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Abstract: Equivalent ratio (ER) is an important factor affecting detonation characteristics
and propulsion performance of rotating detonation rocket engine (RDRE). In this paper, the
effects of different equivalent ratios detonation characteristics and thrust performance of
methane-oxygen RDRE were studied by 2D numerical simulation. The premixed reactants
were injected through the injection holes to simulate the discrete injection of reactants on the
injection panel in actual RDRE, the number of injection holes was 60 and 120. The results
show that there is hybrid detonation mode (HDM), co-direction multi-wave detonation
mode (CMM) and unstable detonation mode (UDM) in detonation combustion due to
the influence of equivalent ratio and the number of injection holes, and the co-directional
multi-wave detonation mode is beneficial to the thrust stability of RDRE. At the last, the
number of detonation waves in RDRE decreases with the increase in the equivalent ratio,
and the specific impulse (Isp) increases with the increase of the equivalent ratio.

Keywords: equivalent ratio; detonation characteristics; propulsion performance

1. Introduction
Detonation is a combustion process characterized by the strong coupling of shock

waves and chemical reactions. As the detonation wave propagates through the reactants, its
high temperature and pressure cause spontaneous ignition. Theoretically, detonation offers
an exceptionally efficient method for combustion [1]. It has the advantages of high thermal
cycle efficiency and fast heat release speed [2–6]. Compared to deflagration, detonation can
achieve more intense and thermodynamically favorable fuel combustion within a smaller
combustion chamber [7]. Therefore, the utilization of detonation as a novel approach to
enhance the performance of ramjet and rocket engines has garnered significant attention [5],
leading to the development of numerous prototypes for rotating detonation engines (RDEs)
and rotating detonation rocket engines (RDREs).

The RDE combustion chamber typically adopts a ring structure, with fresh reactants
being sprayed from the head of the chamber. After ignition, the rotating detonation wave
(RDW) propagates around the combustion chamber. The detonation product is ejected at
high speed from the bottom of the combustion chamber to produce continuous and stable
thrust. However, due to the instability of RDE [8,9] and propellant equivalent ratio (ER),
many problems still need to be studied.

In experimental investigations, Bykovskii et al. [10] validated the rotating detonation
wave in liquid rocket and ramjet engines using air and liquid oxygen as oxidants, and
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ascertained the control parameters for attaining continuous rotating detonation. Fotia
et al. [11] carried out experimental studies on the performance of RDEs with nozzles and
measured the equivalence ratio to explore the relationship between specific impulse and
thrust. Russo et al. [12] analyzed the pressure rise characteristics of RDW and discovered
that the propagation speed of RDW declines as the equivalence ratio decreases. Anand
et al. [13] studied the propagation characteristics of hydrogen/air RDE under different
injection modes, and the results showed that the ratio of reactant filling height to cell width
of detonation gradually decreased under lean-fuel and rich-fuel conditions, and the rise of
static pressure generated in RDE depends on the equivalent ratio of flow rate and reactant.
Li et al. [14] studied the RDW propagation characteristics of hydrogen/air mixtures under
various equivalence ratios and found that the average propagation frequency and speed of
the RDW initially increase and subsequently decrease as the equivalence ratio rises. Deng
et al. [15] found that RDE has the ability to adapt to the change in the equivalent ratio.
The decrease of equivalent ratio leads to the deterioration of the reactivity of the mixture,
which reduces the wave velocity in single-wave mode and leads to the conversion of the
two-wave mode to single-wave mode. Xie et al. [16] examined the combustion modes of
the H2/Air RDE with air mass flow rates ranging from 25 to 225 g/s and equivalence ratios
from 0.6 to 1.0, identified four combustion mode subregions, including fast deflagration,
unstable detonation, quasi-stable detonation, and stable detonation.

In numerical simulations, Wang et al. [17] conducted numerical studies on three-
dimensional Hydrogen/Air RDE and found that the RDW propagation speed initially
increases and then decreases as the equivalence ratio increases. In 2020, Zheng et al. [18]
conducted numerical studies on hydrogen/air non-premixed RDE under different equiva-
lent ratios, and the results showed that with the increase of equivalent ratio, the mode of
RDW changed from single wave mode to double wave mode, and the change of equivalent
ratio had an impact on the specific impulse and thrust of RDE. Zhao et al. [19,20] conducted
a two-dimensional numerical study on the RDE of hydrogen/air premixed mixtures. It was
found that the detonation wave number and propagation direction change with the increase
in injection pressure, and the equivalent ratio is also one of the factors causing RDW chaotic
propagation. Lietz et al. [21] used the large eddy simulation method to study the effects
of equivalent ratio and mass flow rate on combustion performance of methane-oxygen
RDRE. The results showed that increasing mass flow rate would increase combustion cham-
ber pressure, thrust, and specific impulse, while increasing equivalent ratio would cause
detonation waves change into bidirectional or flatting mode, which could not produce
significant performance gain. Huang et al. [22,23] studied the expansion characteristics
of nozzle and the effect of equivalent ratio on the thrust of RDE, and the results showed
that the addition of a nozzle could improve RDE thrust, and the specific impulse of RDE
increased with the increase of equivalent ratio. Yao et al. [24] studied the spontaneous
formation of multiple detonation wavefronts in RDE through three-dimensional numerical
simulation, and the results showed that the explosion caused by the collision of detonation
wavefronts could induce new detonation waves and possibly change the propagation di-
rection. The numerical study of Wu et al. [25] shows that the double wave mode improves
the stability of RDE combustor, and the average outlet pressure in the double wave mode is
higher than that in the single wave mode. Zhou et al. [26] found that oblique shock waves
have little effect on RDE performance through two-dimensional numerical simulation, and
the detonation thermodynamic cycle model in numerical simulation is consistent with the
ideal ZND model. Subramanian et al. [27] found that detonation and deflagration existed
simultaneously in RDE through two-dimensional numerical study, and stratification of
fuel and product would cause the detonation wave velocity to decrease. Chen et al. [28]
found that with the change of equivalent ratio, the propagation mode of RDW changes
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from single wave to double wave in the same direction and double wave collision. The
velocity deficit of RDW in double wave mode is larger than that in single wave mode,
specific impulse decreases with the increase of equivalent ratio and specific thrust increases
with the increase of equivalent ratio in single wave mode.

According to the above research, it was found that there are many factors affecting
RDW propagation characteristics and propulsion performance, and the equivalent ratio is
one of the important influencing factors. The chemical characteristics of reactants, reaction
heat release rate, detonation wave velocity, and propagation stability are all affected by
the equivalent ratio. Therefore, the effect of equivalent ratio on RDW propagation mode
and propulsive performance has important research value. Two-dimensional numerical
simulations of premixed CH4/O2 RDRE with 60 and 120 injection holes were carried out
under different equivalent ratios to solve these problems. Different from the ramjet RDE,
RDRE operates in the fuel-rich range and it is necessary to study the detonation combustion
characteristics and propulsion performance of RDRE under different equivalent ratios
and high inlet total pressure. The purpose of this paper is to investigate the influence of
equivalent ratio on detonation combustion characteristics and RDW propagation modes of
RDRE with varying numbers of holes, as well as to examine the impact of different RDW
propagation modes on the propulsion performance of RDRE.

2. Numerical Methods and Computational Models
2.1. Numerical Method

Fluent is used for numerical simulation in this study, the simulation involves the
high-speed flow process and chemical reaction process of fluid in rotating detonation,
and the transport phenomena such as viscosity, thermal diffusion, and mass diffusion are
considered. Therefore, two-dimensional compressible Navier-Stokes equations in cartesian
coordinates are used in numerical simulation:

∂U
∂t

+
∂F1

∂x
+

∂F2

∂y
=

∂G1

∂x
+

∂G2

∂y
+ S (1)

U = (ρ1, · · · , ρN , ρu, ρv, E)T (2)
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T

(3)
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T

(4)
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, · · · , ρDN

∂YN
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T

(5)
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∂Y1

∂y
, · · · , ρDN
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T

(6)

S = [0, · · · , 0, ρ fx, ρ fy, ρ(u fx + v fy) + ρ
.
q]T (7)

In the above equations, F1 and F2 are the convection vectors, G1 and G2 are the viscous
convection fluxes, p, u, and v represent pressure, velocity in the x direction and velocity
in the y direction, respectively, D is the Diffusion coefficient. The total energy E and the
density ρ are calculated by:

ρ =
N

∑
i=1

ρi, i = 1, 2, · · · , N (8)

E =
N

∑
i=1

ρihi +
1
2

ρ(u2 + v2) (9)

where h is the specific enthalpy.
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The turbulence model adopted the SST k-ω model, which is detailed as follows, and
the specific symbols and parameters should be seen in relevant literature [29]:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj
(Γk

∂k
∂xj

) + Gk − Yk + Sk (10)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj
(Γω

∂ω

∂xj
) + Gω − Yω + Sω (11)

A coupled algorithm was used in this paper, the stiff chemical solver based on Ar-
rhenius equation was used for the chemical reaction, and the FFCMy-12 [30] chemical
mechanism was used to model the chemical reactions. This chemical mechanism has
been successfully applied to the three-dimensional large eddy simulation (LES) numerical
calculation of RDRE [21,31]. The second order upwind scheme was used for pressure
discretization and the third order QUICK scheme was used for discretization of other
spatial convection terms to achieve accurate solutions for the flow field. The second order
implicit scheme was used for time discretization. The specific heat, thermal conductiv-
ity, and viscosity of the material are calculated by ideal gas mixture model based on
kinetic theory.

2.2. Computational Model

The annular RDRE combustion chamber can be approximated as a two-dimensional
computational domain for numerical analysis due to its small height relative to its diameter
and limited radial variation imposed by the flow field, which helps save calculation re-
sources. Although this approach neglects three-dimensional effects such as wall boundary
layer, channel curvature, and detonation wave structure [32,33], numerous two-dimensional
RDE numerical studies [23,34–41] have demonstrated that it effectively captures the key
characteristics and flow field structure of rotating detonation propagation in RDRE, includ-
ing the presence of detonation waves, oblique shock waves, contact surfaces between fresh
reactants and combustion products, and slip lines.

The two-dimensional calculation model of RDRE is shown in Figure 1. The total length
in x direction is 300 mm, the total height in y direction is 95 mm, the height of the plenum
is 20 mm, the height of the injection holes is 5 mm, and the height of the combustion zone
is 70 mm. Since the reactants in the experiment are usually injected into the combustion
chamber through small holes or slits, discrete injection holes were used to simulate the
discrete distribution of the reactants in practice in this paper. The injection hole of the
calculation domain is shown in Figure 1. The inlet boundary is alternatively distributed
by both the inlet and the wall. The wall is the adiabatic slip boundary. The total number
of injection holes is 60 and 120, with a consistent injection area. The ratio between the
injection holes and the wall is ¼ . The patch method is adopted for detonation ignition, the
specific location is shown in Figure 1. The size of the ignition region is 10 mm × 10 mm
square, the ignition temperature is 2000 K, and the pressure is 2 MPa. At the same time, the
ignition region is given at a speed of 2000 m/s in the x direction. The red and dark blue
regions are filled with the premix CH4/O2 gas from the plenum, which is maintained at
the pressure of 1 MPa and at the temperature of 300 K. The equivalent ratio is set according
to the requirements of different cases. The gas composition in the yellow region is modified
from CH4/O2 premixed gas to CO2/H2O premixed gas with a mass ratio of 1:1 by patch
method. A non-reflecting pressure outlet boundary is applied at the outlet, where the
conditions are set to the ambient temperature (300 K) and pressure (101,325 Pa). It should
be noted that chemical reactions in the regions of injection holes and plenum are shut off to
prevent flame flash back into the plenum.
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Figure 1. Two-dimensional RDRE calculation domain.

3. Verification of Numerical Simulation Method
A 40 cm long two-dimensional detonation tube is numerically simulated and compared

with the Chapman-Jouguet (C-J) theoretical velocity and theoretical temperature calculated
by NASA CEA [42] to verify the reliability of the numerical method and the mesh size.
Three mesh sizes of 0.2 mm, 0.4 mm, and 0.5 mm were used to verify the mesh resolution.
The detonation tube is filled with methane-oxygen premixed gas with an equivalent ratio
of 1, a gas pressure of 101,325 Pa and a gas temperature of 300 K. Figure 2 depicts the
distribution of detonation pressure with three different grid resolutions. The distribution of
pressure drop in the three grids is basically the same, which means that the grid resolution
has been reasonably converged. Therefore, a mesh size of 0.4 mm is used in numerical
simulation to ensure the calculation accuracy and save the calculation resources. Figure 3
shows the distribution of detonation wave pressure and velocity at different times with
0.4 mm grid. In this study, the propagation velocity and the temperature of detonation
wave are 2659 m/s and 3958 K, the C-J theoretical velocity is 2390 m/s with an error of
11% and the C-J theoretical temperature is 3721 K with an error of 6.4%. The results show
that the simulation results are in good agreement with the C-J theoretical value calculated
by NASA CEA. Due to the high activity of oxygen as an oxidizer, the simulation results
are acceptable in this paper and the reliability of the numerical method in this study can
be verified from C-J velocity and C-J temperature. The method proposed in this paper
is suitable for the two-dimensional numerical study of methane-oxygen detonation in
compressible reactive fluids.
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Figure 4 shows the comparison between the numerical simulation flow field in this
study and the experimental results of Bykovskii et al. [10]. The numerical simulation of
methane-oxygen RDRE with a total inlet temperature of 300 K, a total pressure of 1 MPa
and an equivalent ratio of 1.4. The result shows that the numerical flow field structure
in this study is consistent with the propane-oxygen RDE flow field structure obtained
by Bykovskii et al. [10], which further verifies the reliability of the numerical calculation
methods in this paper.
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4. Results and Discussion
4.1. Influence of Equivalent Ratio on RDRE Flow Field Structure

This section discusses the effect of equivalent ratio on the structure of RDRE deto-
nation flow field. RDRE simulation results under different equivalent ratios are shown
in Table 1. Pinlet and Tinlet are the inlet total pressure and the inlet total temperature of
premixed CH4/O2 in plenum. According to the results, there are three modes of detonation
propagation. They are hybrid detonation mode (HDM), co-directional multi-wave mode
(CMM), and unstable detonation mode (UDM). Detonation ignition failed in case B5, while
the other cases are in detonation combustion mode.
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Table 1. Numerical simulation results.

ER

Pinlet Tinlet 60 Injection Holes 120 Injection Holes

MPa K Case Wave
Number Mode Case Wave

Number Mode

1.0 1.0 300 A1 Unstable HDM B1 10 CMM

1.2 1.0 300 A2 6 CMM B2 8 CMM

1.4 1.0 300 A3 4 CMM B3 8 CMM

1.6 1.0 300 A4 3 CMM B4 Unstable UDM

1.8 1.0 300 A5 2 CMM B5 Failure Failure

When the number of injection holes is 60, two RDRE detonation flow field structures
appear: the hybrid detonation mode with a large amount of deflagration in case A1 and the
co-directional multi-wave mode in the other cases. As shown in Figure 5, the temperature
and static pressure contours of RDRE flow field from top to bottom are case A1~A5. Since
the flow field of the plenum and injection holes is not the focus of research, it is not
discussed in this study.
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As shown in Figure 6, the flow field of case A4 is a typical two-dimensional multi-
wave detonation flow structure, where A is the detonation wave, B is the oblique shock
wave, C is the slip line, D is the contact surface, and E is the triangular reactant filling
zone. The detonation wave and oblique shock wave are uniformly distributed, which is a
standard multi-wave stable propagation structure of the detonation in the same direction, it
is also consistent with the flow field structure simulated by Huang et al. [23]. The reactants
enter the RDRE through the injection holes. After the detonation wave passes through,
deflagration regions are distributed in strips. Under this condition, the proportion of
deflagration in the reactant filling zone is small, because the high equivalent ratio reduces
reactant activity, resulting in less heat accumulation in the deflagration zone, and large-scale
deflagration could not be formed.
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The RDRE flow field structure of case A1 is relatively special. There are both det-
onation waves and a large amount of deflagration in the flow field, which belongs to
the detonation-deflagration mixed combustion. The flow field structure of case A1 is
similar to the tangential instability in conventional rocket engines. When ER = 1, the
reactant activity is the highest, and the reactant starts to burn when it enters the combustion
chamber, and a reactant layer of sufficient height cannot be formed. It also can be noted
that the height of the reactant filling zone under this condition is the lowest. A large
amount of fuel is consumed by deflagration, resulting in insufficient energy to support the
propagation of detonation waves. Meanwhile, the accumulated heat of deflagration also
induces the formation of new detonation waves. These two factors together lead to the
instability of detonation wave propagation. Detonation-deflagration mixed combustion
and any non-ideal, non-detonation processes are harmful to the performance of RDRE
and will consume chemical energy and reduce the proportion of energy used by deto-
nation [43,44]. The optimal combustion method in RDRE is to maximize the proportion
of fuel used for detonation in the combustion chamber. Figure 7 shows the propagation
process of detonation waves in case A1, and the number and direction of RDWs vary at
different times.
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Figure 8 shows the local OH distribution contour of Case A1~A5. There is a qualitative
positive correlation between the concentration of OH and the heat release rate, and the mass
fraction of OH represents the magnitude of reaction intensity and heat release rate [45,46].
It can be clearly found that a large amount of deflagration occurs after fuel injection under
condition A1. A large amount of OH was distributed around the injection holes and in
the whole chamber. For the remaining cases, the OH mass fraction in the detonation
wave front and post-wave regions decreases with the increase of the equivalent ratio,
and the OH distribution is concentrated in the detonation wave and oblique shock wave
regions, indicating that the decrease of deflagration ratio in RDRE and post-detonation
wave region. The decrease in reactant activity leads to the decrease in heat release rate and
intensity of detonation combustion, reduces the probability of inducing new detonation
wave formation, reduces the number of detonation waves, and increases the proportion
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of reactant used for detonation. In general, the decrease in reactant activity will lead to a
decrease in the number of detonation waves in the RDRE and an increase in the height of
the reactant filling zone, thus affecting the flow field structure in the RDRE.
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When the number of injection holes is 120, CMM and UDM appear as shown in
Figure 9. Figure 9 is the temperature and pressure contours of Cases B1~B4. The flow field
structure in CMM will not be discussed. For UDM, take case B4 as an example, the flow field
is in the state of unstable detonation propagation. As shown in Figure 10, in the unstable
propagation mode, the number of detonation waves in the flow field is lower, the height of
the reactant filling zone is higher, the distribution of detonation waves in the flow field is
irregular, and linear oblique shock waves are not formed due to the impact of detonation
wave collisions. When the detonation wave collides at t = 1.1 ms, the weaker detonation
wave is decoupling and reburning after the collision, repeating the process of detonation
wave collision, initiation, and annihilation, resulting in the unstable propagation mode of
RDRE, Yao et al. [24] and Xia et al. [47] also observed a similar reinitiation phenomenon.
The heat accumulated in small deflagration region is insufficient to induce the formation
of RDW in the condition of low reactant activity, and even the deflagration in some areas
disappears, such as the filling zone of the detonation wave front at t = 1.04 ms. The unsteady
propagation mode eventually leads to the uneven distribution of temperature and pressure
in the flow field and the uneven expansion of combustion products.
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Different from case A1, case B1 does not operate in hybrid detonation mode. Figure 11
shows the contours of reaction heat in Case A1 and B1. It can be observed that a large
amount of deflagration consumes reactants under the condition of high reactant activity,
resulting in the accumulation of a large amount of reaction heat. It is known that hotspots
easily form detonation wave under conditions of high reactant activity. However, excessive
consumption of reactant during deflagration results in insufficient energy for the stable
propagation of detonation waves [43,44], ultimately leading to unstable propagation.
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In conclusion, under the same inlet conditions, the increase in the number of injection
holes improves the dispersion degree of the reactants, induces the formation of multi-wave
propagation modes under the condition of high reactant activity (ER ≤ 1.4), and leads to
the formation of more RDWs but reduces the accumulated heat in the deflagration region
of the reactant filling zone. When the reactant activity is low (ER = 1.6) and the number
of injection holes is 120, an unstable detonation propagation mode was formed, and the
detonation failed at higher equivalent ratio. However, stable detonation is achieved with
60 injection holes under low reactant activity, because more heat accumulated in large strip
deflagration regions increases the reactant activity. In general, the increase in the equivalent
ratio leads to the decrease in reactant activity, resulting in a decrease of the probability of
multiple detonation wave formation in the initiation stage, a decrease in the number of
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RDWs and a decrease of the ratio of deflagration in RDRE. These also lead to an increase
in the height of the reactant filling zone and RDWs. For optimal performance of RDRE,
the ratio of detonation combustion should be maximized, and the detonation propagation
mode should be in CMM.

4.2. Effect of Equivalent Ratio on Propagation Characteristics of RDW

The above research indicates that the equivalent ratio has a significant influence on the
flow field of RDRE, thereby exerting a substantial impact on the propagation characteristics
of RDW. Figures 12–14 illustrate the temporal evolution of static pressure and temperature
at the sampling point of the RDRE (x = 90 mm, y = 28 mm). Figure 12 shows the temperature
and static pressure history diagram of case A1. The static pressure and temperature
curve shows that the propagation mode of condition A1 is in the single wave/multi-wave
conversion mode. The arrows in the figure indicate the multi-wave region, where the single
wave/multi-wave conversion is continuously carried out in the flow field. The reason for
this chaotic pattern [48] is that hotspots around the reactants will lead to the formation of
new detonation waves, while there are not enough reactants to maintain the intensity and
propagation of the detonation waves, resulting in constant decoupling and re-initiation of
the detonation waves. In addition, discrete injection holes will generate multiple reflected
waves after the detonation wave, and stronger reflected waves may also be transformed
into detonation waves [35,49]. According to previous studies, when the equivalent ratio is
1, the reactant activity is the largest, and a large number of hotspots near the injection holes
can induce the formation of new detonation waves, but there are not enough reactants
to maintain the stable propagation of detonation waves, and it is impossible to convert
from chaotic mode to stable detonation propagation mode. Therefore, the HDM is an
unstable propagation mode. Under the condition of 60 injection holes, a stable multi-wave
propagation mode is formed. Except for case A1, the number of detonation waves in
other stable propagation conditions shows a downward trend, and the time required to
form a stable detonation mode is relatively similar. Meanwhile, the peak temperature and
pressure of detonation wave are less affected by the changes in equivalent ratio. The peak
temperature of detonation wave is around 3900 K, and the peak static pressure of the RDW
is around 2 MPa.
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Figure 14 shows the static pressure and temperature history diagram of case B1, B2, B3,
and B4 when the number of injection holes is 120. RDRE is in a stable multi-wave detonation
propagation mode with equivalent ratios of 1, 1.2, and 1.4, the temperature and pressure
peaks are coupled, and the flow field of RDRE is in a stable multi-wave propagation
state. In case B1, with an equivalent ratio of 1, the peak temperature and pressure of
RDW are significantly lower than those in other cases. This is primarily attributed to a
higher proportion of reactants being consumed through deflagration rather than detonation,
resulting in a lower intensity and pressure of RDW. The quantity of reactants consumed
by deflagration in case B1, however, is insufficient to generate a detonation-deflagration
mixing mode. When the equivalent ratio is 1.6, RDRE is in the UDM state, and it can be
clearly observed that the peak pressure and temperature do not coincide, exhibiting an
irregular distribution. It indicates that the detonation wave in the flow field is constantly
colliding, annihilating, and reigniting. In general, as the equivalent ratio increases, there
is a decreasing trend in the number of detonation waves with a closer formation time for
stable detonation conditions. Simultaneously, changes in the equivalent ratio have less
impact on the temperature and pressure of the detonation wave, the peak temperature of
RDWs in cases B1~B3 reaches approximately 3700 K, the peak temperature is marginally
lower compared to other cases with 60 injection holes under the same equivalent ratio and
propagation mode. Meanwhile, the peak pressure of cases B2~B3 reaches around 2 MPa
and the peak pressure of RDWs in case B1 is marginally lower compared to other cases due
to a relatively reduced proportion of reactants used for detonation.

Table 2 shows the propagation velocity VDW of RDWs at t = 1.2 ms and ∆t1 is the time
for forming a stable co-directional multi-wave propagation mode under different equivalent
ratios. The results show that with the increase of equivalent ratio, the propagation speed of
RDW in stable propagation mode increases, and ∆t1 required to form stable co-directional
propagation mode is within 1 ms. At the same equivalent ratio, the detonation wave
propagation velocity of RDRE with fewer injection holes is faster, because more injection
streams and strip deflagration regions hinder the propagation of detonation wave and
resulting in the loss of detonation wave propagation velocity. On the other hand, the
decrease in detonation wave velocity will also lead to the increase in the height of the filling
zone, but the main factor affecting the height of the reactant filling zone is the number
of detonation waves. Considering the different number of injection holes and fuel-rich
conditions, stable co-directional multi-wave detonation propagation modes are more easily
formed under equivalent ratio 1.2 and 1.4. However, when equivalent ratio is 1, due to the
highest reactant activity, the increase in the deflagration fuel consumption ratio can form
an HDM, which is not conducive to the detonation combustion of RDRE.

Table 2. VDW and ∆t1 under different equivalent ratios.

ER
Pinlet Tinlet 60 Injection Holes 120 Injection Holes

MPa K Case ∆t1/ms VDW/(m/s) Case ∆t1/ms VDW/(m/s)

1.0 1.0 300 A1 - 2275 B1 0.6 2165

1.2 1.0 300 A2 0.3 2488 B2 0.39 2402

1.4 1.0 300 A3 0.26 2743 B3 0.26 2442

1.6 1.0 300 A4 0.48 2769 B4 - 2383

1.8 1.0 300 A5 0.72 2836 B5 - -
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4.3. Influence of Equivalent Ratio on RDRE Propulsion Performance

This section mainly studies the effect of equivalent ratio on RDRE propulsion perfor-
mance. Specific impulse (Isp)is an important parameter for evaluating propulsive perfor-
mance, so it is necessary to calculate Isp. Isp can be calculated by the following formula:

F = meve + (pe − p0)Ae (12)

Isp =
F

mtg
(13)

where F is the thrust of RDRE, mt is the mass flow rate at the inlet of the plenum, me is the
mass flow rate at the outlet of the RDR, ve is the axial velocity at outlet of the RDRE, pe

is the static pressure at the outlet, p0 is the environmental pressure at the outlet, Ae is the
outlet area of RDRE, and g is the standard gravitational acceleration.

In order to eliminate the influence of the ignition stage, the data between 0.8 ms and
1.2 ms after the ignition were averaged in this paper. Figure 15 shows the average specific
impulse (Ispavg) under different ER. When the number of injection holes is 60, the equivalent
ratio increases from 1.0 to 1.8, and Ispavg increases from 192 s to 220 s by 14.6%. When the
number of injection holes is 120, the equivalent ratio increases from 1.0 to 1.4 and from
192 s to 205 s, and the Ispavg of Case B4 under the unsteady detonation propagation mode
is 237 s, but it has no reference value. The overall results show that when the equivalent
ratio is between 1.0 and 1.8, the Isp of RDRE increases with the increase of the equivalent
ratio. We know that rocket engines can increase the specific impulse by increasing the gas
temperature or decreasing the propellant molecular weight [50]. RDRE is consistent with
conventional rocket engines, and the operating range of RDRE is different from ramjet
RDE which is under lean fuel equivalent ratio. Figure 16 shows the average exit total
temperature (Texit) and molecular weight of the reactants (Mmolar) of RDRE. The results
demonstrate a decrease in Texit and Mmolar with an increase in the equivalent ratio.
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The curves of Isp under different equivalent ratios are presented in Figure 17, exhibiting
a significant oscillation during the initiation stage, which is caused by the blockage of part
of the injection holes by irregular detonation waves that lead to the instability of inlet mass
flow rate in the initiation stage. However, once the multi-wave stable propagation mode is
reached, co-directional and regular RDWs have little effect on the blockage of injection holes
and the specific impulse curve becomes stable. Under the condition of high equivalent
ratio, case B4 experiences an unstable detonation mode leading to substantial oscillations in
specific impulse. This instability arises due to variations in quantity, direction, and intensity
of detonation waves and oblique shock waves within the RDRE flow field at different
times during unstable detonation propagation mode, resulting in irregular and uneven gas
expansion. Similarly, case A1 with a detonation-deflagration mixing mode also exhibits
an unstable propagation mode with greater oscillation amplitude compared to other cases
with 60 injection holes.
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Figure 18 shows the standard deviation of thrust under different equivalent ratios
between 0.8 ms and 1.2 ms after ignition. Standard deviation of thrust reflects the deviation
degree between instantaneous thrust and average thrust. The thrust standard deviation of
RDRE under unstable detonation propagation is greater than that under stable detonation
propagation. In general, the thrust of RDRE is more stable in CMM, detonation waves
are evenly distributed in RDRE and the spacing between oblique shock waves is uniform.
The expansion of combustion products after oblique shock waves is more uniform and
regular, thus generating more stable thrust. Combining the specific impulse and the
stability of thrust, RDRE should be maintained in a state of co-directional multi-wave stable
propagation to achieve more stable thrust within the range of the equivalent ratio where
maximum specific impulse can be attained.
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5. Conclusions
In this study, two-dimensional numerical simulation of methane-oxygen RDRE was

conducted. Two types of discrete injection holes were used to study the effects of different
equivalent ratios (ER ranging from 1.0 to 1.8) on detonation characteristics and propulsion
performance of RDRE. The conclusions are as follows:

(1) The numerical simulation results of this paper show that three distinct modes of
detonation propagation are observed due to the influence of equivalent ratio and
the number of injection holes. These modes include hybrid detonation mode, co-
directional multi-wave detonation mode, and unstable detonation mode. The op-
timal propagation mode for RDRE is found to be the co-directional multi-wave
detonation mode.

(2) The reactant activity has a significant influence on the flow field structure of RDRE.
With the increase of equivalent ratio, the reactivity of the reactant decreases and the
accumulated reaction heat in the strip deflagration regions decreases, which makes it
difficult to induce more detonation waves. This leads to a decrease in the number of
detonation waves and an increase in the height of both the reactant filling zone and
the detonation waves.

(3) Owing to the presence of strip deflagration regions in the reactant filling zone, the
accumulation of reaction heat under conditions approaching the stoichiometric ratio
can readily induce the formation of new detonation waves, resulting in the unsteady
propagation of detonation waves during the initiation stage. When the reactant
activity is low, if the strip deflagration regions are large and concentrated, such as
in cases with 60 injection holes, the accumulated heat can improve the activity of
reactant and eventually lead to the formation of a stable co-directional multi-wave
detonation mode; conversely, if the strip deflagration regions are small and dispersed,
the accumulated reaction heat is insufficient to increase the reactant activity sufficiently
to sustain a stable detonation propagation mode.

(4) Under fuel-rich conditions, the average specific impulse of RDRE increases with the
increase of the equivalent ratio, which is consistent with the conventional rocket
engines. Meanwhile, when RDRE operates in co-directional multi-wave detonation
mode, it enhances the stability of both specific impulse and thrust, minimizing the
oscillation amplitude of the specific impulse.
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