
Academic Editors: M. Reza Emami,

Shuang Li, Pierre Rochus and

Hongwei Yang

Received: 31 December 2024

Revised: 23 January 2025

Accepted: 30 January 2025

Published: 3 February 2025

Citation: Goracci, G.; Curti, F.;

de Guzman, M.A. Nanosatellite

Autonomous Navigation via Extreme

Learning Machine Using

Magnetometer Measurements.

Aerospace 2025, 12, 117. https://

doi.org/10.3390/aerospace12020117

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Nanosatellite Autonomous Navigation via Extreme Learning
Machine Using Magnetometer Measurements
Gilberto Goracci 1 , Fabio Curti 2,* and Mark Anthony de Guzman 1

1 School of Aerospace Engineering, Sapienza University of Rome-University of Rome Tor Vergata,
Via Salaria 851, 00138 Rome, Italy; gilberto.goracci@alumni.uniroma2.eu (G.G.);
markanthony.deguzman@uniroma1.it (M.A.d.G.)

2 Department of Systems and Industrial Engineering, The University of Arizona, Tucson, AZ 85721, USA
* Correspondence: fcurti@arizona.edu

Abstract: This work presents an algorithm to perform autonomous navigation in spacecraft
using onboard magnetometer data during GPS outages. An Extended Kalman Filter (EKF)
exploiting magnetic field measurements is combined with a Single-Hidden-Layer Feed-
forward Neural Network (SLFN) trained via the Extreme Learning Machine to improve
the accuracy of the state estimate. The SLFN is trained using GPS data when available and
predicts the state correction to be applied to the EKF estimates. The CHAOS-7 magnetic
field model is used to generate the magnetometer measurements, while a 13th-order IGRF
model is exploited by the EKF. Tests on simulated data showed that the algorithm improved
the state estimate provided by the EKF by a factor of 2.4 for a total of 51 days when trained
on 5 days of GPS data.

Keywords: space systems; orbit determination; autonomous navigation; nanosatellites;
Extended Kalman Filter; Artificial Intelligence; Neural Networks; Extreme Learning Machine

1. Introduction
Spacecraft tracking is usually performed through ground-based tracking systems

such as radar or optical station networks. The complexity introduced by these devices
can be tackled by implementing autonomous navigation modules onboard spacecraft.
This step is particularly crucial for small satellite missions, which generally have limited
computational and power consumption resources available. An onboard GPS module is a
common solution; however, it relies on the quality and the availability of the GPS signal for
the accuracy of position and velocity estimates, thus making the satellite not completely
autonomous. Furthermore, commercial GPS modules are subject to several limitations,
such as military and/or government restrictions, intentional performance degradation,
signal occlusion by the Earth during the initial acquisition phase, unwanted Doppler shifts,
or component degradation [1].

For this reason, the use of data coming from sensors already available onboard, like
magnetometers and/or Sun sensors, is attracting a lot of research effort [1–4]. Magnetome-
ters, in particular, are low-cost sensors which can be exploited by Kalman Filters (KFs) [5–7]
to perform autonomous orbit determination. This approach yields errors with accuracies
ranging from hundreds of kilometers to sub-kilometers from the spacecraft’s position. The
goodness of these estimates mainly depends on the accuracy of the magnetic field model
used [8–10]. These results indicate that Kalman Filtering is a solid baseline for autonomous
orbit determination, but the state estimation provided is still not reliable enough to be used
in the absence of GPS signals. Following the recent exploit of Machine Learning (ML), many
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studies have been carried out to integrate Kalman Filtering with Artifical Intelligence (AI)
frameworks, in particular by using Neural Networks (NNs). The reference [11] presents a
detailed overview of ML-KF applications, paying particular attention to the different roles
played by ML. Such roles include the following:

• Tuning and predicting KF parameters, such as error covariances;
• Predicting and compensating KF errors;
• Predicting and updating the state vector and/or measurements;
• Predicting pseudo-measurements to be fed to the KF.

In general, an hybrid approach shows better results than the application of standalone ML
frameworks or Kalman Filtering. When dealing with non-linear dynamics or non-Gaussian
noises, ML models provide a better outcome than Kalman Filtering which, in turn, offers
better interpretability with respect to end-to-end ML approaches. For most architectures, in
fact, the intermediate relations between the features are unknown and the ML module acts
as a "black box" between the input and the output of the process. In this work, the solidity
and reliability of the Extended Kalman Filter (EKF) [12,13] is combined with a Neural
Network trained via the Extreme Learning Machine [14,15] to further increase the accuracy
of the state estimate. In particular, the algorithm collects GPS data as long as the GPS
signal is available, while a magnetometer-based EKF provides a second, less accurate, state
estimate. The error of the EKF estimate with respect to the GPS one is computed. When the
GPS is no longer available, the Neural Network is trained using the EKF estimates as input
values and the errors, with respect to the GPS, as target values.

This work also represents a feasibility study of improved autonomous magnetometer-
based navigation during spacecraft’s safe mode when the GPS signal is unavailable due to
safety reasons, system anomalies, a lack of communication, or hardware/software failures.
In many situations, safe-mode navigation is performed via coarse orbit propagation from
some initial conditions provided to the spacecraft by the ground station. This operation can
be particularly demanding, especially when dealing with constellations of small satellites.
Furthermore, communication with the ground station might be impossible under the given
circumstances. On the contrary, sensor-based approaches such as the one described in
this work do not require ground intervention. In particular, this approach represents an
improvement over traditional EKF-based navigation using magnetometer data.

To meet onboard requirements such as limited power consumption and computational
effort, the EKF employs an onboard IGRF magnetic field model to derive the state estimates,
and it is aided by a Neural Network to overcome the model discrepancies with respect
to the CHAOS-7 magnetic field. The overall process represents an accurate and lighter
alternative to the direct implementation of the CHAOS-7 model in the EKF and a backup
solution for the navigation of small satellites during GPS outages.

The algorithm was trained and tested on a simulated Sun-synchronous orbit consider-
ing J2, J3, third-body, and atmospheric-drag perturbations. The geomagnetic model used to
provide the measurements was the CHAOS-7 magnetic field model [16], while the filter
implemented a spherical harmonics expansion using the 13th-Generation International Ge-
omagnetic Reference Field (IGRF) coefficients up to the 13th order [17]. This manuscript is
organized as follows. Section 2 describes the main frameworks used in this work; Section 3
explains the parameter optimization process; Section 4 describes the dataset generation;
and Section 5 presents the obtained results. Conclusions and future works on this topic are
presented in Section 7 at the end of the manuscript.

2. Methodology
This section describes the two algorithms used in this work.
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2.1. Extended Kalman Filter

The Extended Kalman Filter (EKF) [12,13] is a model-based, non-linear algorithm
developed in the early 1960s [5]. The quality of its performance is strictly linked to the
knowledge of the underlying dynamics and to the goodness of model assumptions. Here,
the state vector xk in the k-th time step is represented by the position and the velocity of the
spacecraft in an Earth-Centered Inertial (ECI) reference frame,

xk = [x, y, z, vx, vy, vz], (1)

while the observation vector ok is either given by the components of the geomagnetic field
Bx, By, Bz,

oB
k = [Bx, By, Bz], (2)

or by the GPS signal received by the spacecraft GPSx, GPSy, GPSz,

oGPS
k = [GPSx, GPSy, GPSz]. (3)

On the other hand, the observation vector is taken as a non-linear function, z, of the
state plus a zero-mean random process, v:

o = z(x) + v (4)

The time evolution of the state, instead, is a non-linear function, f , of the state plus
another zero-mean random process, u:

ẋ = f(x) + u. (5)

The new state estimate x̂k is given by the following equation according to the EKF theory:

x̂k = x̄k + Kk[ok − z(x̄k)], (6)

where x̄k is the state prediction, K indicates the Kalman gain matrix [18], and [ok − z(x̄k)] is
the residual: the difference between the actual measurement and the non-linear measure-
ment prediction.

In the case of discrete measurements, Equation (4) can be rewritten as

ok = z(xk) + vk. (7)

To compute the Kalman gain matrix K, a first-order approximation is used for the
system dynamics matrix F and the measurement matrix Z since Equations (4) and (5) are
non-linear. The relations between these matrices and the previous equations are

Fk =
∂ f (x)

∂x

∣∣∣
x=x̂k

(8)

and

Zk =
∂z(x)

∂x

∣∣∣
x=x̂k

(9)

The Kalman gain matrix can be computed from the Riccati equations, a set of recursive
matrix equations given by [18]:
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Mk = Φk−1Pk−1ΦT
k−1 + Qk (10)

Kk = MkZT
k−1(Zk−1MkZT

k−1 + Rk)
−1 (11)

Pk = (I − KkZk−1)Mk, (12)

where Φk−1 is the fundamental matrix and can be approximated by the first two terms of
the Taylor-series expansion of eFk−1Ts : Φk ≃ I + Fk−1Ts, with Ts being the sampling time
interval. The discrete process-noise matrix Qk can be computed as

Qk =
∫ Ts

0
Φk−1(τ)QΦT

k−1(τ)dτ, (13)

where Φk−1(τ) =≃ I + Fk−1τ.
Finally, the state prediction is given by

x̄k = Φk−1x̂k−1. (14)

However, in the EKF, the state can be directly propagated forward by integrating the actual
nonlinear differential equations in each sampling interval.

In this work, f (x) is the state-dynamics function, including the J2 perturbation, and
z(x) is the implemented pyIGRF [17] module to evaluate the magnetic field as a function
of the position and time for the magnetometer-based EKFs, from which the matrix ZB

is computed numerically. On the other hand, the matrix F is obtained by deriving f (x)
analytically.

For the GPS-based EKF, the measurement function is

ZGPS =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

, (15)

which only maps the position into itself; therefore, the GPS-based EKF is a filter for the
GPS noise.

2.2. Extreme Learning Machine

The Extreme Learning Machine (ELM) is a learning algorithm developed for Single-
Hidden-Layer Feedforward Neural Networks (SLFNs) [14,15], known for its fast and
lightweight nature. The main advantage of this learning algorithm is that if the activation
function is infinitely differentiable in any interval, the input weights and biases can be
sampled from any random distribution and kept fixed through the training procedure,
still ensuring the convergence, as shown in [14]. In this way, the only parameters to be
tuned are the output weights; therefore, the training process does not need an iterative
tuning of the input weights and biases. The ideal number of hidden neurons, however,
can be only determined empirically, as well as the amplitude of the distributions that the
input weights and biases are sampled from. The absence of an iterative process drastically
reduces the computational burden of the training phase, making the ELM an ideal solution
when dealing with strict requirements in terms of hardware, as happens in the case of
onboard applications. The architecture of an SLFN employing the ELM algorithm is shown
in Figure 1.

Given an ELM-trained SLFN composed of M input neurons, L hidden neurons, J
output neurons, an activation function, g(·), and N training samples (T, Ytrue), with
T ∈ RN×M and Ytrue ∈ RN×J , the vector of the weights connecting the input neurons
to the l-th hidden neuron can written as wl = [w1l , w2l , . . . , wMl ], and the weight connect-
ing the l-th hidden neuron to the j-th output neuron is the quantity βl j. Finally, let bl be the
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bias of the l-th hidden neuron. With these definitions, the j-th output with respect to the
m-th input vector is expressed as

ymj =
L

∑
l=1

βl jg(wl · tm + bl), (16)

and, therefore, in matrix form, as
y = Hβ (17)

where H is the N × L matrix of the activation functions.

Figure 1. ELM Neural Network structure.

Let N be the number of training samples with target matrix Ytrue; the training process
aims at finding the output weight matrix β which minimizes the quantity ||Hβ − Ytrue||.
Such an optimal matrix is given by the following smallest-norm least-square solution:

β̂ = H†Ytrue, (18)

where H† is the Moore–Penrose generalized inverse matrix of H.

3. Parameter Optimization
3.1. GPS-Based EKF Configuration

When available, the GPS data received by the satellite were processed by the first EKF,
and a state vector, xGPS, was returned. The EKF was run using the configuration shown in
Table 1.

Table 1. GPS-based Extended Kalman Filter configuration.

Parameter Value

Measurement noise, σGPS 0.033 km
Initial position error, ∆x 5 km = 3σx
Initial velocity error, ∆v 0.5 km/s = 3σv

Process noise, uv, ua 0 km/s, 10−5 km/s2

Measurements noise matrix, RGPS diag{σ2
GPS, σ2

GPS, σ2
GPS}

Covariance matrix, P diag{σ2
x , σ2

x , σ2
x , σ2

v , σ2
v , σ2

v}
Process noise matrix, Q diag{w2

v, w2
v, w2

v, w2
a , w2

a , w2
a}

Measurement sampling time, TGPS
s 1 s

The received GPS data oGPS
k = [GPSx, GPSy, GPSz] were simulated by adding a zero-

mean Gaussian noise, GPSnoise, with the standard deviation σGPS to the real Cartesian
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position in the ECI of the spacecraft rtrue = [xtrue, ytrue, ztrue] given by the propagated
true orbit:

oGPS
k = rtrue + GPSnoise (19)

3.2. Magnetometer-Based EKF Configuration

The magnetometer-based EKF was run using the configuration shown in Table 2, where
the best value for the measurement noise matrix RB was determined in the following way.

Table 2. Magnetometer-based Extended Kalman Filter configuration.

Parameter Value

Measurement noise, σB 20 nT
Initial position error, ∆x 5 km = 3σx
Initial velocity error, ∆v 0.5 km/s = 3σv

Process noise, uv, ua 0 km/s, 10−5 km/s2

Model mismatch parameter, α 1000 nT
Weight matrix, RB diag{α2, α2, α2}

Covariance matrix, P diag{σ2
x , σ2

x , σ2
x , σ2

v , σ2
v , σ2

v}
Process noise matrix, Q diag{w2

v, w2
v, w2

v, w2
a , w2

a , w2
a}

Measurement sampling time, TB
s 10 s

In this work, the magnetometer measurements were simulated using the CHAOS-7
model described in Section 4.3.2 while the EKF computed the Z matrix using the IGRF
magnetic field model (Section 4.3.1). The difference between the filter’s and measurements’
geomagnetic model was taken into account in the matrix RB that was used as a weight
matrix. Since complete knowledge of the noise process would require a perfect match
between the two models, RB was tuned by performing different runs with the EKF in order
to find the best value to minimize the EKF errors. Figure 2 shows the results of different
runs with different values in the model mismatch parameter α such as that RB = α2 · I3×3

in terms of the state mean and maximum Root Sum Squared Error (RSSE).

Figure 2. The tuning process of the measurement noise matrix RB = α2 · I3×3. The position (left) and
velocity (right) mean (blue) and maximum (red) RSSE of different EKF runs are shown against the
corresponding value of RB. The best configuration is obtained for α = 1000 nT. Each EKF run has a
duration of 100,000 s, corresponding to 10,000 iterations.

Similarly to the generation of the received GPS data, the magnetometer measurement
vector oB

k = [Bx, By, Bz] was simulated by adding a zero-mean Gaussian noise, Bnoise, with
the standard deviation σB = 20 nT to the magnetic field computed in the actual position of
the spacecraft:

oB
k = B(xtrue) + Bnoise. (20)
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The value of σB was chosen according to the typical accuracy of onboard magnetometers
[10,19–21].

3.3. Neural Network Configuration

This work used an SLFN trained via the ELM to improve the accuracy of the EKF state
estimates. The SLFN had a width of L = 11 hidden neurons and the activation function
was a Fourier series expansion up to the (L − 1)/2 = 5 order of wl · tm + bl with 1 ≤ l ≤ L
and 1 ≤ m ≤ M.

The input weights and biases of the SLFN were sampled from a uniform distribution
between −0.0001 and 0.0001. The number of hidden neurons and the amplitude of the
distribution were determined empirically.

Neural Network Training Process

The EKF state estimate was given by the six components of the vector xEKF. The six
components of the EKF error vector ∆xEKF were evaluated with respect to the state estimate
given by the GPS xGPS:

∆xEKF = xGPS − xEKF, (21)

The EKF state vector xEKF and the magnetometer measurements oB
k were used as the

input of the ELM-trained SLFN, while ∆xEKF was the target value. The output of the SLFN
was the quantity ∆xELM.

The improved state estimate xELM was

xELM = ∆xELM + xEKF, (22)

with an error given by xGPS − xELM. The training process scheme is shown in Figure 3.

Figure 3. SLFN training process.

Tests showed that the addition of the measurement vector oB to the inputs of the SLFN
improved the stability of the prediction when the network was trained on a small portion of
data. However, the SLFN exploiting only the EKF state vector as an input slightly improved
the accuracy on the training set when trained on the same data.

4. Dataset Generation
4.1. Dynamics

In this study, the gravitational dynamics model embedded in the EKF is given by

r̈ = − µ

r3 r + p, (23)
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where µ = 398,600.4 km3s−2 is the Earth’s standard gravitational parameter and p is the J2

perturbation acceleration in km · s−2, expressed as

p =
3
2

J2µR2

r4

[ x
r

(
5

z2

r2 − 1
)

î +
y
r

(
5

z2

r2 − 1
)

ĵ +
z
r

(
5

z2

r2 − 3
)

k̂
]
. (24)

In Equation (24), the value for the Earth’s oblateness factor is J2 = 0.00108263 and the x-, y-,
and z-coordinates are given in the ECI reference frame in km, whose directions are given by
the unit vectors î, ĵ, and k̂; R = 6378.14 km the is the Earth’s mean radius. While in the EKF
model only the J2 perturbation was included, the ground truth orbit was propagated by
also considering the J3 effect, atmospheric drag, and third-body attraction of the Sun and
Moon. This was performed to increase the fidelity of the propagated orbit while keeping
the implemented model of the EKF as simple as possible, in the same fashion as what was
performed for the magnetic field modeling. Additionally, for the ground truth model, the
acceleration due to the atmospheric drag adrag was modeled using the following equation.

adrag = −1
2

ρ(h)vrel

(Cd A
m

)
vrel , (25)

where vrel is the spacecraft’s velocity with respect to the atmosphere, Cd is the dimensionless
drag coefficient, A/m is the area-to-mass ratio, and ρ(h) is the air density at the altitude h,
given by an exponential atmospheric model:

ρ(h) = ρ0e−h/h0 , (26)

where ρ0 and h0 are the exponent density pre-factor and the atmospheric scale height,
respectively. Table 3 reports the values used in this work.

Table 3. Atmospheric drag model parameters.

Parameter Value

Exponent density pre-factor, ρ0 1.3 × 109 kg/km3

Atmospheric scale height, h0 8.5 km
Area-to-mass ratio, A/m 0.126 m2/kg

Dimensionless drag coefficient, Cd 2.2

The dynamical model was developed in the Python environment using the Poliastro
package [22].

4.2. Ground Truth Orbit

This work was performed using a Sun-synchronous orbit propagated for 120 days
from 3 January 2019, and the initial orbital parameters are reported in Table 4.

Table 4. Sun-synchronous simulated orbit’s initial orbital parameters.

Orbital Parameter Initial Value

Semi-major axis, a 6945 km
Eccentricity, e 10−3

Inclination, i 96.6°
Right ascension of ascending node, Ω 49.562°

Argument of perigee, ω 0°
True anomaly, ν 24.33°

Epoch 3 January 2019
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4.3. Geomagnetic Field Modeling
4.3.1. IGRF Model

The goal of this work was to test the behaviour of the EKF when the onboard imple-
mented model of the geomagnetic field was lighter but less accurate than the model used to
generate the collected measurements. For this reason, the EKF used a spherical harmonics
expansion of the geomagnetic scalar potential V using the 13th-Generation International
Geomagnetic Reference Field (IGRF) coefficients [17] up to the thirteenth order,

V(r, θ, ϕ, t) = R
N

∑
n=1

n

∑
m=0

(R
r

)n+1
[gm

n (t) cos(mϕ) + hm
n (t) sin(mϕ)]Pm

n (cos θ), (27)

where we have the following:

• r is the distance from the Earth’s center in km;
• θ and ϕ are the colatitude and longitude, respectively, in decimal degrees;
• t is the date and time expressed in decimal years;
• R is the Earth’s mean radius in km;
• N = 13 is the order of truncation;
• gm

n and hm
n are the 13th-Generation IGRF coefficients, finalized in December 2019 by

the International Association of Geomagnetism and Aeronomy (IAGA);
• Pm

n are the Schmidt semi-normalized associated Legendre functions of the degree n
and order m.

According to the model, in source-free regions above the surface of the Earth, the main
field BEarth is given by the negative gradient of the scalar potential:

BEarth = −∇V. (28)

4.3.2. CHAOS-7 Model

To simulate more accurate magnetometer measurements, the CHAOS-7 model was
used. The CHAOS-7 model [16] is the most recent version of a series of time-dependent
geomagnetic field models developed at the Technical University of Denmark (DTU) span-
ning from 1999 to 2020. This model exploits both satellite and ground observatory data
and provides regular updates using the latest data available every 4 to 6 months. Satellite
data were provided by the satellites Ørsted (from 1999 to 2013), CHAMP (from 2000 to
2010), SAC-C (from 2001 to 2004), and CryoSat-2 (from 2010 to 2014) and the three Swarm
satellites (from 2014 to 2020). The model also used annual differences in the revised monthly
means of ground observatory data (from 1999 to 2019) from 182 ground observatories (see
Figure 4).

Figure 4. Locations of ground magnetic observatories providing data for derivation of CHAOS-7
from [16], published under license CC BY 4.0.
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The model followed the source-free approximation of Equation (28), with the scalar
potential being the sum of two terms:

V = Vint + Vext, (29)

where Vint includes the internal core and lithospheric sources while Vext consists of the
magnetospheric-assumed external sources and their internal Earth-induced counterparts.
A spherical harmonics expansion was used for both terms of V, with a maximum or-
der of truncation of 70 for the internal field and 2 for the external field. The induced
fields were computed using a Q-responses-based method assuming an Earth-conductivity
model [23,24]. A more detailed description of the scalar potential modeling can be found
in [16].

Depending on the latitude and longitude, the difference between the two geomagnetic
field models varies up to 400 nT in polar regions. Figure 5 shows the difference between
the two models at a fixed altitude of 567 km with a resolution of 5° and the ground track of
the satellite over the entire duration of the simulation (from 3 January to 3 May 2019).

Figure 5. The geomagnetic field magnitude difference between the CHAOS-7 and IGRF-13 models at
a fixed altitude of 567 km with a 5° resolution. The red line represents the satellite ground track from
the beginning to the end of the simulation (from 3 January to 3 May 2019).

5. Results
The algorithm was tested on the following scenario, assuming knowledge of the

satellite’s attitude. This assumption was made to simulate the best possible performance
of the EKF to further emphasize the improvement brought by the SLFN application. For
six days, GPS data were available to the spacecraft as well as the state estimates provided
by the magnetometer-based EKF. The first day of measurements was excluded from the
training data in order to avoid data contamination due to the initial transitory phase of the
EKF. The errors of each state estimate with respect to the state provided by the GPS-based
EKF were sequentially computed and stored as training targets. After six days, the GPS
was no longer available, the SLFN was trained using the stored data, and its prediction was
used to perform orbit determination for the following 51 days of the run. The prediction
scheme of the algorithm is shown in Figure 6.
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Figure 6. EKF-SLFN algorithm prediction scheme.

The test was performed on the following hardware:

• CPU: AMD Ryzen Threadripper PRO 3975WX 32 Cores 3.50 GHz;
• RAM: 128 GB.

Table 5 shows the comparison between the ELM-trained SLFN and the EKF in terms
of the state RSSE and standard deviation. The training phase was carried out from the
second to the sixth day, while the prediction phase went from the seventh days onwards.
The error was computed with respect to the true propagated orbit. The prediction of the
SLFN reduced the errors in the state estimate by a factor of 2.39 for the position and 2.36
for the velocity, with the respective mean RSSE decreasing from 16.51 km to 6.90 km and
from 2.07 × 10−2 km/s to 8.76 × 10−3 km/s. Moreover, the sparseness of the RSSE was
reduced by a factor of 2.06 for the position and 1.71 for the velocity. Figure 7 shows the
state RSSE over time. While the SLFN yielded a better state estimate than the EKF on
average, the predictive capacity of the network started to decrease with time and could
eventually lead to a divergence in the prediction. This was due to the fact that the SLFN
was trained on an extremely small percentage of data and, in the long run, it struggled to
handle never-seen-before data points given by the pseudo-periodic behavior of the orbit.
This pseudo-periodic feature could also be seen in the RSSE as it showed a periodic trend
itself, due to the difference between the real and simplified magnetic field models. A greater
error in the state estimate corresponded to a region in which the discrepancy between the
two models was deeper. An extended simulation of 120 days was carried out in order to
study the behavior of the SLFN’s mean RSSE over time. Figure 8 shows the mean RSSE
for both algorithms computed over each day of the simulation. While the position error
clearly diverges, the velocity error stabilizes after approximately 100 days. Nonetheless,
looking at the figure, it can be seen that the SLFN errors are inside the range determined by
the EKF errors. Therefore, the SLFN approach yielded better or comparable results for up
to 120 days. After this period, the SLFN did not represent an improvement over the EKF.

Table 5. ELM-trained SLFN and EKF performance comparison.

Algorithm Average [Maximum] Position RSSE Average [Maximum] Velocity RSSE

EKF (all) 16.51 [31.83] km 2.07 × 10−2 [3.40 × 10−2] km/s
SLFN (training) 5.50 [13.20] km 6.32 × 10−3 [1.33 × 10−2] km/s

SLFN (prediction) 6.90 [19.70] km 8.76 × 10−3 [2.13 × 10−2] km/s

Standard Deviation (Position) Standard Deviation (Velocity)

EKF (all) 6.27 km 6.36 × 10−3 km/s
SLFN (training) 2.49 km 2.62 × 10−3 km/s

SLFN (prediction) 3.04 km 3.72 × 10−3 km/s
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Figure 7. The EKF (red) and SLFN (blue) position (top) and velocity (bottom) RSSE over time. The
yellow and green backgrounds distinguish between the training and prediction phases of the SLFN,
respectively. The horizontal dashed lines correspond to the mean RSSE values over the whole run.

Figure 8. The daily EKF (red) and SLFN (blue) position (top) and velocity (bottom) mean RSSE over
time, obtained from an extended 120-day simulation. Daily standard deviations are represented as
error bars.
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6. Discussion
The proposed algorithm reached kilometer- and meter-per-second-level accuracy in

state estimation using a combined EKF-SLFN approach and the CHAOS-7 geomagnetic
field model to simulate magnetometer measurements. The results obtained in this work,
particularly in the performance of the EKF, were compared with the study conducted in [25],
where a magnetometer-based EKF was applied to real flight data from four satellites with
different altitudes and inclinations. This approach was justified by the discrepancy between
the magnetic field models used in this work, which makes it closer to real data-based
methods compared to the majority of cases where the onboard model and the measurement
model are identical. Based on Table 6, it can be observed that the accuracy of the EKF
in this work, where magnetometer data were simulated using the CHAOS-7 model, is
comparable to that achieved using real measurements. While this does not necessarily
imply that the algorithm can be directly transferred to real data with the same level of
accuracy, it highlights the validity of the CHAOS-7 model in simulating realistic magnetic
field measurements.

Table 6. A comparison of the results between the EKF and SLFN in this work and the four case
studies in [25] relative to the RXTE, ERBS, CGRO, and TOMS satellites.

Satellite Inclination Altitude Avg. Position RSSE Avg. Velocity RSSE

RXTE 23° 580 km 15 km 15 m/s
ERBS 57° 614 km 25 km 30 m/s
CGRO 28.5° 340 km 20 km 20 m/s
TOMS 97° 483 km 20 km 25 m/s
EKF (this work) 96.6° 567 km 17 km 21 m/s

SLFN (this work) 96.6° 567 km 6.90 km 8.76 m/s

7. Conclusions and Future Works
This work proposes an algorithm combining a magnetometer-based EKF with an

ELM-trained SLFN to improve the accuracy of the EKF state estimate during GPS outages.
A GPS-based EKF is used to provide ground truth values for the SLFN when GPS data
are available, while the magnetometer-based EKF state estimate is used as the input of
the SLFN. During GPS outages, the output of the SLFN is used to perform navigation.
Magnetometer measurements are simulated using the CHAOS-7 geomagnetic field model.
The SLFN was trained on GPS data with a five day-long availability window and tested
on the following 51 days of GPS absence. Results for a simulated Sun-synchronous orbit
showed an improvement of a factor of 2.4 in the spacecraft’s state estimate after the
application of the SLFN, with the mean RSSE error decreasing from 16.51 km to 6.90 km for
the position and from 2.07× 10−2 km/s to 8.76× 10−3 km/s for the velocity. Future steps in
this direction involve the feasibility study of a direct onboard application of the presented
algorithm. The main aspect to be considered is the memory required to store the training
data that can exceed the capabilities small satellites. For this purpose, many subsequent
trainings with small batches of data can be performed instead of a single, more demanding
tuning of the output weights at the end of the GPS availability window. The Online
Sequential Extreme Learning Machine (OS-ELM) [26,27] is a variant of the ELM specifically
designed to update the output weights when a new batch of data is available in a sequential
fashion. By performing so, the information relative to the previous batches can be deleted
once the data are processed, significantly easing the computational stress on the algorithm.
However, the optimal dimension of the batch must be determined empirically and meet
the requirements in terms of both accuracy and computational burden. This issue can be
tackled if the communication between the satellite and the ground station is available. The
necessary data can be, in fact, transmitted to the ground station with a fixed frequency and
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then deleted from the satellite. The training of the network can be performed offline and the
weights can be transmitted back to the satellite to be used if needed. Finally, this procedure
permits the sequential updating of the weights if more GPS and EKF data are available,
which could eventually solve the issue of a prediction losing precision and stability over
time as a consequence of a single training performed on a small percentage of data at the
beginning of the run. Another aspect to be taken into consideration is the required level
of precision in the state estimate. Despite the improvement, the prediction may not be
accurate enough for the requirements of the mission. This is mainly due to the baseline
provided by the EKF estimate that has a mean RSSE of approximately 17 km and 21 m/s. A
better baseline can be achieved by improving the geomagnetic model embedded in the EKF
or, vice versa, simplifying the model used to simulate the magnetometer measurements.
However, the former would inevitably increase the computational effort of the algorithm
while the latter would not represent a realistic application in a real case. Furthermore, the
main goal of this work was to test the behaviour of the EKF when the embedded model
was a simplified version of the more accurate one used to generate the measurements. For
this reason, future work will also investigate the use of an oversimplified model, such as a
dipole approximation, onboard the EKF and its impact on the algorithms’s performance.
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