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Abstract: The current study investigates the performance of implicit Large Eddy Simulation
(iLES) incorporating an unstructured third-order Weighted Essentially Non-Oscillatory
(WENO) reconstruction method, alongside conventional Large Eddy Simulation (LES)
using the Wall-Adapting Local Eddy Viscosity (WALE) model, for wall-bounded flows.
Specifically, iLES is applied to the flow around a NACA0012 airfoil at a Reynolds number
which involves key flow phenomena such as laminar separation, transition to turbulence,
and flow reattachment. Simulations are conducted using the open-source computational
fluid dynamics package OpenFOAM, with a second-order implicit Euler scheme for time
integration and the Pressure-Implicit Splitting Operator (PISO) algorithm for pressure–
velocity coupling. The results are compared against direct numerical simulation (DNS) for
the same flow conditions. Key metrics, including the pressure coefficient and reattached
turbulent velocity profiles, show excellent agreement between the iLES and DNS reference
results. However, both iLES and LES predict a thinner separation bubble in the transitional
flow region then DNS. Notably, the iLES approach achieved a 35% reduction in mesh resolu-
tion relative to wall-resolving LES, and a 70% reduction relative to DNS, while maintaining
satisfactory accuracy. The study also captures detailed instantaneous flow evolution on the
airfoil’s upper surface, with evidence suggesting that three-dimensional disturbances arise
from interactions between separating boundary layers near the trailing edge.

Keywords: WENO scheme; boundary layer separation; implicit LES; OpenFOAM;
aerodynamics

1. Introduction
The most widely used computational fluid dynamics (CFD) method for simulating

turbulent flows is the Reynolds-Averaged Navier–Stokes (RANS) simulation [1–3]. This
technique involves applying time–space averaging to the governing equations and using a
turbulence model to account for the instantaneous fluctuations of the flow variables. While
RANS simulations are relatively fast, they are limited by the loss of detailed, intermittent
information due to the statistical nature of the averaging process. In more complex flow
situations, such as flow over an aerofoil with moderate separation, RANS methods struggle
to accurately capture the true flow characteristics [4–7]. Spalart and Strelets [8] demon-
strated that the turbulence models employed in the RANS method were not specifically
designed to accurately capture the transition phenomena.
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To address the energy cascade in turbulence, Large Eddy Simulation (LES) was de-
veloped to resolve the large, energy-containing scales, and a Sub-Grid-Scale (SGS) model
is used to account for the smaller unresolved scales. This approach captures most of the
instantaneous flow features at a computational cost lower than that of direct numerical
simulation (DNS) [9,10]. However, the complexity involved in constructing, calibrating,
and implementing the SGS model has hindered its widespread use in engineering applica-
tions [11,12]. In wall-bounded viscous flows, such as those over an aerofoil, the small scales
within the boundary layer, which play a crucial role in transition, are typically modeled
by an SGS model [13]. This presents a key challenge in applying LES to such flows. In
transitional flows, the use of an SGS model in the laminar region can introduce excessive
numerical dissipation [14], which can affect the flow in downstream regions. As a result,
there has been increasing interest in exploring alternative LES approaches to overcome
these limitations.

Boris [15] observed that the leading truncation error terms of a specific flux reconstruc-
tion algorithm bear a functional resemblance to those of a Sub-Grid-Scale (SGS) model.
This observation led to the development of Implicit Large Eddy Simulation (iLES) [12],
which enables LES without the explicit use of an SGS model. However, it is important to
differentiate iLES from LES without an SGS model, as the latter involves simply removing
the SGS model without thorough numerical analysis, which can result in non-physical
results [16–19]. Drikakis and Rider [20] demonstrated that the reconstructed convective
terms in the governing equations using the Weighted Essentially Non-Oscillatory (WENO)
scheme show leading truncation error terms similar to those of an SGS model, thus confirm-
ing the inherent SGS behavior of the WENO scheme. Originally developed for shock wave
capturing, the WENO scheme [21] is capable of achieving higher-order accuracy in smooth
regions while providing non-oscillatory solutions in highly nonlinear areas. This makes it
particularly suitable for flows involving boundary layer transitions and separations.

The structured WENO scheme was implicitly used as a low-order finite element
method (LES) to investigate the separated flow [22]. Encouraging results were obtained
regarding its efficiency in capturing vortex dynamics and in the shear layer region. Building
upon the work of Dumbser and Kaser [23] and Tsoutsanis et al. [24], the WENO scheme
was extended to arbitrary unstructured grids of mixed elements. Subsequently, Tsoutsanis
et al. [25] further advanced the implicit application of LES from inviscid flows [24] to viscous
flows. More recently, Zeng et al. [26] demonstrated the capability of an unstructured WENO
scheme implemented in OpenFOAM [27] to obtain satisfactory results in the context of
implicit LES for a turbulent flow with fixed separation. The current research is motivated
to conduct an investigation on more complex flows involving boundary layer transition
and separation.

An aerofoil at an angle of attack exhibits a typical non-symmetric lifting body con-
figuration characterized by the occurrence of rich flow phenomena, which are often en-
countered in engineering applications [28,29]. The adverse pressure gradient causes the
laminar boundary layer to separate from the upper surface. The vortices gradually develop
downstream of the separation location due to Kelvin–Helmholtz instability. The separated
boundary layer undergoes a transition to turbulence under specific conditions, after which
it reattaches the surface. Subsequently, a separation bubble is formed, followed by the estab-
lishment of a turbulent boundary layer. The upper side of the aerofoil’s separation bubble
significantly influences the aerodynamic characteristics [30]. Its shape and length instanta-
neously change and are correlated with the transition to turbulence and the subsequent reat-
tachment, which determine the flow characteristics downstream [31]. Furthermore, unlike
the attached boundary layer, the separated boundary layer cannot be accurately described
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by linear stability theory [32] nor by parabolized stability equations [33]. Consequently,
capturing the overall flow phenomena poses a significant challenge for numerical methods.

DNS has provided valuable insights into boundary layer physics; for instance, Ro-
driguez et al. [34] addressed the mechanisms of the transition of a separated boundary
layer of NACA0012 at full stall. Shan et al. [35] explored the origin of three-dimensional
instability and suggested that it is linked to the interaction of vortices and wake. The data
from these DNS studies provide a great opportunity to assess the current implicit LES
approach. It is noteworthy that Mellen et al. [36] emphasized the importance of capturing
near-wall turbulence and transition adequately for a well-resolved LES. Consequently, the
Reynolds number considered in current research is limited to 1 × 105, which is equivalent
to two DNS references of Shan et al. [35] and Smith and Ventikos [14].

The primary objective of this research paper is to further assess the iLES capability of
the open-source general-purpose code OpenFOAM V6 when the application is extended
from previously developed work (see [26]) to a more intricate flow involving transitional
and separated boundary layers. Similarly, conventional LES with a Wall-Adapting Local
Eddy Viscosity (WALE) [37] SGS model is also employed as a baseline. The flow past
an aerofoil NACA0012 at an angle of attack of 4 degrees is simulated, where a laminar
separation bubble and turbulent boundary layer develop on the upper surface. It is
noteworthy that the DNS references of Shan et al. [35] and Smith [14] predicted disparate
results regarding the mean surface pressure coefficient, velocity profiles, and reattachment
location. The present numerical simulations are intended to provide additional data and
elucidate the potential causes of the discrepancy.

The remainder of the paper is structured as follows: the comprehensive numerical
approach, encompassing the finite volume method, discretization scheme, SGS modeling,
and time integration, is presented in Section 2. Subsequently, the grid, boundary, and
initial conditions are elucidated in Section 3. Subsequently, the results obtained from the
time-averaged flow and instantaneous flow are analyzed in Section 4. Finally, the salient
findings are summarized, along with the technical contributions in Section 5.

2. Numerical Approach
2.1. The Governing Equations and Finite Volume Method

Transient three-dimensional incompressible flows are described by the following
Navier–Stokes equations:

∂U
∂t

= −∇p −∇ · (UU) + ν∇ · (∇U), (1)

where U = (u, v, w) is the fluid velocity vector, ν is kinematic fluid viscosity, and p is the
kinematic pressure obtained by dividing the static pressure by a constant density. The
incompressibility is ensured by the continuity equation:

∇ · U = 0 (2)

Considering a computational point C denotes the center of a controlled volume Vi;
thus, the following criterion should be satisfied:∫

Vi

(xi − xC)dVi = 0 (3)
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where xi is an arbitrary coordinate inside the controlled volume Vi. In the first step of the
finite volume discretization process, the governing Equations (1) and (2) are integrated
over the finite volume cell Vi with arbitrary form, such that

∂U
∂t︸︷︷︸

Transient Terms

= −
∫

Vi

(∇p)dVi︸ ︷︷ ︸
Pressure Gradient

−
∫

Vi

∇ · (UU)dVi︸ ︷︷ ︸
Convective Terms

+
∫

Vi

ν∇ · (∇U)dVi︸ ︷︷ ︸
Viscous Terms

(4)

∫
Vi

(∇ · U)dVi = 0 (5)

The transient terms represent the unsteadiness of the flow, which disappears in the case
of a steady state. The pressure gradient terms account for the pressure difference between
the opposing surfaces of the controlled volume. The convective terms describe the rate of
property change due to the transport of fluid particles. The viscous terms represent the rate
of property change due to the viscosity of the fluid. It should be noted that body forces
such as centrifugal force and gravity force are not included in the general mathematical
model of flow. The Gaussian theorem is then applied to transform the volume integrals of
the convection, viscous, and pressure gradient terms of the momentum Equation (4) into
surface integrals, such that ∫

Vi

∇ · (UU)dVi =
∫

S
UU · ndS (6)

∫
Vi

ν∇ · (∇U)dVi =
∫

S
ν∇U · ndS (7)

∫
Vi

(∇p)dVi =
∫

S
p · ndS (8)

The dS is a small fragment of the considered face of the controlled volume Vi and n
denotes the surface normal unit vector. To evaluate the above surface integrals, a Gaussian
quadrature is employed. The integral at a considered face of the cell is evaluated as

∫
S

F · ndS =
Ng

∑
g=1

(F · n)Ng ωNg S, (9)

where g denotes an integration point, Ng is the total number of integration points along
the surface, and F denotes the surface flux. For a general-purpose CFD code, such as
OpenFOAM, one integration point located at the center (a non-diagonal correction is often
applied if the centers of adjacent cells are not aligned) of the face is used with a weighting
function ωNg = 1, leading to a second-order overall accuracy in space, as it was found
to be a good balance between accuracy and computational cost [38]. The above surface
integrals are treated as discrete ones and evaluated numerically through the use of Gaussian
integration (9), such that

∫
S

UU · ndS =

N f i

∑
j=1

U f i(U f i · S f i) =

N f i

∑
j=1

U f iF f i
0 (10)

∫
S

ν∇U · ndS =

N f i

∑
j=1

ν(∇U) f i · S f i (11)

∫
S

p · ndS =

N f i

∑
j=1

p f i · S f i (12)
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where the subscript f i denotes the interpolated value on cell faces, S f i denotes the outward-
pointing face area vector for the face f i, and F0 represents the surface mass flux of current
time step. Substituting these equations into (1) and performing a temporal discretisation
leads to the general form of the following semi-discretized momentum equations:

∫
t

t+∆t ∂Ui
∂t

dt =
∫

t

t+∆t
{RHS}dt (13)

where the RHS takes the following form:

RHS = − 1
|Vi|

N f i

∑
j=1

p f i · S f i −
1
|Vi|

N f i

∑
j=1

U f iF f i
0 +

1
|Vi|

N f i

∑
j=1

ν(∇U) f i · S f i (14)

and the |Vi| is the volume of a finite volume cell and Ui is the cell-averaged velocity, which
is evaluated as

Ui =
1
|Vi|

∫
Vi

UdV, (15)

Following the same procedure, a discretized continuity equation can be derived
from (5):

N f i

∑
j=1

U f i · S f i = 0, (16)

Currently, discretization in both space and time is applied to the original governing
equations using the finite volume method. In incompressible flow, since an equation of
state is absent, an additional pressure correction must be constructed. The relevant details
and treatments for each term of the set of semi-discretized equations are discussed in
the following sections. Subsequently, to solve the discretized system of equations on a
computer, an arrangement [39] is implemented to construct a set of algebraic equations.
Consequently, a linear operation is required to express the surface flux of the considered
cell C by its surrounding cells N, resulting in the following form:

aCQC +
N

∑
j=1

aNQN = B (17)

where aC = ∑N
j=1 aN contains all the time–space discretization information of the considered

cell (or target cell), C, while aN contains the time–space discretization details of all the
surrounding cells of N. The rest of the information is stored in B. The linear procedure is
then applied to all the cells of the computational domain, leading to the following system
of algebraic equations:

aC1 aN2 · · · aNn

aN1 aC2 · · · aNn
...

...
. . .

...
aNm aN2 · · · aCl




Q1

Q2
...

Qn

 =


b1

b2
...

bn

 (18)

MQ = B (19)

Given that M is the coefficient matrix (named “lduMatrix” class in OpenFOAM), Q
is the solution vector, and B is the vector of boundary conditions and source terms if
applicable, each row of the system represents the discretized equation for the considered
cell Ci. Typically in OpenFOAM, the quantities of interest, such as velocity, are stored at
the cell center and interpolated linearly to cell faces from the adjacent cells. Any available
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interpolation scheme, such as a linear or upwind TVD-scheme, can be applied in the
specific dictionary (fvSchemes). The M matrix and the B vector are constructed by the
user-selected schemes for every control volume of the domain and are solved iteratively
using a user-defined method. OpenFOAM has garnered significant attention from both
engineering and academia due to its ability to provide reliable solutions and the extensive
degree of freedom it offers its users for customization. It is noteworthy that in the coefficient
matrix M, the diagonal component aC represents the coefficients of the target cell or the
considered cell, while the off-diagonal components aN represent the coefficients of the
surrounding cells. A decomposition of M can be performed as follows:

[A + H′]Q = B (20)

where A only contains coefficients of the considered cell aC and H′ contains only for that of
the surrounding cells aN , respectively. A further arrangement leads to

AQ = B − H′Q (21)

Further simplification leads to the final form of the matrix system:

AQ = H (22)

2.2. Spacial Discretization

In this section, the details of discretization for convective terms, viscous terms, and
pressure gradient terms are discussed in detail. It should always be kept in mind that
the data are stored at the cell center and will be interpolated to the cell surface when it is
in need.

2.3. Discretization for Convective Terms

The convective flux in OpenFOAM is computed, fvm::div(phi,U), where the operator
fvm::div denotes the implicit finite volume discretization as coefficient matrices, where
a user-defined operation can be assigned. ‘phi’ is a keyword that represents the surface
flux, expressing by ϕ f i(orF f i) = Ufi · Sfi , where Ufi and Sfi are the physical quantities
interpolated at the cell face. In the following, the LUST discretization scheme and WENO
scheme are introduced.

2.3.1. LUST Discretization Scheme

The LUST scheme is a hybrid scheme that combines 75% of a linear scheme (central dif-
ference scheme) and 25% of a linear upwind scheme. As noted by Smith and Ventikos [14],
the scheme demonstrated optimal performance in capturing transitional wall-bounded
flows when integrated with an SGS model in their LES computation. Furthermore, the
same scheme was employed in LES simulations by Cao et al. [40] and iLES simulations
by Zeng et al. [26], yielding satisfactory results. The linear-upwind scheme [41] is also a
second-order scheme derived from the upwind scheme. It incorporates upwind weighting
factors and a gradient-based explicit correction, as expressed in the following equation:

F f i = FC + LC f i∇F, (23)

where LC f i is the length from the center of the considered cell C to the cell face f i and ∇F is
calculated based on the difference in face values from the second-order linear interpolation,
which will be discussed in the next section.

This approach, which combines a low-order scheme with a higher-order correction
term, is known as the Deferred Correction approach [42]. This approach allows the uti-
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lization of high-order schemes in codes initially written for lower-order schemes while
maintaining stability [38]. However, the convergence speed may be affected as the differ-
ence between the upwind scheme and the high-order scheme increases. One technique to
address this limitation is to introduce a limiting strategy, as described in [27]. By leveraging
the Deferred Correction concept, the third-order WENO scheme can be integrated into the
second-order code.

2.3.2. WENO Reconstruction Scheme

A third-order WENO reconstruction is applied to the convective terms of the Navier–
Stokes equations. This reconstruction comprises a central stencil and several sector stencils
that encompass all spatial directions in the vicinity of the targeted cell. The number of
sector stencils is determined by the cell’s shape and proximity to boundaries. Subsequently,
appropriate neighboring cells in the reference space are gathered, and a linear polynomial
is formulated for each stencil. Finally, the WENO scheme combines these polynomials with
nonlinear weights that are proportional to the smoothness of the stencils.

Similarly, the WENO polynomials are applied to reconstruct the convective flux as
an explicit correction, as they align with most OpenFOAM pressure–velocity coupling
algorithms. The Modified Equation Analysis [22] is conducted on the convective–dominant
equations, such as the Burgers equation, to provide numerical evidence that the leading
truncated errors from convective terms have the same form as the SGS model.

The fundamental steps for reconstructing WENO solutions to convective terms of
semi-discretized equations (13) are outlined here. A comprehensive description can be
found in the studies by Martin and Ivan [27] and Pringuey [43]. The unstructured WENO
scheme employs a single central stencil and multiple sector stencils to cover all spatial
directions in the vicinity of the targeted cell. The construction of the central stencil involves
adding neighboring cells of the targeted cell until the desired number of total cells in the
stencil is attained. The construction of sector stencils adheres to a similar logic but is tailored
to the geometric conditions of the cell [24]. The general form of WENO reconstruction is
expressed as

pWENO(ξ, η, ζ) =
NSi

∑
m=0

wm · pm(ξ, η, ζ), (24)

wm = γm

(
NSi

∑
m=0

γm

)−1

with γm =
dm

(ε + ISm)
s . (25)

The polynomial pm(ξ, η, ζ) is expressed in a basis of summation of local polynomial
functions {ϕk}k=0,··· ,K in reference space as

pm(ξ, η, ζ) = Ui +
K

∑
k=1

a(m)
k ϕk(ξ, η, ζ), (26)

where ak is the degrees of freedom, and the number of degrees of freedom K is related to
the degree of the polynomial r by the following expression:

K =
(r + 1)(r + 2)(r + 3)

6
− 1. (27)

The subscript i denotes the cell that is being constructed. To compute the degrees
of freedom, a minimum of K cells is needed. In pracice, however, for the stability of the
system, 2K cells are used, as recommended by Olivier and Van Altena [44] and Tsoutsanis
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et al. [25]. Since the cell average is not affected by the transformation, it is defined in the
reference space as

Ui =
1∣∣V′
i

∣∣ ∫V′
i

p(ξ, η, ζ)dξdηdζ, (28)

where V′
i is the volume of the mapped cell of Vi. The basis functions ϕk must be constructed

so that the conservation condition in Equation (28) is satisfied. This implies that the mean
value of each basis function over V′

i is zero. With the effort of Gartner et al. [45], the memory
demand and efficiency for multi-processor parallel run of the original WENO scheme code
for OpenFOAM are greatly optimized to a structured grid.

However, WENO can still be very expensive, as estimated by Gartner et al. [45], for a
computational domain consisting of one million cells, a memory of 40 GB is needed to store
seven matrices with 19 × 38 coefficients for a third-order WENO reconstruction. Addition-
ally, the reconstruction takes place at each iteration, so a high overall time consumption is
expected. Similarly, the WENO polynomials (24) are applied to reconstruct the convective
flux terms of (13) on one face of the cell in the reference space [27], as demonstrated in
the following:

(U f i · S f i)U f i = Ḟ ·
NSi

∑
m=0

wm · pm(ξ, η, ζ)

= Ḟ ·
NSi

∑
m=0

wm · (Ui +
K

∑
k=1

a(m)
k ϕk(ξ, η, ζ))

= Ḟ · (Ui +
NSi

∑
m=0

K

∑
k=1

wma(m)
k · ϕk(ξ, η, ζ)),

(29)

where S f i denotes the outward-pointing face area vector for face f i and Ḟ denotes the
surface normal flux U f i · S f i in the reference space. Now, the convective terms are approxi-
mated with an implicit linear scheme and explicit higher-order WENO scheme.

2.4. Discretization of Viscous Terms and Gradient Terms

The viscous terms are specified by fvm::laplacian(nu,U), and the operator is assigned
with a second-order central difference scheme. This scheme is widely applied to the viscous
terms in various investigations in the high fidelity simulations, including the LES of [46–49]
and DNS of [14,50], as it provides a space-accurate solution while introducing minimum
numerical dissipation. For an unstructured code like OpenFOAM, a non-orthogonal
correction is always present and will be zero in case the grid is orthogonal. After the finite
volume discretization process, one can observe that the viscous terms of Equation (13) are
transformed to surface gradient terms:

S f i(∇U) f i = ∆(∇U) f i︸ ︷︷ ︸
Orthogonal

+ k(∇U) f i︸ ︷︷ ︸
Non-orthogonal

(30)

where S f i is the vector normal to the surface of two adjecent cells C and N. The first
term on the RHS ∆ denotes the orthogonal component and is parallel to the vector dCN,
which points from cell C to its neighbor cell N. The orthogonal part is evaluated using the
following central difference scheme:

(∇U) f i =
UN − UC
2 × |dCN| (31)
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Here, the UN and UC are the values that are available and stored in the cell center, C
and N, respectively. The second term on the RHS of Equation (30) is the non-orthogonal
part which is evaluated using the Green–Gaussian method:

k(∇U) f i = L(U)C + (1 − L)(U)N (32)

where the geometric weighting factor L =
LN f
LNC

and LN f denotes the distance of the neighbor
cell center N and the intersection f. It should be noted that an extra correction is needed
when LN f and LNC do not intercept at the surface center (the Gaussian integration point);
otherwise, the second-order accuracy is no longer maintained. Alternatively, it can be
computed via a more compact formulation:

k(∇U) f i = [(∇U) f i]linear + [
UN − UC

dCN
− ([(∇U) f i]CDS · d)]d (33)

where [(∇U) f i]linear is calculated using an orthogonal central difference scheme, while the
additional term is added as a correction. The d is the unit vector of dCN. This approach is
more flexible, as it can be applied to both structured and unstructured grids. Similarly, the
computation for the pressure gradient and flux gradient ∇F f i follows the same procedure
as that described above.

2.5. Sub-Grid-Scale Modeling
2.6. WALE SGS Model

In the context of conventional LES, an SGS model is needed to close the filtered
governing equations. The explicit LES equations are obtained by applying a space filter
function to Equation (13); thus we obtain

Ût + [Ĉ − V̂] + P̂ = −∇ · øsgs, (34)

where Ût is the filtered unsteady term,

Ût =
∂Ûi
∂t

dt (35)

Ĉ is the filtered convective term,

Ĉ =
1
|Vi|

N f i

∑
j=1

Û f iF̂
0
f i (36)

V̂ is the filtered viscous term,

V̂ =
1
|Vi|

N f i

∑
j=1

(ν + νsgs)(∇Û +∇ÛT) f i · S f i (37)

P̂ is the filtered pressure gradient,

P̂ =
1
|Vi|

N f i

∑
j=1

p̂ f i · S f i (38)
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and øsgs is the unsolved SGS stress to be closed by a SGS model. Here, the Boussinesq
assumption is adopted to model the SGS stress:

øsgs −
1
3

økδ = 2νsgsŜ (39)

Ŝ denotes the deformation tensor of the resolved field and νsgs is the SGS viscosity
to be defined by various formulations. The Wall-Adapting Local Eddy Viscosity (WALE)
model by Nicoud and Ducros [37], which is well suited for LES involving a wall-bounded
incompressible flow and unstructured grid, is employed in the current research, such that

νsgs = Ckksgs∆̂ (40)

∆̂ is the filter width that equals the cubic root of the cell volume, the constant Ck is
set to be 0.094, and the SGS kinetic energy ksgs is calculated based on the square of the
velocity gradient tensor. As summarized in [37], due to the property that SGS viscosity
naturally tends to zero in the near-wall region, no damping function is needed to compute
the wall-bounded flows.

2.7. Truncation Terms of WENO Scheme

In terms of the iLES approach, the unresolved turbulent Eddies are represented
with high-resolution convective schemes when the finite volume discretization method is
applied since the original governing equations are replaced by the corresponding modified
equations; hence, truncation error terms are introduced during this process. The Modified
Equation Analysis (MEA) suggests that the general form of discretized governing equations
is [12]

Ut + [C − V] + P = ∇ · τ(U, ∆x, ∆t), (41)

The leading truncation error term on the right-hand side is in the form of the diver-
gence of a stress tensor, and its similarity to Equation (34) indicates the possibility of an
iLES approach. For example, as demonstrated by Han [22], the leading truncation error
terms for the third-order WENO scheme can be expressed as

τ = −C∆3∣∣F′∣∣(∂2U
∂x2

)2(
∂U
∂x

)−1
(42)

where F′ is the flux Jacobian ∂F/∂U and ∆ is the grid size. This way, a built-in mechanism
naturally mimics the dissipative effect of an SGS model, without the need to apply an
additional filter or the complicated implementation of an SGS model.

2.8. Time Integration

In the current research, unsteadiness is considered. To solve the time-dependent
system of equations, implicit temporal discretization is employed. The governing equations
are re-arranged so that all the spatial terms are moved to the right-hand side of the equation,
denoted RHS:

∂Ui
∂t

= RHS. (43)

The system is solved through a second-order time-accurate backward Euler scheme:

∂Ui
∂t

=
3Ui − 4Un−1

i + Un−2
i

2∆t
, (44)

where n denotes the time step. Note that the order of temporal discretization does not
need to be the same as the order of spatial discretization; the overall accuracy will be
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second-order in this research. It should be noted, the CFL number can be larger than 1
without causing extra instability to the system, this is the primary reason that the 2nd order
implicit scheme is widely used [48,51,52].

3. Numercial Setup
3.1. Computational Domain and Grid Resolution

The computational domain extends 16 chord lengths (C) on the stream-wise direction
and 8 chord lengths on the transverse direction. The current grid is designed adopting
simulations of industrial flows where a hybrid unstructured grid is often employed; see
Figures 1 and 2. The well-refined cells are clustered around the whole surface of the aerofoil
to obtain a fully resolved wall and well-resolved boundary layer; meanwhile, the outer
region is constructed mainly using hexahedral cells with a coarser overall resolution.
Regarding the span-wise extent lz, Zhang and Samtaney [50] conducted a comprehensive
study on a similar test case with a Reynolds number of 5 × 104 via DNS. They found close
predictions for the time-averaged aerodynamic quantities and velocity field, although the
leading edge separation is found notably three-dimensional with a lz as large as 0.8 C.
At the same time, Rodriguez et al. [34] recommended that a DNS of lz = 0.2 C is good
enough to capture the largest scales of motion in a full stall condition. The smallest DNS
length, 0.1 C, was by Shan et al. [35]. Recently, a DNS and LES study was carried out by
Smith and Ventikos [14]; their lz was set to 0.2 C. Frohlich et al. [53] conducted a highly
resolved LES study on a separated channel flow, pointing out that the span-wise length
should essentially not effect the main flow features. Note that the computational cost and
well-resolved span-wise scales of motion need to be compromised, despite the fact that a
wider span-wise length may be preferable. lz = 0.2 C is therefore used in the current study,
and the overall grid information for each reference case is summarized in Table 1.

X

Y

Z

Figure 1. Hybrid unstructured grid for NACA0012.

Table 1. Grid resolutions of previous DNS studies.

Case Re Mach AoA Total Grid Number z lz

Shan et al. [35] 105 0.2 4 6.9 × 106 180 0.1
Rodriguez et al. [34] 5 × 104 - 12 49 × 106 - 0.2

Zhang [50] 5 × 104 - 5 134 × 106 256 0.8
Smith and Ventikos Grid D [14] 105 0.015 4 25 × 106 - 0.2

Current 105 0.1 4 7.7 × 106 150 0.2
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X

Y

Z

Figure 2. Zoomed-in view.

Due to the previously mentioned complex physics along the surface of aerofoil, an
accurate representation of the near-wall structures is essential; therefore, a well-refined
grid at the wall must be adopted. Here, the first cell height ∆y is set to 0.00012 C, with
an expansion rate of 1.1 for the following cells in the wall-normal direction; 150 cells are
equally distributed in the span-wise direction, resulting in an averaged ∆z = 0.0013 C. The
averaged cell length in the stream-wise direction ∆xavg = 0.0036 C, where the minimum
value is 0.0005 C at the leading edge and the trailing edge. The computed values for x+,
y+, and z+ along the upper surface of the aerofoil are plotted in Figure 3. Apart from a tiny
portion of y+ being slightly higher than 1 at near the leading edge, the overall value remains
under 0.9 and approximately equals 0.5 in the separation region. The slightly excessive y+

value does not affect the results [14]. The average x+ value is less than 20 for most of the
area and z+ is below 9. The current wall resolutions are comparable to the wall-resolved
LES determined by Asada and Kawai [54]. Piomelli and Balaras [55] and Piomelli [56]
extensively discussed the grid requirements for wall-resolved LES; they estimated that grid
resolution at the wall should be in the range of 50∽150 in the stream-wise direction, less
than 2 in the wall-normal direction, and 15∽40 in the span-wise direction. The current wall
resolutions should be considered sufficiently fine, and these parameters are displayed in
Table 2 with high-fidelity references. It is also worth mentioning that the total number of
cells is far less than that of DNS references [14,34,50] since the current numerical framework
(LES) does not fully resolve all the scales of motion of the field, and the grid cells are much
coarser in the laminar region away from the aerofoil surface.
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Figure 3. The grid resolutions at the wall along the upper surface of the aerofoil.
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Table 2. The grid resolutions at the wall (averaged) and time-step comparison with high-fidelity
references.

Case x+ y+ z+ ∆T∗

DNS of Shan et al. [35] 13 1 15 8.35 × 10−5 c/U
DNS of Rodriguez et al. [34] 7 0.8 3 -

DNS of Zhang [50] 5.6 0.9 10.8 2.5 × 10−4 c/U
DNS of Smith and Ventikos Grid D [14] 8 0.6 8 3.33 × 10−4 c/U

LES of Asada and Kawai [54] 25 0.8 13 -
Current 20 0.8 10 3.43 × 10−4 c/U

3.2. Boundary Conditions and Flow Initialization

The free stream Mach number 0.1 corresponds to a velocity magnitude |U|∞ of
34.3 m/s. The aerofoil is inclined at 4 degrees, resulting in a velocity vector of
U = (34.2, 2.4, 0). A fixed-inlet boundary condition is imposed at the inlet and a con-
vective boundary condition is applied at the outlet. A non-slip condition is applied at the
aerofoil surface. The Neumann condition (zero-pressure gradient) is used for the pressure
at the inlet and the aerofoil surface, while at the outlet, the pressure value is fixed at 0.
Finally, a periodic boundary condition is applied for faces in the span-wise direction. A
steady-state RANS simulation with a Spalart–Allmaras turbulence model is run for 500 it-
erations to obtain a more converged initial field, as it also helps reduce the time needed
to obtain statistically converged results for later analysis [14]. From the initialized field,
LES is run for a period of TU/C = 24 time units T∗, corresponding to a physical time of
0.7 s. The time-step ∆t of 1 × 10−5 s is defined to capture the Kolmogorove time scale,
as discussed in the previous study [26]. The obtained CFL number is less than 1.5 in the
boundary layer region. In total, 70,000 iterations are needed for 24T∗; the data are collected
and averaged for the last 12T∗ after the initial transient period. The statical convergence is
reached after 10T∗.

4. Analysis and Discussion
4.1. Computational Cost

The details regarding computational cost are summarized in Table 3. A total of
128 CPUs were used for each simulation, half of those used for DNS case D [14]. The
amount of CPU hours required to carry out the necessary simulation steps is significantly
lower for current iLES and LES; however, the iLES based on the third-order WENO scheme
is almost twice more expensive than the LES based on the WALE SGS model. It should be
noted that approximately 3100 s was allocated to the calculation of the smooth indicator
matrix for the WENO scheme and in addition to general storage. Additionally, the third-
order WENO scheme requires an extra 400 G for storing matrix coefficients in order to
accelerate the reconstruction process [45]. Thus, the third-order WENO-based iLES is
generally more expensive than the WALE-based conventional LES.

Table 3. Computational time.

Case Duration (T*) Total CPU Time (hours)

LES 24 1214
iLES 24 2280

DNS case D [14] 30 50,000
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4.2. Mean Pressure Distribution and Skin Friction Along Surface

The distribution of the mean pressure coefficient along the aerofoil surface is displayed
in Figure 4, including the DNS data from Shan et al. [35] and Smith and Ventikos [14].
From the leading edge to approximately x/C = 0.2, the pressure gradually increases to-
wards the downstream direction, generating an adverse pressure gradient (∂p/∂x> 0),
which causes the boundary layer to separate from the upper surface. A flattened plateau
(0.3 < x/C < 0.53) denotes the laminar region of the separation zone, followed by a stronger
second adverse pressure gradient (∂p/∂x> 0), where the separated boundary layer under-
goes a transition to turbulence (0.53 < x/C < 0.6). The current observations are found to
be similar to the flat plate case [8,57] and consistent with other LES investigations on aero-
foil [58–60]. A noticeable variation in mean values obtained in different averaging periods
(T∗) can be observed in the laminar separation zone (0.2 < x/C < 0.65), revealing that the
size of the separation bubble is related to the simulation time. Overall, the mean pressure
coefficients (T∗ = 24) from the current iLES and LES are in good agreement with the DNS
presented by Smith [14], while in the transitional and turbulent region (0.55 < x/C < 0.65),
the iLES predicted a more consistent pressure distribution. However, evident disagreement
is found when comparing these results to the DNS presented by Shan et al. [35]. The
pressure increased faster downstream of the leading edge, and a much greater “bump”
appeared in the transition zone; then, an under-predicted pressure was predicted near the
trailing edge zone.

x/C

­C
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iLES T*=12

LES T*=12
iLES T*=24

LES T*=24

DNS smith

DNS shan

Figure 4. Mean pressure coefficients obtained by LES and implicit LES, comparing with DNS
from Shan et al. [35] and Smith et al. [14]. T∗ = 12 denotes the normalized time when vortex
shedding stabilized.

Skin friction has been assessed in many previous studies as an indicator of flow status;
for instance, vanishing wall shear stress is the result of flow separation. The current mean
values are plotted in Figure 5 and compared with the DNS results from Shan et al. [35]. The
mean separation zone is estimated by zero crossings of the mean skin friction coefficient
with a length of 0.36 C, where the mean separation location and mean re-attachment
locations lie approximately at x = 0.24 C and x = 0.60 C, respectively. The current re-
attachment location for LES and iLES is very close to that of the DNS from Smith [14], who
predicted a mean re-attachment at x = 0.56 C; however, according to the DNS results of
Shan et al. [35], the flow re-attached at a further downstream location, x = 0.68 C, and a
much longer separation bubble with a length of 0.49 C was obtained. It was pointed out
that the size of the separation bubble is related to time because of the large-scale oscillations
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in the three-dimensional flow [35]. Note that the simulations were run for a duration of
24 time units and 30 time units for both Smith [14] and Shan et al. [35]; thus, the reason
for the disagreement should exclude time convergence. It is worth mentioning that the
negative skin coefficients in the plots indicating the boundary-layer separation and should
always remain negative until the re-attachment further downstream.

x/C
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f

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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­0.0025
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0.0025

0.005

0.0075

DNS Shan et al

iLES upper

LES upper

iLES lower

LES lower

Figure 5. Mean skin friction coefficients obtained by LES and implicit LES on upper and lower surface
of the aerofoil. DNS data extracted from Shan et al. [35]. Note that the sign of values on the lower
surface are intentionally reversed.

At around x = 0.5 C, a slight recovery followed by a negative surge immediately
occurred, indicating the onset of a transition which agrees qualitatively with that from
Spalart and Strelets [8] and Alam and Sandham [57]. On the other hand, a recovery to
positive values was obtained by Shan et al. [35] in the middle of the separation zone, due
to an additional thin layer of the mean flow near the wall in the stream-wise direction
under the reversed flow. The accurate representation of the boundary-layer development
is therefore in doubt as this thin layer was not observed in various other high-fidelity
simulations, either [14,31,58,60,61]. At location x = 0.58 C, a negative peak was reached by
the current simulations; then, they recovered towards a positive value rapidly, indicating
the end of the laminar transition to the turbulent boundary layer. After the re-attachment at
x = 0.6 C, the skin friction coefficient continued to increase to a higher positive value quickly,
then gradually dropping down. The DNS from Shan et al. [35] showed a similar trend,
apart from a largely delayed transition, re-attachment, and an “oscillated” post-attachment.
On the lower surface, the computed skin friction coefficients are non-distinguishable from
those of the current iLES and LES; additionally, the flow remains laminar and attached for
most of the cord length. The separation occurs at a location near the trailing edge, which is
explored in a later section.

4.3. Mean Velocity, Turbulent Stress Profiles, and Flow Field

The time-averaged stream-wise velocity field and its fluctuation field in the mid-span
are illustrated in Figures 6 and 7, respectively, and both fields were obtained through the
iLES approach. At the leading edge, a small separation zone can be observed. As the fluid
particle hits at the solid wall, it bounces backwards and is then pushed by the following
stream-wise particle, thus naturally forming a small re-circling flow zone at the leading-
edge area. Downstream of the leading edge, a long and thin region with considerable
reversed flow is formed due to the separation and re-attachment of the boundary layer,
which occur approximately at x = 0.2 C and x = 0.6 C, respectively, where the skin friction
coefficients are zero, as seen in Figure 5. The thickness of the separation bubble gradually
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increases and reaches its maximum at around 75% of the total bubble length. The mean
stream-wise fluctuation remains low and isotropic in the attached laminar region and most
of the separated region; then, it increases quickly, where the separation bubble becomes the
thickest and the peak value is clustered around the re-attachment location of the boundary
layer. After the re-attachment, the mean stream-wise velocity in the near-wall region
(y < 0.05 C) recovers a magnitude of 50% of the free stream and stays attached until it
sweeps off the aerofoil surface into the wake. Meanwhile, the mean fluctuation gradually
decreases but remains at a greater magnitude than that of the attached region. On the lower
surface of the aerofoil, the flow is always attached, apart from a smaller reversed-flow
region near the trailing edge, corresponding the zero crossing of the skin friction coefficient
in Figure 5.

Figure 6. Mean stream-wise velocity field.

Figure 7. Mean stream-wise fluctuation field.

Figure 8 shows an enlarged view of the mean separation region, demonstrated by the
time-averaged velocity vector field. One can observe that the mean separation is located
around x = 0.23 C, where the inflection point close to the wall is found. The reversed flow
becomes stronger gradually downstream of the separation bubble. A second inflection
point appears at around x = 0.6 C, indicating the re-attachment of the boundary layer.
Note that at the location 0.05 C upstream of the re-attachment, the reversed flow is the
strongest then quickly compromised. After the re-attachment, the mean velocity field
is established within a short distance and the magnitude is amplified compared to that
post-separation. It should be noted that the mean velocity vector plot from Shan et al. [35]
shows an additional thin layer underneath the reversed mean flow and, this thin layer
forms approximately 22% of the total separation region. It is worth mentioning that their
predicted mean separation length is 0.5 C, which is 0.14 C longer than that of the current
simulation and similar to the length of that additional thin layer. As shown in Figure 4,
the mean separation and re-attachment predicted by the current simulation is supported
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by the DNS recently reported by Smith [14]. The disagreement could be allocated to the
insufficient span-wise extent to accommodate major scales of motion in the span direction,
since an extent of 0.1 C was used by Shan et al. [35], while at least 0.2 C was employed in
other similar DNS studies [14,34,50] where no such additional layer was identified.
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Figure 8. Primary separation bubble on the upper surface, demonstrated by the mean stream-wise
velocity vector field.

To further validate current numerical method and obtain more details on the averaged
field, mean velocity profiles and root mean squared fluctuations are extracted at consecutive
locations with an interval of 0.1 C from the leading edge to the tailing edge of the aerofoil.

Figure 9 shows mean stream-wise velocity profiles. The vertical distance from the
wall is converted to a dimensionless form to remain consistent with the two main DNS
references [14,35]. Compared to the DNS from Smith [14] (figure on the left), discrepancies
are clearly found at locations from x = 0.2 C to x = 0.6 C, corresponding with the separation
zone. Since the wall is considered to be resolved, the disagreement with the DNS is mainly
outside the viscous layer (y+ > 10) for both the iLES and LES approaches; therefore, a better
grid refinement to cover the entire separation zone seems to be necessary. It should be
noted that the current expansion ratio of the wall-normal grid is set to 1.1, which could be
considerably reduced to a smaller value. Despite this, the fully turbulent velocity profiles
post re-attachment at locations x = 0.7 C, 0.8 C, 0.9 C, and 1 C are in excellent agreement
with the DNS [14]. It is worth pointing out that at the re-attachment location x = 0.6 C, the
profile determined by the LES approach is in better agreement than that by iLES. Compared
to the DNS from Shan et al. [35] (figure on the right), a good agreement is found at locations
x = 0.2 C and x = 0.3 C, where the boundary is just separating from the surface. However,
the disagreement appears in the rest of the locations. The mean velocity profiles predicted
by Shan et al. [35] after location x = 0.6 are not fully re-established, although they resemble
the turbulent velocity profile. This is partially due to the additional thin layer which
delayed re-attachment, thus forming a longer separation zone that occupies half of the
chord length, possibly not providing sufficient lengths for the flow to be re-established [57].
It should also be noted that inflection points are observed, agreeing with Yang et al. [62]; an
inflection point is the necessary and sufficient condition for flow to be inviscidly unstable.
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Figure 9. Mean stream-wise velocity profiles compared with those from Smith [14] (top, denoted in
square) and Shan et al. [35] (bottom, denoted in circle); from left to right: location at x/C = 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. The solid red line denotes the iLES and the discontinued blue line
denotes the LES.

Figure 10 shows an enlarged view of the separation zone, where the mean stream-wise
velocity profiles are gathered at one location. It can be seen that not only the thickness
of the separation bubble increases towards the downstream direction, but the amount of
reversed flow also increases. At each location, the amount of reversed flow has a small
difference between the current simulations and the DNS, but a major difference is found
in the wall-normal direction. For instance, at location x = 0.5 C, the reversed flow is
about 6% of the free-stream velocity and is located at y+ = 5 for iLES, 6.5% at y+ = 6
for LES, and 6.1% at y+ = 15 for DNS. Here, this difference seems to have little impact
on the flow development at a later stage, as the re-attached turbulent boundary layer
is captured with excellent agreement. The maximum reversed flow of 12% is found at
x = 0.55 C in the current simulations (not displayed in the figure and similar to the DNS
from Smith [14]), while in the DNS from Shan et al. [35], 26% was found at x = 0.6 C. Alam
and Sandham [57] concluded that velocity profiles with more than 15% reversed flow are
required for absolute stability (disturbances grow in time), while less than 15% is considered
convective stability (disturbances grow in space). This condition is not met by the current
simulations. Hence, it can be assumed that the current separation bubble has a similar
behavior to that from Alam [57] and Yang [62], where an inviscidly instability is triggered
by the Kelvin–Helmholtz mechanism.



Aerospace 2025, 12, 108 19 of 35

u*

y
+

­0.1 0 0.1 0.2 0.3 0.4

0

5

10

15

20

25

30

35

40

iLES x=0.2

iLES x=0.3

iLES x=0.4
iLES x=0.5

LES x0.2

LES x0.3

LES x0.4

LES x0.5
DNS 0.2 

DNS 0.3 

DNS 0.4 

DNS 0.5 

Figure 10. Enlarged view of mean stream-wise velocity profiles at locations x/C = 0.2, 0.3, 0.4, and
0.5, where the separation takes place.

The mean transverse and span-wise velocity profiles are displayed in Figure 11 and
Figure 12 respectively. Similar patterns are captured by both iLES and LES approaches for
mean transverse profiles, the main difference can be identified at locations x = 0.5 C, 0.6 C
and 0.7 C, corresponding the re-attachment area. At the location near leading edge, the
transverse velocity has been amplified to 350% of its free-stream magnitude then slowly
been reduced until its lowest at location x = 0.4 C, right in the middle of the separation
bubble. At locations closer to the re-attachment area, the transverse velocity has changed its
direction fast towards the wall, then remains at about −110% after the re-attachment. The
transverse profiles are quite similar to turbulent stream-wise profiles, but with an opposite
direction. By examining the span-wise profiles in Figure 12, the flow is found dominated by
two-dimensional motions at initial stage, as the mean span-wise velocity remains constant
until x = 0.5 C, where a variation is observed, indicating the rise of three-dimensionality.
The span-wise variation emerges firstly in viscous layer (y+ < 10) then propagates upwards
from the wall. At locations after x = 0.5 C, the profiles remain oscillated, highlighting the
strong three-dimensional motion of the flow.
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Figure 11. Mean transverse velocity profiles, from left to right are location at x/C = 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1. The solid red line denotes iLES and the discontinued blue line denotes the LES.
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Figure 12. Mean span-wise velocity profiles, from left to right are location at x/C = 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1. The solid red line denotes iLES and the discontinued blue line denotes the LES.

The root mean squared stream-wise and transverse fluctuations are plotted in
Figures 13 and 14. These quantities are strongly related to the turbulence level of flow.
At a short distance from the separation point, the flow is still laminar as no fluctuation
appears in the stream-wise and transverse directions. From location x = 0.5 C to x = 0.6 C,
fluctuations are suddenly intensified near the wall, and a transition to turbulence is believed
to occur after the instability emerges in the separating boundary layer. The transition is also
reflected by the strong gradient in the plots of the pressure coefficients seen in Figure 4 and
the skin friction coefficients in Figure 5. The stream-wise fluctuation peaks are at a wall dis-
tance of y∗ ≈ 7 at x = 0.6 C for both the iLES and LES approaches, but the former decreases
much faster as it distances itself from the wall. Additionally, the transverse fluctuation
peak is at y∗ ≈ 15 for theiLES, while for the LES, the peak is higher, at y∗ ≈ 30. In other
words, the iLES predicted a higher fluctuation in the near-wall area at the re-attachment
region (x ≈ 0.6). The strongest fluctuation is found around the transition re-attachment
area, similar to that found by Sato et al. [63]. When the flow was re-established, both
approaches predicted non-distinguishable fluctuation profiles. The R.M.S of the kinetic
energy is shown in Figure 15, and data from Smith [14] are also included. Apart from the
re-attachment area (x = 0.6 C), the profiles are within satisfactory agreement with the DNS
reference, where the flow remains smooth in the first half of the separation zone and is
then governed by strong turbulent activities from the re-attachment area to the tailing edge.
It should be noted that the profile obtained by the LES approach is closer to that of the
DNS reference than the iLES at the re-attachment area, possibly suggesting an insufficient
dissipation in the viscous layer for the latter approach.

Finally, an overall physical phenomenon can be summarized based on the time-
averaged field as follows: The laminar boundary layer is formed after the flow passes the
leading edge of the aerofoil surface. Due to the adverse pressure gradient and curvature of
the surface, the boundary layer separates at around x = 0.23 C. The separating boundary
layer remains laminar for more than half of its total length then undergoes a transition to
turbulent between x = 0.5 and x = 0.6, resulting in a fast negative surge of the skin friction
coefficient and rapidly intensified turbulent fluctuations. The re-attachment takes place
at around 0.6C, thus forming a separation bubble. The turbulent boundary layer is then
established quickly and stays attached to the surface until it finally sweeps off into the wake.
Span-wise variation occurs before the transition to turbulence, and it is located at about
half of the mean bubble length; the flow becomes three-dimensional and then turbulent.
The whole process shares similarities with that presented by Yang et al. [62], where the flow
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is past the curvature-induced plate. Currently, both the iLES and LES show good reliability
in a time-averaged flow.
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Figure 13. Root mean square of stream-wise velocity fluctuation profiles; from left to right: locations
at x/C = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. The solid red line denotes the iLES and the discontinued blue line
denotes the LES.
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Figure 14. Root mean square of transverse velocity fluctuation profiles; from left to right: locations
at x/C = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. The solid red line denotes iLES and the discontinued blue line
denotes the LES.
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Figure 15. Root mean square of TKE profiles compared with those from Smith [14]; from left to right:
locations at x/C = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. The solid red line denotes iLES and the discontinued blue
line denotes the LES.
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4.4. Boundary Layer Development

In this section, the instantaneous flow field obtained by the iLES is discussed to further
asses the numerical approach and explore more flow characteristics.

4.4.1. Instantaneous Flow Structure

Figure 16 shows the evolution of the boundary layer from the initial stage. The sub-
figures on the left represent the iso-surfaces of the Q-criterion colored by the instantaneous
stream-wise velocity, while on the right, the vorticity magnitude at the mid-span is illus-
trated. At the beginning, a long and smooth layer which covers the first half the cord
denotes the laminar boundary layer. It rolls up and separates from the surface at around
the middle cord location due to the Kelvin–Helmholtz instability mechanism. Large-scale
vortex shedding can be observed; they are two-dimensional and turn around the span-wise
axis. At the next time interval, disturbance is found near the trailing edge, where the large-
scale vortices tend to lose their shapes as a result. Meanwhile, smaller vortices are formed
in the boundary layer separation zone. Next, the large-scale vortices near the trailing edge
break down into smaller vortices and are joined by small vortices which are convecting
from the upstream. At the following time-step, vortices formed by the boundary layer
roll-up quickly break down into hairpin-like structures and become three-dimensional
as the flow convects downstream. Here, Yang and Voke [62] and Roshko [64] pointed
out that the span-wise length of two ends of the hairpin vortices is about the same as
a Kelvin–Helmholtz wavelength, indicating that the transition from two-dimensional to
three-dimensional is mainly triggered by the –Helmholtz instability. As the fluctuation
propagates downstream, the vortices speed up and break into smaller ones and become
fully turbulent quickly, just before the re-attachment.

Finally, the irregular vortex shedding is established, involving laminar separation,
vortex breakdown and transition to turbulence, and re-attachment to the surface, as can
be clearly observed in Figure 17. Recall that the mean turbulent kinetic energy reaches its
maximum at around 60% of the chord length (Figure 15), corresponding to the location
where the transition to turbulence takes place. This is in agreement with the current vortex
visualization. The whole process is found to be qualitatively consistent with that from
Spalart and Strelets [8] and Jones et al. [31], further validating the suitability of the current
iLES on predicting flow with complexity. A failed example of LES is demonstrated in
Smith [14]; the Smagorinsky SGS model was not able to capture the transition for three
levels of grid (due to excessive dissipation); therefore, the predicted boundary layer remains
laminar on both sides of the aerofoil, while the dynamic k model captured the transition
reasonably. This proves that an accurate representation of the SGS effect is a key factor
to resolve the transition. In addition, Asada and Kawai [54] stressed that it is essential
to resolve the transition in order to accurately capture the flow physics such as the skin
friction and turbulent boundary layer further downstream.

It should be noted that the length and shape of the separation bubble are constantly
changing, even after the flow is established; a consecutive time series of snapshots of an
enlarged view of the separation bubble are illustrated in Figure 18. As one can observe
on the figures on the top and bottom, only one long bubble appears, and the greater the
amount of instantaneous reversed flow, the further downstream the re-attachment location
is; thus, the separation bubble is longer. The figures in the middle demonstrate a separation
zone made up of several consecutive small bubbles, and the separation and re-attachment
take place multiple times. The first re-attachment can be observed at as early as 47% of the
cord length and as late as 64% (note that the mean re-attachment location is around 60%).
Therefore, it can be concluded that the formation of the separation bubble is irregular and
highly time-dependant. Similarly, on the curved plate, Yang and Voke [62] showed that
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the variation in the instantaneous re-attachment location can be up to 50% of the mean
re-attachment.

Figure 16. Snapshots showing the early development of the boundary layer, top to bottom images
are displayed in the order of dimensionless time T∗ of 0.34, 0.68, 1.02, 1.36, 1.7, and 2.04.
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(a) Q criterion

(b) Vorticity magnitude

Figure 17. The boundary layer at dimensionless T* = 24, the last time step of simulation.
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Figure 18. Snapshots of the primary separation bubble on the suction side.
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4.4.2. Velocity Spectra and Time-Series

Spectral analysis is necessary to reveal more insights into this highly unsteady flow.
To monitor the transition process during the course of simulation, probes (as described in
Table 4) are placed along the aerofoil at the fourth cell to the wall, which is inside of the
viscous layer of the boundary layer. At each probe, stream-wise and transverse velocities
are evenly sampled for every time-step ∆t of 1 × 10−5 s, and a total of 35,000 samples were
collected. Similarly, the Hann window is used to perform FFT to obtain the velocity spectra.

Table 4. Probe locations in mid-span, at the same cord-wise location where the velocity profiles were
extracted previously.

Probe P1 P2 P3 P4 P5 P6

x/C 0.2 0.3 0.4 0.5 0.6 0.7

The spectra for the stream-wise and transverse velocity components are displayed
in Figure 19. At 20% of the chord length, where the separation is about to take place, the
linearly decreased spectra show a purely laminar flow feature. A peak can be observed
at around 300 Hz at 30% of the chord length, corresponding to a shedding frequency of
the laminar flow separating the boundary layer. This peak is then sharply amplified at
40% of the chord length due to the convective instability; note that at a higher frequency
range, the smaller scales are still in the same order of magnitude as the upstream locations,
indicating that the amplification is only applied to the larger vortices. It should be also
taken into account that the span-wise disturbance begins to emerge, as shown in Figure 12.
At half of the length of the cord, all scales have an oscillation amplitude at least one
order of magnitude higher, the narrow band peak and its second harmonic are very
pronounced, and the transition to turbulence is on course to take place. Note that the
transition is mostly triggered by upstream disturbances or a change in surface roughness;
however, the transition in the current context seems to be self-induced, without external
influence. Similarly, Spalart and Strelets [8] demonstrated a transition that was independent
of incoming disturbances.
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Figure 19. Velocity spectra at locations (from bottom to top) x = 0.2 C, 0.3 C, 0.4 C, 0.5 C, 0.6 C, and
0.7 C.
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Shan et al. [35] pointed out a possible original source of the three-dimensional distur-
bance which propagates upstream from the trailing edge that triggers the transition. As the
boundary layer re-attaches to the surface at around 60% of the cord length, the narrow band
peak becomes much less pronounced and tends to disappear as the fully turbulent flow
is established. This is because of the breakdown of larger scales in the transition process
and because more, smaller scales amplified with turbulent kinetic energy are created at a
high range of frequency. Figure 15 confirms that the turbulent kinetic energy reached the
highest level at this location. In addition, a similar magnitude of amplitude is found in both
stream-wise and transverse directions at higher frequency (103 Hz), revealing the isotropic
feature of small scales of the fully turbulent boundary layer. The above observations on
the velocity spectra are in good agreement with the DNS study by Smith and Ventikos [14],
where the initial disturbance, which is also characterized by a peak, is found to grow
rapidly between 0.4 C and 0.5 C. A flattened spectrum denotes the fully turbulent status of
the boundary layer after re-attachment.

In addition to velocity spectra, the entire time histories of stream-wise velocity are
recorded and displayed in Figure 20. The dashed lines from the beginning to dimensionless
time T∗ = 12 are excluded to obtain a time-averaged flow field, as the initial numerical tran-
sients can be clearly observed. For the first half of the cord length, the velocity magnitude is
always smooth and gradually decreases to a negative value, corresponding to the laminar
separation. Particular attention is paid to the middle of cord; after a period of numerical
transition (T∗ ≈ 3), the velocity oscillation magnitude becomes significantly amplified
with time, until T∗ ≈ 13, and then suddenly decreases but still remains higher than its
initial level in later time series. From the visualization shown in Figure 16, it is known
that at the location where x = 0.5 C, the vortices which are forming by the roll-up of the
laminar boundary layer break down with the rise in three-dimensionality, and a transition
to turbulence occurs. It could be speculated that disturbance is gathered from multiple
sources at the middle of cord as the transition process continues and the breakdown is
accelerated, until a balance of small vortex production and shading is established.

The velocity had the highest oscillation amplitude at x = 0.6 C, as expected, and then
gradually increased as the turbulent kinetic energy dissipated at downstream locations. In
the current investigation, no evidence has been found yet to identify the original source of
the disturbance, in addition to Kelvin–Helmholtz instability, which is mainly responsible
for the formation of three-dimensionality. The DNS study by Shan et al. [35] suggested
a disturbance at the wake after analysing the time histories of stream-wise velocity, but
the conclusion was obtained without analysing the detailed flow structure and the cause
of the disturbance remains unclear. Thus, in the following, the trailing edge dynamics
are explored.
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Figure 20. Full time history of stream-wise velocities at various locations near the wall on the upper
surface of the aerofoil.

4.4.3. The Separation Bubble near the Trailing Edge

An enlarged view of the mean separation zone near the trailing edge is shown in
Figure 21. The higher density of the vector fields on the upper surface of the aerofoil can
be seen, and even after sweeping off, its boundary is still aligned with the upper surface
and joined by the reversed flow from downstream of the trailing edge. Another part of the
reversed flow moves further upstream at the lower surface, forming a significant reversed
zone. The boundary layer on the lower surface remains attached and laminar from the
leading edge until it is countered by this reversed flow, which separates it from the surface.
Note in the Figure 5, the zero crossing of the lower surface skin coefficients near the tailing
edge reflect the separation. Before joining the wake, the inner part of the separated free
shear layer is “sucked” back, with one big part rejoining the reserved flow zone and another
smaller part becoming absorbed by the turbulent free shear layer on the upper part. Here,
two vortices can be identified near the trailing edge. From the time-averaged vector field, it
can be concluded that these two vortical structures are self-sustained, and the process of
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their creation can be revealed by analysing the evolution of the flow near the trailing edge
from the initial stage.
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Figure 21. Mean reversed flow zone near trailing edge.

Similar to Figure 16, the initial development of the trailing edge separation bubble
at consecutive time steps is shown in Figure 22. The instantaneous stream-traces are
demonstrated and the background is coloured by the stream-wise velocity, where the red
and green denote the region with stream-wise direction. In the top figure, at a distance
upstream of the trailing edge, a large energetic vortex is observed. At this stage, the flow
on the upper surface downstream of the large vortex seems to have less kinetic energy and
is drawn by the flow on the lower side at the trailing edge; a minor disturbance can be seen
immediately. In the next moment, the vortex arrives at the trailing edge and is amplified
by a large portion of the flow on the lower side, forming a large instantaneous separation
bubble and causing greater distortion of the flow near the trailing edge.

In the following figures, it can be observed that the bubble has further increased in size
due to the amplification of the vortex from upstream and the flow on the lower surface. On
the side of the large vortex, a secondary vortex is formed, corresponding to the appearance
of span-wise structures at the same time step in Figure 16, where the instability emerges.
Next, the large vortex breaks up into smaller ones and injects more kinetic energy into the
upper flow field. Note that the flow stream trace on the lower side bends upwards. It is
worth mentioning that at the same time, hairpin structures emerge near the re-attachment
zone, indicating that the increase in three-dimensionality upstream appears slightly later
than that near trailing edge. As shown in the last figure, the motion of flow on the upper
side is represented by the fluctuated stream-traces and remains attached. On the other
hand, a clear separation zone can be found on the lower side and two vortical structures
are identified inside, as a result of the intersection of turbulent and laminar flow on the
upper and lower sides.

The stream-wise velocity time history from additional probes which are located on
the upper and lower surfaces of the aerofoil near the trailing edge are displayed. Figure 23
shows the locations upstream of the trailing edge; the red line represents the upper side and
the green line represents the lower side. At locations x = 0.8 C and x = 0.9 C, the upper side
velocities share the same pattern at the initial stage, with an average magnitude less than 0,
confirming that the separation bubble appears alternatively, as shown in the visualization
(see Figures 16 and 22). After the transient period (T∗ > 2), the velocities fluctuate around
a mean magnitude bigger than zero, indicating an attached and turbulent flow. An obvious
difference can be observed for the velocities on the lower side, as the flow remains laminar
and there is no fluctuation even at the transient stage.
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Figure 22. Initial development of vortex shedding near trailing edge.
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Figure 23. Stream-wise velocity histories at x/C = 0.9. The red line denotes the velocity recorded by
the probe on the upper surface and the green line represents the lower surface.

At the location x = 0.99 C, the lower velocities show a similar transient fluctuation
pattern to the upper velocities, and the fluctuation magnitude is greatly decreased and
stabilized around a mean value smaller than 0. This confirms that a small reversed flow
region is formed, co-related to the upper velocities. Figure 24 shows two locations down-
stream of the trailing edge; the oscillation amplitude becomes greater as the flow moves
further into the wake. However, there is no obvious disturbance found related to time.
It can be concluded that the disturbance near the trailing edge is the consequence of an
interaction between the seeping turbulent boundary layer from the upper side and the
laminar boundary layer from the lower side. The resulting bubble at the trailing edge bursts,
introducing span-wise distortion which propagates upstream. However, three-dimensional
perturbation caused by numerical residual fluctuation [35] cannot be not ruled out.
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Figure 24. Stream-wise velocity histories at x/C = 0.99. The red line denotes the velocity recorded by
the probe on the upper surface and the green line represents the lower surface.

5. Conclusions
iLES and LES investigations were carried out on the separated flow around the

NACA0012 aerofoil, at an incidence of 4 degrees and with a moderate Reynolds num-
ber of 1 × 105. The total number of finite volume cells was kept as low as 7.7 × 106, 30% of
the grid used in the DNS of Smith [14] and much less than most of the LES in the literature.
To validate the fidelity of the current numerical approach, results were compared with two
DNS studies [14,35] which were conducted under the same flow configurations.

The mean lift Cl and drag coefficients Cd are indistinguishable between iLES and
LES, and the variance is found to be within 10% compared to the experimental data from
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the closest flow configuration. The mean surface pressure coefficients Cp are in excellent
agreement with the DNS of Smith [14], and the iLES gives a better prediction in the
separated transitional region. The mean re-attachment is located at around x = 0.6 C for
iLES and LES, in close agreement with Smith [14], who predicted x = 0.56 C, and coincides
with the boundary layer transition region. The mean velocity profiles showed a fully
established turbulent boundary layer after re-attachment, accurately matching with the
DNS of Smith [14]. However, it should be noted that in the separation zone, the current
profiles are distinct from the profiles of Smith [14] at a normal wall distance higher than
y+ = 10, although the amount of reversed flow is in satisfactory agreement. Further, at
the re-attachment location x = 0.6 C, the mean r.m.s of fluctuations predicted by LES has a
better agreement with DNS than iLES.

It is worth noting that for such a separated transitional flow, even if all scales of
motions are considered resolved, a large discrepancy can still be found on the mean flow
field between the DNS of Shan et al. [35] and Smith [14]. In the author’s opinion, the
DNS of Smith [14] should be more reliable due to following reasons: it has a much bigger
computational domain and a larger number of total finite volume cells; there is a fully
three-dimensional simulation; and the current results and other LES studies [58–60] are
in qualitatively agreement and consistent with Smith [14] regarding the mean pressure
coefficient along the aerofoil surface.

The instantaneous flow field can be obtained using the iLES approach, where the
entire physical process on the upper surface of the aerofoil is captured. The process
involves laminar boundary layer separation, the formation of a large scale vortex, a rise
in three-dimensionality, vortex breakdown and transition to turbulence, re-attachment
and the establishment of a fully turbulent boundary layer. The shape and length of
the formed separation bubble changes instantaneously, as the locations of separation
and re-attachment are not fixed. On the lower part of the aerofoil, the boundary layer
remains laminar and attached until 90%, and then separates due to a stronger reversed
flow from the lower part of the near wake. The spectral analysis demonstrated the validity
of the predicted instantaneous flow evolution through a comparison with the DNS of
Smith [14]. For the physical perspective, the first instability is induced via a Kelvin–
Helmholtz mechanism, followed by a second instability which gives rise to the three-
dimensionality. The span-wise disturbance is found to be related to the vortex breakdown,
and leads to the transition to turbulence. Here, a reversed flow with a maximum amount
of 12% free stream magnitude is found, suggesting a convective instability, in agreement
with Jones et al. [31]. Shan et al. [35] pointed out that the span-wise instability first emerges
in the near wake; following this suggestion, the dynamics of the near wake were explored.
A possible cause of the disturbance is attributed to the interaction of two separating free
shear layers at the early stage.

The current iLES approach, based on a third-order WENO scheme [27], is capable
of dealing with wall-bounded flow involving separation and transition. Although only a
second-order overall accuracy is achieved, the computed mean quantities such as surface
pressure coefficient, turbulent velocity profiles and turbulent kinetic energy profiles are in
satisfactory agreement with the DNS reference. Note that despite the current prediction
of the near-wall velocity profiles being different in the separation zone (Figures 9 and 10,
hence a thinner separation bubble), the fully turbulent boundary layer at the re-attachment
zone is still captured with excellent agreement. It has been proven that the near-wall
resolution is essential to accurately predict such a complex flow. To overcome the current
weakness, it is recommended to increase near-wall resolution by reducing the wall’s normal
expansion ratio in the separation zone only. Also, the excessive turbulent kinetic energy is
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predicted by iLES at the very near wall, indicating the possible lack of dissipation in the
near-wall region.
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Abbreviations

CFD Computational Fluid Dynamics
LES Large Eddy Simulation
RANS Reynolds Average Navier–Stokes
PISO Pressure-Implicit Splitting Operator
WENO Weighted Essentially Non-Oscillatory
ν Kinematic viscosity (m2/s)
ω Weight (-)
τsgs Sub-Grid-Scale tensor
νsgs SGS viscosity
∆̂ Filter width
Re Reynolds number (-)
p Kinematic pressure (m2/s2)
U Velocity vector (m/s)
t Time (s)
T∗ Time unit (s)
V Volume of a cell (m3)
ksgs SGS kinetic energy
S Area of a face (m2)
lz Span-wise extend lenth
F Surface flux (-)
n Normal unit vector of a surface
(x, y, z) Cartesian coordinates (m)
x+, y+, z+ Dimensionless distance
U Free-stream velocity (m/s)
C Cord length of aerofoil (m3)
u, v, w Velocity components
Q Q criterion
F Flux
Ma Mach number
u′u′, v′v′ Normal stress components
u′v′ Shear stress component
Cp Pressure coefficient (-)
Cl Lift coefficient (-)
Cd Drag coefficient (-)
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