specific parameters, followed by a higher-
level network to integrate these results, could improve accuracy and efficiency.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two-Dimensional
CLAEX Centro Logistico de Armamento y Experimentacion (as Spanish acronym)
CNN Convolutional Neural Network
dB Decibel
DFT Discrete Fourier Transform
DL Deep Learning
DNN Deep Neural Network
Hz Hertz
Kurt. Kurtosis Coefficient
m Slope of the Regression Curve y = mx + n
MAE Mean Absolute Error
MaxAE Maximum Absolute Error
MLP Multi-Layer Perceptron
ms Milliseconds
MSE Mean Square Error
n y-intercept of the Regression Curve y = mx + n
ODE Ordinary Differential Equation
PRESTO Power Spectrum Short Time Optimization
Skew. Skewness Coefficient
SNR Signal-to-Noise Ratio
SSI Stochastic Subspace Identification
Std. Standard Deviation
SVD Singular Values Decomposition
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