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Abstract: A novel approach to model predictive control (MPC) with a decreasing horizon is
analysed for guiding and controlling reusable launch vehicles (RLVs) during powered de-
scent phases. Conventional MPC methods typically use receding horizons, where optimal
control inputs are computed over fixed time intervals. However, when applied directly,
these methods can cause a hovering-like behaviour, preventing the vehicle from reaching
the landing platform, as the landing time is continually deferred at each iteration. The
proposed solution addresses this problem by adjusting the prediction horizon dynamically,
reducing its length over time. This dynamic adjustment is driven by a time-scaling factor
and the time elapsed since the previous MPC iteration. Optimal control solutions are
derived through convex optimization techniques. To evaluate the algorithm’s robustness
against initial conditions, a Monte Carlo analysis is performed by varying initial position,
velocity and mass. This method can also be used as a viable methodology for selecting
tuning parameters for the MPC to ensure a successful and safe landing for a wide range of
initial conditions.

Keywords: powered descend guidance; convex optimization; model predictive control;
reusable launch vehicle

1. Introduction
The development of technologies that allow for vertical descent and landing of rockets

has proven to be a game changer by reducing the cost barrier to space access. Thanks to this
technology, new companies, e.g., SpaceX, can offer competitive prices for launch services
to new space actors and enterprises [1]. Likewise, they enable planetary missions to touch
down on previously selected landing sites deemed interesting for their scientific value.
Examples of this are the Mars Science Laboratory mission [2], the MARS 2020 mission, and
the Tianwen-1 Mars mission [3].

Guidance and control during the powered descent and landing of reusable launchers
is one of the most complex challenges that characterise such systems, involving innovative
solutions from a technical and practical perspective. The challenge of achieving a soft
landing for a fast free-falling launcher lies in the precise control of its dynamics. This
involves a complex interplay of forces, where the thrust must be modulated and re-oriented
to counteract the effects of gravity and atmospheric drag [1]. By adjusting the thrust vector,
the descent can be stabilised, allowing for adjustments to be made in real-time to ensure a
gentle touchdown. This process requires advanced algorithms and control systems capable
of responding to the rapidly changing conditions of a free fall, ensuring that the launcher
can navigate to the desired landing site and achieve a controlled and safe landing [4].
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The development of powered descent guidance algorithms based on optimal control
theory began in the 1960s during the Apollo era as part of the lunar landing program [5–7].
More recently, the space sector has renewed its interest in this type of technology as part
of the Mars exploration missions at the end of the last century and beginning of the
2000s through the utilisation of constrained optimisation methods. Such algorithms were
further optimised by the application of convex programming [8,9], which demonstrated
that a second-order cone programming (SOCP) set of equations can be used to solve the
powered descent problem through interior point methods. Other guidance methods have
been successfully applied to perform smooth landings on planetary bodies. Among other
examples are the Mars Science Laboratory Entry, Descent, and Landing System, which
followed a 3D polynomial trajectory computed at the beginning of the landing phase and
performed a powered approach to the Martian surface [2] and the polynomial guidance
strategy used by the Tianwen-1 mission to perform a diversion manoeuvre during the
powered descent phase [3]. Nevertheless, whereas polynomial powered descent guidance
is computationally efficient and sufficient for small diversions, constrained optimisation
methods solve for globally fuel-optimal and constrained diversions that allow for the
inclusion of the particularities of the spacecraft in the guidance strategy [9,10]. For the
particular case of landing a reusable launch vehicle (RLV), polynomial guidance might not
be suitable due to rapid changes in the flight conditions, as mentioned before.

The last decade has seen a significant surge in the development of advanced guidance
and control systems for launch vehicles. The incorporation of convex optimisation models
has revolutionised the precision with which these vehicles can be manoeuvred, accounting
for both translational and rotational dynamics. This progress in six degrees-of-freedom
(6 DoF) modelling enhances the accuracy and reliability of launchers, marking a substantial
advancement in aerospace engineering and space exploration capabilities. In [11], the
methodology of successive convexification, a form of sequential convex programming
(SCP) was used for solving the powered descent guidance problem. Within that study,
the algorithm employed virtual control and trust region modifications to facilitate conver-
gence of the problem. In [12], a similar approach was used by integrating aerodynamic
controls within a two-dimensional framework, simulating conditions over a flat Earth
model. Additionally, in [13], the control optimiser leveraged the atmospheric drag energy
to enhance efficiency, representing another innovative application of this technique. These
advancements underscore the growing reliance on convex models to optimise the perfor-
mance and safety of reusable launch vehicles and landers during the final phases of descent
and landing. A more detailed survey on optimization-based space vehicle control was
performed in [14], not only for a powered landing scenario but also for other guidance and
control challenges such as rendezvous and proximity operations, constrained reorienta-
tion, and orbit transfer and injection. In [15], an assessment of the coupling between the
guidance and control techniques was carried out for different RLV recovery strategies and
controllability challenges. Additionally, alternative guidance strategies are currently being
studied such as evolutionary optimisation, tree searches, and machine learning [16,17].
For instance, a trained neural network was used in [18] to solve fuel-optimal powered
descent guidance in lunar pinpoint landing, and closed-loop MPC guidance with deep
neural networks was used for landing a rocket’s first stage [19].

Nevertheless, the challenges of Earth descent and landing for RLVs are indeed com-
plex, with atmospheric drag, winds, and structural flexibility posing significant risks
to the integrity of the manoeuvres. Open-loop control schemes, which rely solely on
preplanned trajectories, are often insufficient due to their inability to adapt to dynamic
environmental conditions. In contrast, closed-loop control systems, such as model predic-
tive control (MPC), offer a more robust solution by continuously adjusting the vehicle’s
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trajectory in response to real-time sensor data. MPC can predict future states of the RLV
and make necessary adjustments to ensure a safe and accurate landing [20,21]. MPC had
been widely used for managing the complex processes of industries like chemical and oil
processing [22,23], where changes occur over longer periods. However, applying MPC
to RLVs during powered descent involves rapid dynamics and requires real-time com-
putational speed, robustness against disturbances, and precise handling of constraints.
Typically, MPC uses a receding horizon strategy where the optimal control is always cal-
culated for a fixed period of time shifting at each iteration step [22]. However, the direct
implementation of such schemes in a powered descent scenario is not trivial, and it can
lead to unexpected behaviours such as hovering-like trajectories with the vehicle never
reaching the landing target. This is shown in [24], where an optimal strategy for setting
the prediction horizon duration was developed as a solution to counter the impossibility
of finding a fixed receding horizon for the guidance and control of RLVs. In addition,
Scharf et al., in [25,26], used an onboard time-of-flight search algorithm to obtain the best
prediction horizon for the optimisation problem at each iteration of the G-FOLD algorithm.

This paper introduces a new algorithm designed to simplify the time-length update
phase within an MPC algorithm. It details an iterative method that adjusts the horizon
length using a specific update factor. The resulting solution, while sub-optimal, might
demand significantly less computational power than previously optimised algorithms, such
as those mentioned in [24], as it predefines the prediction horizon to use at each iteration
instead of including it as a variable to optimize in the cost function. Other earlier methods
aimed to determine the optimal horizon at the beginning of each MPC iteration [26] require
multiple problem-solving instances per iteration and thus are not computationally efficient.
The proposed method markedly reduces the iterations needed to establish a viable time
horizon, thereby reducing the computational time. This feature is particularly advantageous
for real-time embedded system applications. This paper completes the work presented
in [27], varying the initial conditions of the numerical simulations and completing the
study with a Monte Carlo analysis of the robustness of the algorithm with respect to the
variability of the initial state vector, which benefits the proposed method to accurately tune
the MPC algorithm and prevents possible issues during flight.

The paper is organised into the following sections: Section 2 defines the set of equations
and constraints of the guidance problem, and a convexification of this set of equations is
proposed in Section 3 so that an MPC algorithm can be developed later in Section 3.2. Next,
the simulation results and a Monte Carlo analysis in Section 4 prove the robustness of the
algorithm against different initial and environmental conditions. Finally, Section 5 provides
the concluding remarks and future work.

2. Problem Statement
In this section, the rocket plant used for the simulation is presented along with a

mathematical definition of the landing problem. This section has been written in an
abridged format, as the main theoretical derivation was presented in [27].

2.1. Model

The model used for the simulations is a point-mass two-dimensional model and is
subjected to the forces generated by the thrust T of its engines and atmospheric drag D (see
Figure 1):
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

ẋ = Vx

ż = Vz

V̇x = Tx−Dcos(γ)
m

V̇z =
Tz−Dsin(γ)

m − g
ṁ = − |T|

Ispg0

(1)

where γ = tan(Vz
Vx
) is the ascent/descent angle of the RLV, Isp is the specific impulse of its

engines, and g0 is the gravity force at sea level. The orientation of the RLV is not explicitly
represented in the set of Equation (1), although the tangent of the thrust vector is considered
to be the orientation of the RLV, θ = tan( Tz

Tx
), fixing the thrusters to the body.

D =
1
2

ρ(z) · V2 · S(α) · CD(α) (2)

α = |θ − γ| (3)

The aerodynamic drag D is obtained from Equation (2), where ρ is the air density
at a given altitude, V is the magnitude of the velocity relative to the atmosphere, which
includes the RLV velocity and the wind velocity, S is the area of the launcher exposed to
atmospheric flow, and CD is the drag coefficient. The angle of attack α is defined as the
difference between θ and γ (see Equation (3)). This model is further developed in [27].

Figure 1. RLV model variables as presented in Equation (1).

2.2. Definition of Landing Problem

A set of constraints defines the problem (a two-boundary value problem (TBVP)) to be
solved, including the initial and desired final values of the state vector:

x(t0) = x0

z(t0) = z0

Vx(t0) = Vx0

Vz(t0) = Vz0

(4)


x(t f ) = 0
z(t f ) = 0
Vx(t f ) = 0
Vz(t f ) = 0

(5)

where t0 and t f are the initial and final time. The landing pad is assumed to be fixed in the
origin of the reference frame (Constraint (5)) and needs to be reached by the RLV with zero
velocity, in order to have a soft landing.
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The TBVP assumes a cost function that minimises the required thrust:

J =
∫ t f

0
|T| dt (6)

The list of considered constraints is derived in [8,27] and contains the following equations:

0 < Tmin ≤ T(t) ≤ Tmax (7)

z(t) ≥ 0 (8)

Tz(t) ≥ 0 (9)

m(t f ) ≥ mdry (10)

|π
2
− θB(t)| ≥ |π

2
− θ(t)| (11)

where θB(t) is an orientation boundary that changes over time.

3. Model Predictive Control
The MPC strategy used is illustrated in Figure 2, where the RLV’s physical model

(Equation (1)) is controlled by an optimal thrust profile derived from a convex optimisation
solver (SeDuMi [28]). The solver employs the convexified set of constraints and equations
of motion outlined in Section 3.1. The implementation of the decreasing horizon model
predictive algorithm is then detailed in Section 3.2.

Figure 2. Flowchart of MPC Strategy [27].

3.1. Convexification of the Problem

Two steps must be performed to turn the landing problem into a semidefinite pro-
gramming (SDP) problem [8], which can be solved by a convex solver. The first step is to
transform the non-convex constraints into a convex form following the process described
in [8]. In the landing problem presented in Section 2.2, the sources of non-convexity are
(1) the change of mass in the last row of Equation (1), which is tackled by a change of
variable as in Equation (12), and (2) the thrust limit in Constraint (7), which is dealt with by
introducing a slack variable Γ as in Equation (13) [8].

η = ln(m) (12)

∥T⃗∥ ≤ Γ (13)
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After a series of steps followed in [27], the last equation of Equation (1) can be rewritten
as Equation (14).

η̇ =
ṁ
m

= − Γ
Isp g0 m

(14)

The objective index defined in Equation (6) can now be reformulated with the new Γ
variable as Equation (15).

J =
∫ t f

0

Γ
m

dt (15)

Thus, the state variables can be updated at each iteration step of the prediction phase
in the MPC by using the linearised set of equations of motion in Equation (16), where the
atmospheric drag is not included and therefore it is considered as an external disturbing
factor for the controller.

x(t + ∆t) = 1
2 ux(t) ∆t2 + Vx(t) ∆t + x(t)

z(t + ∆t) = 1
2 (uz(t)− g) ∆t2 + Vz(t) ∆t + z(t)

Vx(t + ∆t) = ux(t) ∆t + Vx(t)
Vz(t + ∆t) = (uz(t)− g) ∆t + Vz(t)
η(t + ∆t) = − Γ(t)

Isp g0 m(t) ∆t + η(t)

(16)

3.2. Decreasing Horizon MPC

The proposed modification to the MPC method is based on the adjustment of the
horizon length to solve the issues when a receding horizon is applied. The main issue with
the receding horizon strategy for the TBVP is that the landing time is always postponed,
and therefore the guidance algorithm will generate the guidance law to land in the future
until the problem becomes infeasible due to the lack of propellant (see [27] for a comparison
between both strategies) and to allow the RLV to land. For this purpose, it is necessary to
define several time-related parameters, which will define how and when the prediction
horizon is updated:

(a) Terminal Horizon time (TH): which serves for setting the global desired time to be
landed. This represents the upper-bound limit for touch down, that in any case can
happen anytime before.

(b) Prediction Horizon time (PH): time used in the prediction step by the optimisa-
tion solver.

(c) ∆tI : time between each MPC iteration when the optimiser recalculates the optimal
solution by getting the updated state of the RLV.

(d) ∆tP: time between each of the prediction states computed within the same predic-
tion horizon.

(e) Update Factor (UF): determines when and by which rate TH and PH are decreased.
Its value must be set between 0 and 1.

Algorithm 1 and Figure 3 outline the operation of this new strategy. In the first step
of the algorithm, the initial values for the new parameters are set. Two nested loops are
then executed. The outer loop (line 2) updates TH and PH at each iteration and continues
until the prediction horizon PH becomes smaller than the iteration time step ∆tI . The inner
loop (line 3) handles the prediction and calculates the optimized control for the RLV. The
prediction step is carried out by the function convexOptimiser(X, PH, ∆tP), which uses the
given PH and ∆tP, solving the optimization problem in Equation (15) and implementing
the equations and constraints described in Section 3.1. Once the outer loop completes, the
algorithm applies the final segment of the control signal U to the RLV to complete the
landing manoeuvre (line 10).
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Algorithm 1 Decreasing Horizon MPC Algorithm

1: Define TH, PH, ∆tI , ∆tP, UF and X0
2: while PH > ∆tI do
3: for iteration = 0, 1, 2, . . . , TH · UF do
4: U = convexOptimiser(X, PH, ∆tP)
5: Apply U for ∆tI
6: end for
7: Update TH = TH · (1 − UF)
8: Update PH = PH · (1 − UF)
9: end while

10: Apply the rest of U

Figure 3. Generalisation of the decreasing MPC algorithm.

Figure 3 illustrates how the update of TH and PH progresses over time within the
algorithm. Starting with the initial values TH1, PH1, ∆tI , ∆tP and UF, the horizons TH1 and
PH1 are applied over a time t1 equal to TH · UF. At this point, TH2 and PH2 are calculated
by multiplying TH1 and PH1 by (1 − UF), as shown in lines 7 and 8 of Algorithm 1. The
algorithm then proceeds with these updated horizons for the next iteration. It is important
to note that only the terminal and prediction horizons are adjusted during the execution
of the MPC algorithm. The process continues until the prediction horizon PH becomes
shorter than the iteration step ∆tI , represented as PHn−1 in Figure 3. At this point, the RLV
uses the remaining portion of the predicted control generated by the MPC. As discussed in
Section 4, the selection of horizon times and initial parameters is critical to the algorithm’s
performance, and these values vary depending on the problem’s initial conditions.

4. Numerical Results
The performance of the proposed MPC algorithm for reusable launch vehicle (RLV)

scenarios is evaluated through numerical simulations. This section presents several test
cases simulating landings on Earth using the first stage of SpaceX’s Falcon 9 rocket [29].
The methodology follows the approach outlined in [27], with the addition of a Monte
Carlo analysis to assess the robustness of the MPC algorithm with respect to varying
initial conditions of the RLV. The aim is to further validate the capability of the proposed
algorithm in achieving a successful RLV landing in a realistic scenario, complementing the
results presented in [27]. The chosen scenario models the landing of the Falcon 9’s first
stage, beginning from an initial position of x0 = 2500 m, z0 = 5000 m and initial velocities
of Vx0 = −170 m/s and Vz0 = −250 m/s. These values are used as the initial state vector
for solving the problem.

The relevant parameters for the rocket and the environment are provided in
Tables 1 and 2, respectively. For the simulations, only one engine of the rocket is con-
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sidered. The initial mass of the RLV in each scenario is determined by the remaining fuel
mass at the start of the landing phase. The simulations are conducted using the lower
atmosphere of Earth as the environmental model.

Table 1. Falcon 9 first stage parameters used in the simulations.

Rocket Falcon 9 1st Stage

N. Engines 9
Engine Thrust [kN] 845
Specific Impulse [s] 311
Propellant Mass 1 [t] 395.7
Dry Mass [t] 25.6
Length [m] 41.2
Diameter [m] 3.7
Maximum Thrust [%] 0.8
Minimum Thrust [%] 0.1

1 Initial propellant mass at launch.

Table 2. Earth parameters used in the simulations. Data from [30].

Environment Earth

Air density at sea level [kg/m3] 1.217
Scale Height [m] 85,000
Gravity acceleration at sea level [m/s2] 9.81
Speed of Sound [m/s] 340

4.1. Understanding the Feasibility Region of the Optimisation Problem

Before analysing the performance of the proposed MPC algorithm, a study is carried
out to understand the suitability of the convex optimiser to solve the problem. This is
achieved through a series of Monte Carlo and parametric analyses that allow a better
comprehension of the feasible region with respect to the prediction horizon PH and the
initial conditions. A sensitivity analysis regarding the initial conditions and prediction
horizon duration was performed in Section 4.1.1 of [27], with a range of initial conditions
that still apply for those used for the simulations in this study (see Table 3).

Table 3. Monte Carlo minimum and maximum boundaries for the initial conditions of the prob-
lem [27].

Variable Min. Value Max. Value

Position X [m] 2000 3500
Position Z [m] 4000 6000
Velocity Vx [m/s] −250 −50
Velocity Vz [m/s] −350 −200
Fuel percentage [%] 1.5 3.5
Mass m [t] 31.5 39.5
Orientation θB [deg] 45 45

4.1.1. Finding the Applicable Ranges of the Prediction Horizon for Different
Initial Velocities

The second step of the feasibility study is an analysis of the effect of the initial mag-
nitude in the two components of the velocity Vx and Vz [27]. A parametric analysis is
executed to understand the feasible range of PH values for each V considered. Table 4
describes the initial conditions of the analysis while the velocities are obtained from Table 3.
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Table 4. Initial conditions for the parametric analysis of the prediction horizon of the problem.

Variable Initial Value

Position X [m] 2500
Position Z [m] 5000
Fuel percentage [%] 2.8
Mass m [t] 36.7
Orientation θB [deg] 45

The parametric analysis results can be seen in Figure 4. In Figure 4a, the values for
the problem show a global minimum of 32 s around V = (−150,−250) m/s and a radius
of 30 to 40 m/s. The propagation of these initial velocities starting at the initial position
(2500, 5000) m allows for a clear understanding of the physical interpretation of the location
of such minimum. These velocity values bring the RLV close to the landing site (0, 0) m
without the need for thrust, and therefore they allow for minimisation of the eventual
corrections of the trajectory.

(a) (b)

Figure 4. Parametric Analysis of the initial velocity for the optimisation problem: (a) minimum PH
and (b) maximum PH in seconds. The values in yellow in (a) and dark blue in (b) define the infeasible
region of the problem.

In Figure 4b, the region with the maximum feasible PH values is in the upper-right
corner. Such a region of maximum feasible PH is due to the lower thrust needed to
overcome the initial velocities, being these with smaller magnitudes compared to the other
cases, and therefore a higher quantity of fuel still available to descend slowly or even
hover before touching the ground. Moreover, the values in yellow in Figure 4a and in dark
blue in Figure 4b when Vz is close to −350 m/s represent the cases in which the problem
is unfeasible.

4.2. Analysis of the Performance of the Proposed MPC

After understanding the applicability of the presented optimiser for the landing
scenario, the performance of the proposed MPC algorithm is analysed. Firstly, a parametric
analysis is carried out to understand where the feasible region is with respect to the
parameters of the MPC to be tuned. These parameters are the prediction horizon PH, the
terminal horizon TH, and the update factor UF. Afterwards, an optimal trajectory obtained
within the feasible region is discussed.

4.2.1. Finding the Applicable Ranges of Terminal Horizon and Update Factor

The feasible ranges for TH and UF need to be identified based on the findings in
Section 4.1. To this end, a parametric test with 1188 cases was conducted across a broad
range of values, see Table 5. It was determined that a TH ≈ 2 · PH and a UF within
the range [0.01, 0.20] are suitable for solving the problem. The feasibility of the problem
is assessed by verifying that the constraints outlined in Section 2.2 are satisfied and by
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comparing the state of the RLV at the end of each MPC run with the final objective, which
is [0 m, 0 m, 0 m/s, 0 m/s]. The problem is considered solved if the position and velocity
errors fall within specified margins: 2 m and 2 m/s, respectively.

Table 5. Range of values for the TH, UF, and PH for the parametric analysis of the TH and UF based
on the result obtained in Section 4.1.

MPC Tuning

Variable Min. Value Max. Value Step Size

PH [s] 26 42 2
TH [s] 58 78 2
UF [-] 0.01 0.02 0.01
UF [-] 0.04 0.40 0.04

The execution of the set of scenarios revealed a zone in which the problem is feasible,
as seen in Figure 5. From the set containing 1188 cases, 348 were feasible. The first detail
seen in Figure 5 is that PH = 28 s is the minimum feasible PH. This is explained by the fact
that the MPC algorithm will not solve the problem if the convex optimiser does not. For
PH = 28 s, the problem is feasible for almost any TH selected and a UF greater or equal to
0.12. As the PH increases, the feasible region is restricted to a lower UF, i.e., between 0.04
and 0.20 for PH > 28 s and PH ≤ 32 s. The higher boundary of UF continues decreasing
until there is only UF = 0.04 for PH = 42 s. In a similar manner, as the UF increases, the
TH increases. For the cases with lower PH, there are feasible solutions for all the values of
TH with various values of UF, while in the upper part of Figure 5 the main feasible region
is constrained to UF = 0.04 and UF = 0.08 with TH ≥ 74 s. The scenarios comprised
by UF = 0.12 are a good example of the tendency of the feasible region with respect to
the selected value of TH. Initially, it covers the full spectrum of selected values of TH
when PH ≤ 30 s and ends with only one feasible solution with PH = 42 s and TH = 78 s.
There were other feasible cases seen in Figure 5, but as they were isolated, they were not
considered to be part of the main feasibility region.

Figure 5. Feasible (green) and unfeasible (red) cases of the parametric analysis of PH, TH, and UF.



Aerospace 2025, 12, 111 11 of 17

4.2.2. Optimal Trajectory

The final step to discuss is the performance of the MPC algorithm in a feasible sce-
nario. The selected case, part of the set analysed in Section 4.2.1, considers parameters of
PH = 32 s, TH = 64 s, and UF = 0.08.

Figure 6 illustrates the trajectory followed by the RLV during the powered descent.
The red vectors represent the thrust applied at each moment, with the largest thrust exerted
at the start and end of the landing. This is further confirmed by Figure 7, which displays the
state and control vectors for the landing case. In Figure 7e, the thrust follows a bang–bang
profile, reaching its maximum for extended periods at both the beginning and end of the
simulation. Meanwhile, Figure 7f shows that the thrust angle starts at 65 degrees and
gradually converges towards 90 degrees for a vertical landing.

Figure 6. MPC: Landing trajectory with thrust vector.

In Figures 6 and 7a, the altitude drops rapidly during the first 3000 m, while the pro-
posed MPC algorithm simultaneously reduces the Vz, as shown in Figure 7b, counteracting
the initial velocity. Notably, between t ≈ 20 s and t ≈ 42 s, the Vz remains nearly constant
to allow the RLV to approach the target on the X-axis, as seen in Figure 7a–d, resulting
in a slower decrease in altitude. During the final phase of the descent, the MPC reduces
the magnitudes of both the Vx and Vz components, achieving a safe landing at the target
position. The final state vector of the RLV is [−0.001 m, 1.718 m,−0.001 m/s,−1.925 m/s],
which satisfies the specified margins. The final mass is 28183 kg, greater than the dry mass
of the first stage of the Falcon 9 rocket.

Although not shown in Figure 7f, some cases exhibit instantaneous changes in the
thrust angle θ due to the absence of a constraint on the initial control actions. As a result,
at each step of the MPC algorithm, the initial θ may differ from its previous value. Future
research activities will focus on including this constraint in the algorithm to ensure that
the optimizer takes the RLV’s current orientation into account. Additionally, the model
in Equation (1) does not consider the rotational dynamics of the RLV, meaning that the
computed θ is assumed to be achieved instantaneously. Nonetheless, these instantaneous
jumps in θ are limited to ±10 degrees. It is reasonable to expect that if attitude dynamics
were included in the simulation model, the angle would be reached over a shorter period
than the characteristic time of the simulation.
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(a) (b)

(c) (d)

(e) (f)
Figure 7. MPC: Nominal scenario landing variables for the RLV. Subfigure (a) shows its altitude
against time, (b) shows its Vz over time, (c) shows its X position against time, (d) shows its Vx over
time, (e) shows the used thrust norm, and (f) shows the thrust angle γ.

4.3. Monte Carlo Analysis of the Nominal Scenario Boundaries for the Selected PH, TH and UF

Once a nominal scenario has been studied and the values of the PH, TH, and UF have
been selected, the last step is to understand how robust the algorithm is with respect to
uncertainties in the initial state of the vehicle. Using the chosen values of the PH, TH, and
UF, a Monte Carlo analysis is performed to find the boundaries of the feasibility region in
each of the elements of the state vector.

Table 6 shows the minimum and maximum values for the uniformly distributed ran-
dom points characterising the analysis. The range of values considered in each component
of the position is 1000 m, from 2000 m in X and 4500 m in Z, up to 3000 m and 5500 m,
respectively. The velocity components are constrained to [−215,−135] m/s in Vx and
[−300,−200] m/s in Vz, which means a range of 90 m/s and 100 m/s. The initial mass



Aerospace 2025, 12, 111 13 of 17

studied covers from a minimum of 33.5 tonnes up to 39.8 tonnes, which means that the
percentage of the fuel goes from 0.02 to 0.036.

Table 6. Boundaries of the Monte Carlo analysis of the selected PH, TH, and UF.

Variable Minimum Maximum

X [m] 2000 3000
Z [m] 4500 5500
Vx [m/s] −215 −135
Vz [m/s] −300 −200
Mass [kg] 33,500 39,845
Fuel Mass percentage [%] 0.02 0.036

4.3.1. Monte Carlo Analysis with Fixed Initial Velocity

The first case studied is the sensibility of the proposed MPC algorithm to variations of
the initial position and mass. Figure 8 presents the results of the 500 simulations. Figure 8a
compares the variability of the problem with respect to the initial position. It displays a
feasible region for all X ≤ 2700 m for all the range of altitudes considered, but going up
to X = 3000 m when the altitude is higher. Additionally, it presents an unfeasible region
in the lower-right corner when the initial horizontal distance is greater and the altitude is
lower, which shows the relation between initial position and velocity. As the velocity is
fixed, there is a boundary in which the problem becomes unfeasible for the MPC algorithm
to solve. This relates to what was stated previously in Section 4.1.1. The unfeasible cases in
the feasible region are caused by an initial mass too small or too big, as seen in Figure 8b
when X ≤ 2500 m.

(a)

(b) (c)
Figure 8. Monte Carlo results with variable initial position and initial mass. Subfigure (a) compares
initial altitude vs horizontal range, Subfigure (b) compares initial mass vs horizontal range, Subfigure
(c) compares initial mass vs. altitude. Results in green are feasible, in red are unfeasible, and the
blue points mark the initial conditions of the nominal scenario. These three subfigures represent a
three-dimensional figure considering X, altitude, and initial mass M0. Feasible and unfeasible close
points have different values in the missing axis of each subfigure or are close to a feasibility boundary.
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In Figure 8b,c, the initial mass is compared to each position component. Analysing
both subfigures, it can be seen that, for a fixed initial velocity, the component that affects
the feasibility the most is X. For X ≤ 2800 m, there is a clear feasible zone, except for two
regions where the mass is too high (m0 ≥ 38 tonnes) or too low (m0 ≤ 34 tonnes) and
X ≤ 2500 m. Figure 8c contains feasible solutions in the range of considered altitudes with
a higher difficulty in landing the RLV correctly when the mass is close to the upper limit.

4.3.2. Monte Carlo Analysis with Fixed Initial Position

The second Monte Carlo test maintains the initial position as in the nominal scenario
and varies the initial velocity and mass according to Table 6. The results obtained after
500 iterations are represented in Figure 9.

(a) (b)

(c) (d)

Figure 9. Monte Carlo results with variable initial velocity and initial mass. Results in green
are feasible, results in red are unfeasible, and the blue points mark the initial conditions of the
nominal scenario. Subfigure (a) shows the results with respect to the velocity components (Vx, Vz)
and Subfigure (b) shows the results with respect to the velocity norm V and the initial mass M0.
Subfigures (a,c,d) represent three-dimensional figure considering Vx, Vz and M0.

On Figure 9a, the feasible region represents all the cases in which the MPC algo-
rithm was able to overcome the initial velocity. When the initial magnitude of Vx is small
(|Vx| < 150 m/s), the RLV is not able to reach the landing target, especially as the initial
|Vz| becomes higher. Moreover, there is an unfeasible region when |Vx| > 180 m/s and
|Vz| > 250 m/s, when |V| > 310 m/s, as seen in Figure 9b. This subfigure shows an unsta-
ble region around the nominal scenario conditions, but its feasibility is better explained
in Figure 9c,d, where the initial mass m0 is compared with each velocity component. The
proposed MPC algorithm is robust for the zone around the nominal condition in Figure 9c,
particularly when |Vx| > 150 m/s and independently of m0. As |Vx| increases, the problem
becomes more difficult to solve, in the same manner as in Figure 9d when |Vz| reaches
300 m/s.
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4.3.3. Monte Carlo Analysis with Fixed Initial Mass

The last Monte Carlo analysis for assessing the robustness of the MPC algorithm
consists of 500 cases in which the initial mass was fixed and the position and velocity
variate. Figure 10 presents the results obtained and reinforce the lessons already learned
in the previous Sections 4.3.1 and 4.3.2. Specifically, in Figure 10a, the problem becomes
harder to solve when the horizontal distance X with respect to the landing pad increases
and, in Figure 10b the problem cannot be consistently solved in the bottom right region
when the initial |Vx| is smaller and the initial |Vz| rises.

(a) (b)

Figure 10. Monte Carlo results with variable initial position (a) and initial velocity (b). Results in
green are feasible, those in red are unfeasible, and the blue points mark the initial conditions of the
nominal scenario.

5. Conclusions
This paper further analyses the robustness of a proposed MPC strategy for the powered

descent of an RLV. The strategy adjusts the prediction horizon using an update factor,
allowing the RLV to land within a specified terminal horizon. The paper highlights the
advantages of this approach over receding horizon MPC methods, reducing the need for
an online search of a suitable prediction horizon when it is not fixed [10]. It can be tuned
by properly setting the initial PH, TH, and UF values.

The numerical simulations and the tuning carried out within this paper show that this
approach is viable and promising. The presented tuning strategy can be easily automatised
and applied to systems with different RLVs and initial conditions, leading to different
optimal sets of PH, TH and UF. The robustness of the tuning strategy, as well as the overall
MPC algorithm, was assessed by analysing the performances and the feasibility regions by
varying, under a Monte Carlo approach, the initial conditions of the vehicle. The qualitative
interpretation of the results leads to stress the importance of the initial horizontal distance
between the RLV and the landing site, and the initial vertical component velocity. A key
parameter considered within these analyses was the propellant mass, which is strongly
affecting the capability of the rocket to land. Sharp feasibility boundaries were indeed
identified when initial parameters were pushed out of reasonable ranges. In the presented
case of the landing of a Falcon 9 stage, the maximum horizontal distance could not be bigger
than 2800 m and the initial vertical descent velocity could not exceed approx. 280 m/s. In
such cases, the RLV could run out of fuel or could not be able to slow sufficiently fast the
motion before touching the ground.

Preliminary results of the current work by the authors have been presented in [31],
describing further research of a similar strategy on a six-DoF rigid body model with
translational and rotational dynamics. Future work will test possible failure scenarios, i.e.,
an engine failure, and how the proposed MPC algorithm copes with them. Alternative
future works will explore the possibilities of using artificial intelligence for the selection of
the prediction horizon, i.e., tree search algorithms, as described in [16].
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11. Szmuk, M.; Reynolds, T.P.; Açıkmeşe, B. Successive Convexification for Real-Time Six-Degree-of-Freedom Powered Descent
Guidance with State-Triggered Constraints. J. Guid. Control Dyn. 2020, 43, 1399–1413. [CrossRef]

12. Liu, X. Fuel-Optimal Rocket Landing with Aerodynamic Controls. J. Guid. Control Dyn. 2019, 42, 65–77. [CrossRef]
13. Sagliano, M.; Mooij, E. Optimal drag-energy entry guidance via pseudospectral convex optimization. Aerosp. Sci. Technol. 2021,

117, 106946. [CrossRef]
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