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Abstract

:

A number of mixed and displacement-based zig-zag theories are derived from the zig-zag adaptive theory (ZZA). As a consequence of their different assumptions on displacement, strain, and stress fields, and layerwise functions, these theories account for the transverse shear and normal deformability in different ways, but their unknowns are independent of the number of layers. Some have features that are reminiscent of ones that have been published in the literature for the sake of comparison. Benchmarks with different length-to-thickness ratios, lay-ups, material properties, and simply supported or clamped edges are studied with the intended aim of contributing toward better understanding the influence of transverse anisotropy on free vibration and the response of blast-loaded, multilayered, and sandwich plates, as well as enhancing the existing database. The results show that only theories whose layerwise contributions identically satisfy interfacial stress constrains and whose displacement fields are redefined for each layer provide results that are in agreement with elasticity solutions and three-dimensional (3D) finite element analysis (FEA) (mixed solid elements with displacements and out-of-plane stresses as nodal degrees of freedom (d.o.f.)) with a low expansion order of polynomials in the in-plane and out-of-plane directions. The choice of their layerwise functions is shown to be immaterial, while theories with fixed kinematics are shown to be strongly case-sensitive and often inadequate (even for slender components).
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1. Introduction


Fibre-reinforced laminated and sandwich composites are fundamental to obtain a faster speed, longer range, larger payloads, less engine power, and a better operating economy of land, sea, and aerospace vehicles. Indeed, they possess excellent specific strength and stiffness properties along with many other advantages. However, their behaviour may be strongly influenced by local effects in their multi-phase structure, which can cause a relevant loss of strength and stiffness, and even lead to a possible catastrophic failure in service. To avert this, a three-dimensional description of their displacement and stress fields is required in the computer simulations. Displacements are no longer C1-continuous as in homogeneous non-layered materials, but instead they should be C0-continuous (zig-zag effect), this being the only way to guarantee the continuity of transverse shear and normal stresses and of the transverse normal stress gradient that is necessary to satisfy the fulfillment of local equilibrium equations in layered materials.



A multitude of theories is currently available for laminated and sandwich composites, which account for layerwise effects at varying degrees of accuracy and computational costs. The papers by Carrera et al. [1,2] and by Demasi [3] are cited wherein a broad discussion of this matter can be found. Theories can be summarily categorized into equivalent single-layer (ESL), discrete-layer (DL), and zig-zag (ZZ) formulations, and further into displacement-based and mixed theories, because displacements, strains, and stress fields can be chosen separately from one another.



Given the limited accuracy offered by ESL even to predict overall response quantities for certain loading, material properties, and stack-up [4,5], they still remain widespread by virtue of their low computational cost (see Burlayenko et al. [6] and by Jun et al. [7]), but nowadays, DL and ZZ are becoming more and more widespread in their applications. Indeed, they have the merit of accurately predicting the displacement and stress fields irrespective of lay-up, layer properties, and loading or boundary conditions. However, DL could overwhelm the computational capacity when structures of industrial interest are analysed (unless their use is limited to critical areas) due to having too many variables. Instead, ZZ having intermediate characteristics between ESL and DL can strike the right balance between accuracy and cost-saving, allowing designers’ demand of theories to be met in a simple, already accurate form. In particular, ZZ accounting for the transverse normal deformability effect has been proven to be suitable for carrying out ply-level stress analyses at a lower cost than DL.



Relevant examples of dynamic studies carried out by DL and ZZ that highlight their superior performance include the papers by [1,2,3,6,7] Boscolo and Banerjee [8], Khdeir and Aldraihem [9], Sayyad and Ghugal [10], Kazanci [11], Lin and Zhang [12], Vescovini et al. [13], and in addition to the previous ones, [14,15,16,17,18,19] are also cited. Moreover, papers [1,2,3,4,5,8,13,20] are examples that prove the limitations of ESL and the importance of the transverse normal deformability under static localised loading for certain boundary conditions and lay-ups [21] and even for accurately predicting the first free-vibration mode frequencies. Although ZZ theories are ultimately finding an ever-increasing number of applications thanks to their accuracy at an affordable cost, the literature shows that undeservedly Di Sciuva’s zig-zag-like fuction DZZ is less used than Murakami’s zig-zag-like fuction MZZ (for a definition of acronyms, see Table 1), despite their better accuracy with a low order of expansion of analytical solutions, as also demonstrated by the numerical results of this paper.



To contribute to the dissemination of DZZs and their further development, hereafter the typologies and specific characteristics of available ZZs are briefly reviewed. The intended aim is to explain the different behaviour of DZZ and MZZ as a consequence of their different layerwise contributions, namely Di Sciuva’s [22] (DZZ) or Murakami’s [23] (MZZ) zig-zag functions.



DZZ incorporates layerwise contributions as the product of assumed zig-zag functions and zig-zag amplitudes, the latter being computed to a priori satisfy the interfacial compatibility of out-of-plane stresses (for this reason, they are referred in literature as physically-based ZZ). Instead, MZZ assumes zig-zag functions that a priori feature a periodic change of the slope of displacements at interfaces, irrespective of the stack-up. As a consequence, stresses are assumed apart from the kinematics within the framework of Hellinger–Reissner variational theorem. For this reason, they are called kinematic-based ZZ. So, the development of MZZ is easier, and an efficient C0 formulation can more easily be generated, but they could not appropriately represent the displacement fields when the orientation angle of layers is aperiodic, as shown in the literature. According to findings by [1,2,5,24,25,26], it can be stated in general that MZZ are accurate only with a rather high expansion order of variables across the thickness and in the in-plane directions. As shown in [27,28,29,30,31,32,33], instead, DZZ accurately predict displacements and (very often but not in all cases) stresses with a lower expansion order.



As shown in the papers by Carrera et al. [1,2,24,25,26], Demasi [3], Mattei and Bardella [27], Icardi et al. [28,29], Li and Liu [30], Zhen and Wanji [31,32], and Shariyat [33], the transverse normal deformability, which is usually neglected because it is erroneously considered of little importance, on the contrary should be accounted for. Indeed, his contribution becomes of primary importance when boundary conditions other than simply-supported edges are considered, under a strong variation of mechanical properties across the thickness and for localised loading. However, a rather complex formulation of theories, i.e., with a sufficient number of parameters that can be defined in order to satisfy all of the relevant physical constraints, is required for these cases. Although very often power and Taylor’s series expansions are used across the thickness, hierarchic polynomials, and trigonometric and exponential functions, a combination of both or radial basis functions could be required to more efficiently represent variables [34,35,36,37,38,39].



The idea of separately hiring kinematics and stresses, so as to account for the transverse normal deformation without having to represent in a piecewise way the transverse displacement, was applied by Barut et al. to DZZ [40]. Other mixed DZZ that are based on a similar idea have a rather simple kinematics, but yet, the capability to quite accurately predict stresses has been formerly developed in HR form by Kim and Cho [41] and Tessler et al. [42]



Despite the notable contributions mentioned up to now, further research is required on ZZ because recent studies by Zhen and Wanji [43], Gherlone [44], and Groh and Weaver [45] have shown that MZZ could be less accurate than RZT [42], assuming the same degree of representation across the thickness, while [43] shows just the opposite for different cases. So, it is necessary to ascertain even whether three-dimensional (3D) DZZ can be as accurate as MZZ with a minor computational burden, so as to be effectively suitable for industrial purposes, considering also other theories in addition to those already examined in [44,45], especially those with a piecewise representation of the transverse displacement.



A massive amount of free vibration studies is currently found in the literature for cross-ply laminates, but other boundary conditions and lay-up that are equally interesting for practical applications need to be considered when testing the accuracy of theories (see, e.g., Li et al. [46]). It should be noted that for clamped edges, an incorrect vanishing transverse shear force resultant is predicted by ESL plate models; therefore, it is necessary to check on an adequate number of cases as to whether DZZ are immune from such mistakes. Also, lay-ups with a quite large variation of properties of layers, and in particular soft-core sandwiches, should be investigated to enhance the existing database. Another subject that needs further studies is what happens when zig-zag functions that are different from those commonly used [22,23] are assumed. It is also necessary to better clarify what effects have an a priori assumption of certain zig-zag amplitudes at certain interfaces, or even to all of the interfaces such as in MZZ, in order to save costs.



To contribute to this matter, in this paper, zig-zag theories in displacement-based and mixed form are particularized from the ZZA 3D zig-zag theory [29], assuming different layerwise functions. Consider that ZZA, here schematically defined as the adaptive zig-zag theory, assumes a variable kinematics with fixed degrees of freedom (d.o.f.) that consist of in-plane and transverse displacements    u α    0   ,    w 0    and transverse shear rotations    Γ α 0    at a middle reference plane. Moreover, it should be noticed that ZZA is capable of great accuracy, even with strong anisotropy at a cost that is still comparable to that of ESL.



The purpose of this paper is to test the accuracy of theories derived from ZZA under simplified hypotheses on displacement, deformations, and stress fields, so as to further reduce the computational cost, in order to assess whether and when the accuracy of ZZA can be preserved. The accuracy and the efficiency of these theories, which for the most part allow a redefinition of the coefficients layer-by-layer so as to satisfy all of the physical constraints and account for the normal transverse deformability effect (although in different ways), are assessed considering the free vibration and the response behaviour of blast-loaded multilayered and sandwich plates.



A new theory referred to as ZZA* is developed from ZZA in order to prove that once the coefficients of displacements are redefined across the thickness, the same accuracy degree can be achieved irrespective of the layerwise functions that are chosen. It will also be shown that as the coefficient is redefined, the same results are obtained even when zig-zag contributions do not explicitly appear. Other theories have been previously developed by the authors [47] in displacement-based and mixed form, either with Di Sciuva’s or Murakami’s zig-zag-like functions, and which also have characteristics similar to other theories that are already known in the literature, are considered for comparison.



Numerical applications aim to show the superiority of ZZA* over ZZA, including its lower computational costs with the same accuracy, for the quite large range of variation of lay-ups and boundary conditions that are considered. Benchmarks that are either retaken from the literature or new are considered, the former in order to enable a comparison of available theories, and the latter in order to enhance the existing database. The results by the present theories are compared to exact solutions whenever available or to 3D finite element analysis (FEA) [48]. The findings can be categorized as the new results of known benchmarks provided by the new theories and entirely new results for the new benchmarks, which could serve as test beds for future analytical and finite element models.



This study also aims to show the superiority of ZZA* over all of the other theories considered for most of the cases, since the use of simplified assumptions implies a loss of accuracy. It will be shown that the accuracy of the simplified theories, in particular those of Murakami, is strongly case-sensitive; therefore, they cannot be used interchangeably. Studies are carried out in closed form considering the free and forced vibrations of laminated and sandwich beams and plates, simply-supported and clamped edges, different lay-ups, and distinctly different material properties of constituent layers, so as to give rise to relevant 3D effects.




2. Preliminaries and Notations


Constituent layers are assumed to have a uniform arbitrary thickness    h k    and linear elastic properties. They are assumed to be perfectly bonded to each other and, as usual when the global-scale response is examined, the existing bonding resin interlayer is disregarded. For the same reason, sandwiches are described in homogenised form as multilayered structures with one or more thick soft intermediate layers as the cores, with the cell-scale effects being disregarded.



A rectangular, right-handed Cartesian coordinate reference system (  x , y , z  ) is assumed as the reference frame, having (  x , y  ) on the middle reference plane  Ω  of the laminated plate (origin in the lower left edge) and  z  as the thickness coordinate (  z ∈  [  − 0.5 h , 0.5 h  ]   , with  h  being the overall thickness). Lx and Ly symbolise the plate side-length in the x and y-directions, while      ( k )    z +    and      ( k )    z −    represent the upper and lower positions of the layer interfaces, respectively. Subscripts k and superscripts k are used to indicate that a quantity belongs to the layer  k , while u and l mark the upper and lower faces of the laminate, and a comma is used to indicate spatial derivatives, e.g.,     ( . )   , x   = ∂ /  ∂ x   ,     ( . )   , z   =  ∂ /  ∂ z    . The elastic in-plane and transverse displacement components are indicated as    u α    and    u ς   , respectively. Strains are assumed to be infinitesimal and, to distinguish their origin, they are specified as    ε  i j  u  =  1 / 2  (  u  i , j   +  u  j , i   )  ,    ε  i j  σ  =   (  E  i j k l   )   − 1    σ  k l    , respectively when they come from kinematic     [ . ]  u    or stress-strain     [ . ]  σ    relations. Once assumed as primary variables, they are indicated as    ε  i j    ,    ε  α ς    ,    ε  ς ς     (  i , j ≡ 1 , 2  ;   α ≡ x  ,   β ≡ y  ;   3 ≡ ς ≡ z  ;    γ  α β   = 2  ε  α β    ). Stresses from stress–strain constitutive relations are indicated as    σ  i j  ε  =  E  i j k l    ε  k l       (  C  i j k l   =  E  i j k l      − 1   )  , while when they are assumed as primary variables, they are indicated as    σ  i j    ,    σ  α ς    ,    σ  ς ς    .



2.1. Recalls on Mixed Variational Theorems


Here a generalized version of Hu-Washizu theorem is used, whose primary displacement boundary condition link is weakened as      ∫   S u     (  u i     −   u ˜  i  )  n j  ∂  σ  i j   d S = 0   and which generates the following variational statement:


    ∂  Π  H W  g  =    ∫ V   [ (     ε  i j  u  −  ε  i j   ) ∂  σ  i j   + (  σ  i j  ε  −  σ  i j   ) ∂  ε  i j   +  σ  i j   ∂  ε  i j  u  −  b i  ∂  u i  ] d v −    ∫   S t       t ˜  i  ∂     u i  d s −        ∫   S u     [ (  u i     −   u ˜  i  )  n j  ∂  σ  i j   +  σ  i j    n j  ∂  u i  ] d s = 0    



(1)







Here   H  W g    represents the canonical functional,    n j    are the components of the external unit normal to the volume bounding surface,    b i    are the components of body forces (they will contain inertial forces, as explained in (4)) and      ∫ V  (    ε  i j  u  −  ε  i j   ) ∂  σ  i j   d v  ,      ∫ V   (  σ  i j  ε  −  σ  i j   ) ∂  ε  i j      d v   ensure the consistency of assumed strain and stress fields with their counterparts obtained from stress-strain and strain-displacement relations. As usual, the prismatic volume  V  of the laminated plates is assumed to be bounded by a surface  S  that is split into a surface    S t    on which surface tractions are prescribed and a surface    S u    on which surface displacements are prescribed. Body forces    b i    on  V , prescribed surface tractions     t ˜  i    on    S t    and prescribed displacements     u ˜  i    on    S u    are assumed to act.



Theories with displacements and out of plane stresses assumed separately are developed from the HR variational theorem:


    ∂  Π  H R   =    ∫ V  [    σ  i j    ∂  ε  i j  u  + (  γ  i 3  u  −  γ  i 3  σ  ) ∂  σ  i 3   + (  ε  33  u  −   ε ^   33  σ  ) ∂  σ  33   −  b i  ∂  u i  ] d v −    ∫   S t       t ˜  i  ∂     u i  d s −        ∫   S u     [ (  u i     −   u ˜  i  )  n j  ∂  σ  i j   +  σ  i j    n j  ∂  u i  ] d s = 0    



(2)




where   δ  Π  H R     is the first variation of the HR canonical functional, and the following assumptions are made:    γ  i j ( i 3 ) ( 33 )   = 2  ε  i j ( i 3 ) ( 33 )    ;     ε ^   33  σ  = 1 /  C  3333   (  σ  33   −  C  33 i j    ε  i j  u  )  , being   i , j = 1 , 2 ≡ x , y  ;   3 ≡ z  .



Dynamic governing equations are obtained from the previous variational statements (1), (2), or from the principle of virtual work (PVW), for theories in displacement-based form, accounting for the work of inertial forces.




2.2. Construction of Analytical Solutions


Closed-form solutions to dynamic governing equations are obtained, irrespective of the theory examined, expressing functional d.o.f. as a truncated series expansion of unknown amplitudes    A Δ i    and trial functions    ℜ i  ( x , y )   that individually satisfy the prescribed boundary conditions:


  Δ =   ∑  i = 1    m Δ      A Δ i     ℜ i  ( x , y )  



(3)







Then, we substitute these expressions within PVW, HR, or HW functionals and operating as specified immediately below. Here,  Δ  symbolises in turns    u 0   ,    v 0   ,    w 0   ,    θ x   ,    θ y   , because middle plane displacements and rotations of the normal are assumed as the only functional d.o.f. for each theory of this paper. Mechanical boundary conditions are accounted for by determining a number of unknown amplitudes    A Δ i   , in proportion to the number of boundary conditions enforced, using the Lagrange multipliers method to account for the relationships resulting from each mechanical condition. The remaining amplitudes are determined deriving the governing functional with respect to still unknown amplitudes and equating to zero, having considered the work of inertial forces:


     ∫ V  [   −  b i  ∂  u i  ] d v =    ∫ V  [   − ρ   u ¨  i  ∂  u i  ] d v  



(4)




within the functionals. In this way, an algebraic system is obtained whose solution provides the numerical value of each amplitude; then, the displacement, strain, and stress fields can be computed.



Since symbolic calculus being used to construct the theories, the applied distributed loading can be conveniently defined as a continuous or discontinuous general function   χ ( x , y )   acting on upper and/or lower faces (or just on a part of them), so that energy contributions can be constructed in exact closed form. In this way, a series expansion representation with a large number of components is not necessary to represent discontinuous or otherwise complex loading distributions; then, the construction of the structural model in the numerical applications can be simplified, and at the same time made more accurate.



The trial functions have been adopted in individual applications are explicitly defined below and in Table 2 along with the expansion order used in each case. Note that although it is different for each benchmark, the order of expansion used is the same for all theories when a specific one is examined being equal to the minimum one that makes ZZA accurate. This is done to homogenise results and in order to compare theories under the same conditions.



At the clamped edge of cantilever beams, hereafter assumed at   x = 0   by way of example, the following conditions are enforced


   u 0  ( 0 , 0 ) = 0 ;    w 0  ( 0 , 0 ) = 0 ;    w 0    ( 0 , 0 )   , x   = 0 ;    Γ x 0  ( 0 , 0 ) = 0 ;  



(5)




the following further conditions are enforced:


   u α    ( 0 , z )   , z   = 0 ;    u ς    ( 0 , z )   , z   = 0 ;    u ς    ( 0 , z )   , x z   = 0  



(6)




to simulate that (5) holds identically across the thickness. To ensure that the transverse shear stress resultant force equals the constraint force, the following additional constraint


     ∫  − h / 2   h / 2     σ  x z      ( 0 , z ) d z = T  



(7)




is enforced, while at the free edge x = L such resultant force is enforced to vanish


     ∫  − h / 2   h / 2     σ  x z      ( L , z ) d z = 0  



(8)







It should be noted that the boundary conditions in Equations (6) to (8) are enforced using Lagrange multipliers methods; no further conditions are enforced on bending moments, but if necessary, they could be coerced choosing the sufficient expansion order in Equation (3).



At the supported edge of the propped cantilever beams at x = L, the following support condition:


   w 0  ( L ,   − h  / 2  ) = 0  



(9)




is enforced at the lower face   z = − h / 2  , while the condition in Equation (8) is reformulated as:


     ∫  − h / 2   h / 2     σ  x z      ( L , z ) d z =  T L   



(10)







At the simply supported edges, the following boundary conditions are enforced


     w 0  ( 0 , y ) = 0 ;    w 0  (  L x  , y ) = 0 ;    w 0    ( 0 , y )   , x x   = 0 ;    w 0    (  L x  , y )   , x x   = 0      w 0  ( x , 0 ) = 0 ;    w 0  ( x ,  L y  ) = 0 ;    w 0    ( x , 0 )   , y y   = 0 ;    w 0    ( x ,  L y  )   , y y   = 0    



(11)




on the reference mid-plane of plates at   x = 0  ,   x =  L x   , and   y = 0  ,   y =  L y   . Appropriate changes corresponding to the ones for simply supported beams are obtained. Table 2 provides the trial functions and expansion order that is assumed for each benchmark.



Any other boundary condition could be enforced in the same way, namely by choosing the trial functions that individually satisfy the prescribed boundary conditions. In the event of this not being possible and in order to satisfy the mechanical conditions, Lagrange multipliers method should be applied. In the numerical applications for cases g and h, the boundary condition to be further enforced is    u ς  ( x , h / 2 ) = −  u ς  ( x , − h / 2 )  , because some of their first free vibration modes exhibit anti-symmetric displacements in the transverse direction. In this way, a closed-form solution can be obtained with a reduced computational effort, instead of resorting to FEA, as is often done for such cases.





3. Higher-Order Theories


The laminated plate theories that are used as structural models are thoroughly examined below. Here, they are grouped into higher-order and lower-order ones. The latter represent simplified versions of the former, having mostly features that are similar to those of the theories that have been previously proposed in the literature. In the following section, it will be specified which are new and which have been previously developed by the authors. Governing equations will not be reported in explicit form, as they can be obtained in a straightforward way using standard techniques.



3.1. Features of the ZZA Theory and the Higher Order Theories Derived from It


As it forms the basis of all theories considered in this paper, the theoretical framework of ZZA below is expounded first. The through-thickness displacement field is postulated as [29]:


       u α  ( x , y , z )     = [  u α    0  ( x , y ) + z (  Γ α 0  ( x , y ) −  w 0    ( x , y )   , α   )   ]  0  +  [  F α u  ( z )  ] i          [   ∑  k = 1    n i      Φ α k  ( x , y ) ( z −  z k  )  H k  ( z ) +   ∑  j = 1    n ℑ       α   C u j  ( x , y )  H j  ( z )    ] c         



(12)






       u ς  ( x , y , z )     =  [  w 0  ( x , y )   ]  0  +  [  F ζ  ( z )  ] i  +  [   ∑  k = 1    n i      Ψ k  ( x , y ) ( z −  z k  )  H k  ( z )   +             ∑  k = 1    n i      Ω k  ( x , y )   ( z −  z k  )  2   H k  ( z ) +   ∑  j = 1    n ℑ      C ς j  ( x , y )  H j  ( z )  ] c           



(13)







Three kinds of contributions that are distinctly separated into lower-    [ … ]      0   , higher-    [ … ]  i    and layerwise    [ … ]    c    are incorporated, whose specific purpose is described below.




	
    [ … ]  0    is a linear contribution and contains the five functional degrees of freedom of the theory.



	
    [ … ]  i    contains higher-order terms. Any combination of independent functions could be assumed to represent    [   F α u  ( z )  ] i    and    [   F ζ  ( z )  ] i   ; however to include theory [28] as a particularization of ZZA [29], the following form is chosen:


   [   F α u  ( z )  ] i  =  [   C α i  ( x , y )  z 2  +  D α i  ( x , y )  z 3  + ( O  z 4  … )  ] i  =  [ 3    ( .  ) ˜   α   ] i  +  [  ( O  z 4  … )  ] i   



(14)






   [   F ζ  ( z )  ] i  =  [   b i  ( x , y ) z +  c i  ( x , y )  z 2  +  d i  ( x , y )  z 3  +  e i  ( x , y )  z 4  + ( O  z 5  … )  ] i  =  [ 4    ( .  ) ˜   ζ   ] i  +  [  ( O  z 5  … )  ] i   



(15)







Higher-order contributions    [  ( O  z 4  … )  ] i  ,   +  [  ( O  z 5  … )  ] i    are characteristic of ZZA, while the terms    [ 3    ( .  ) ˜   α   ] i   ,    [ 4    ( .  ) ˜   ζ   ] i    are the same as in the previous theory [28]. The closed-form expressions of coefficients    C α i   ,    D α i   ,    b i    to    e i    are obtained using symbolic calculus from enforcing the fulfilment of stress boundary conditions


   σ  α ς   =  σ  ς ς , ς   = 0 ;    σ  ς ς   =  p 0     ( ± )    



(16)







Here,    p 0     ( ± )     represents the distributed transverse loading acting on the upper    p 0     ( + )     and lower    p 0     ( − )     faces. Of course, also, non-homogeneous conditions    σ  α ς   ;  σ  β ς   ≠ 0   could be enforced without any additional difficulty. For clarity, contributions     [ … ]  i    from Equations (14) and (15) are rearranged in the following way:


     U α i  ( x , y , z ) = [  A  α 2    z 2  +  A  α 3    z 3  ] +  A  α 4    z 4  + … +  A  α n    z n       U ζ i  ( x , y , z ) = [  A  ς 1   z +  A  ς 2    z 2  +  A  ς 3    z 3  +  A  ς 4    z 4  ] +  A  ς 5    z 5  + … +  A  ς n    z n     



(17)







The lower-order contributions under the square brackets in Equation (17) are determined by enforcing the fulfilment of the boundary conditions in Equation (16) and the local equilibrium equations:


   σ  α α , α   +  σ  α β , β   +  σ  α z , z   =  b α  ;    σ  α ς , α   +  σ  β ς , ς   +  σ  ς ς , ς   =  b ς   



(18)




at selected points across the thickness. Higher-order contributions    A  α 4    z 4  + … +  A  α n    z n   ,    A  ς 5    z 5  + … +  A  ς n    z n   , which enable a variable-kinematics representation across the thickness, are computed for each fictitious computational layer  i  in which the laminate is subdivided by imposing the fulfilment of Equation (18). However, except otherwise stated, a third/fourth-order representation that embraces the whole laminate is used in the applications which is adequate to obtain accurate results. Indeed, as shown in [21], this choice is a valuable combination of accuracy and cost-saving also when extreme variations of material properties give rise to very strong layerwise effects. A single computational layer is used for laminates, while two or three layers are used for sandwiches. Note that the in-plane position of equilibrium points can be chosen appropriately for each case.



	
    [ … ]  c    represents the layerwise contributions; the expressions of zig-zag amplitudes    Φ α k   ,    Ψ k    and    Ω k    are determined so that the continuity of out-of-plane stresses and the transverse normal stress gradient    σ  ς ς , ς     at the layer interfaces is satisfied, as prescribed by the elasticity theory through the following stress compatibility conditions:


   σ  α ς   (  z  +    ( k )   ) =  σ  α ς   (  z  −    ( k )   ) ;    σ  ς ς   (  z  +    ( k )   ) =  σ  ς ς   (  z  −    ( k )   ) ;    σ  ς ς , ς   (  z  +    ( k )   ) =  σ  ς ς , ς   (  z  −    ( k )   )  



(19)




at the physical and mathematical layer interfaces. Layerwise contributions    c u j  α     and    C ς j    restore the continuity of displacements at the mathematical layer interfaces. The symbols    n i    and    n ℑ    in the summation of Equations (12) and (13) are used to distinguish the number of physical interfaces from that of the mathematical layer interfaces, respectively. In detail,    Φ α k    enables the continuity of transverse shear stresses, while    Ψ k   ,    Ω k    enable the continuity of the transverse normal stress and of its gradient at physical and mathematical layer interfaces. All together, these provide the right slope changes of displacements at the interfaces of layers with different material properties and/or orientations.








Elsewhere in this paper, the symbols − and + indicate the position just before and just after the interface, respectively. The term   ( z −  z k  )  H k    appearing in in Equations (12) and (13) is Di Sciuva’s zig-zag function [22], while     ( z −  z k  )  2   H k    is Icardi’s parabolic zig-zag function [28], with Hk being the Heaviside unit step function (Hk = 0 for z < zk, while Hk = 1 for z ≥ zk).



The enforcement of the equilibrium and stress compatibility conditions in Equations (18) and (19) yields to a system of algebraic equations at each interface that is solved in closed form once and for all using a symbolic calculus tool. Notice that if just the material properties and/or the orientation of layers change, but not their number, symbolic expressions representing the solution will remain the same.



It will be shown forward that   ( z −  z k  )  H k    and     ( z −  z k  )  2   H k    can be replaced with any other layerwise function keeping the results unchanged, provided that coefficients inside     [ … ]  i    are re-computed for each computational layer, as outlined above. Layerwise functions can even be omitted if a sufficient number of coefficients are incorporated in     [ … ]  i    whose expressions are determined by enforcing the fulfilment of the interfacial stress compatibility conditions in Equation (19). To show this, a new theory ZZA* is developed in Section 3.1.1, which is devoid of     [ … ]  c   , but incorporates new unknown coefficients within     [ … ]  i   , which will be indicated as     [ … ]   i + c    . Since this choice speeds up the computations of the coefficients of each layer, it turns into a computational advantage that grows with the number of computational layers, so it is worth taking into consideration.



The expressions of    C u j  α     and    C w j    are determined in a straightforward way by enforcing the continuity of displacements at the mathematical layer interfaces


   u α  (  z  +    ( k )   ) =  u α  (  z  −    ( k )   ) ;    u ς  (  z  +    ( k )   ) =  u ς  (  z  −    ( k )   )  



(20)







Notice that as no d.o.f. derivatives are involved, the computation of    C u j  α     and    C w j    is much easier and faster than those of    Φ α k   ,    Ψ k   , and    Ω k   , which instead involve such derivatives. However, it must be considered that the computation of all of the above indicated zig-zag terms takes only an infinitesimal fraction of the overall calculation cost, and so remains compatible with that of ESL.



The strain energy updating technique (SEUPT) [29] can be used to obtain a C0 formulation of the ZZA theory, since derivatives of the d.o.f. are involved in the displacement field as a consequence of the enforcement of Equations (18) and (19).



3.1.1. ZZA* Displacement-Based Theory


This theory, which represents the new theoretical contribution brought by this paper, is developed with the intended aim to demonstrate that the choice of zig-zag functions is immaterial, provided that the coefficients of displacements     [ … ]  i    are recomputed as indicated above.



For this purpose the displacement field of ZZA* is assumed to be similar to that of ZZA except for the layerwise functions. In numerical applications it will be shown that the same accuracy of ZZA can be achieved without explicitly incorporating contributions     [ … ]  c   , and consequently obtaining a reduction of the computational burden.



It will be shown by the numerical results that the choice of zig-zag functions is immaterial if the coefficients     [ … ]  i    are redefined layer-by-layer, so these functions do not even need to be explicitly incorporated in the displacement field. The same result wouldn’t be achieved by keeping the coefficients fixed across the thickness, in which case the accuracy depends on the choice of zig-zag functions.



The displacement field of ZZA* is conceived in the following way:


       u α  ( x , y , z ) =      [   u α    0  ( x , y ) + z (  Γ α 0  ( x , y ) −  w 0    ( x , y )   , α   )  ] 0  + {   ∑  k = 1    n ℑ        B ˜   α i  k   ( x , y ) z +        + [  C α i  ( x , y )  z 2  ] + [  D α i  ( x , y )  z 3  ] +   ∑  k = 1    n i        C ˜   α i  k   ( x , y )   }   i + c        



(21)






       u ς  ( x , y , z ) =     [  w 0  ( x , y )  ] 0  + { [  b i  ( x , y ) z +   ∑  k = 1    n ℑ        b ˜    i  k   ( x , y ) z ] + [  c i  ( x , y )  z 2         +   ∑  k = 1    n i        c ˜    i  k   ( x , y )  z  2  ] + [  d i  ( x , y )  z 3  ] +  e i  ( x , y )  z 4  +   ∑  k = 1    n i        d ˜    i  k   ( x , y )   }   i + c        



(22)




wherein the terms     B ˜  α i  k     and     C ˜  α i  k     serve the same purpose as    Φ α k    and     α   C u j    in Equation (12) inside ZZA, while     b ˜   i  k     and     c ˜   i  k     have the same function of    Ω k    and    Ψ k   , and     d ˜   i  k     has the function of    C ς k    in Equation (13). In the same way of ZZA,    C α i   ,    D α i   ,    b i   ,    c i   ,    d i    and    e i    allow the stress boundary conditions in Equation (16) and the local equilibrium equations in Equation (18) to be met. More specifically,    b i    and    c i    enable the fulfillment of the stress boundary conditions concerning    σ  ς ς     and    σ  ς ς , ς     over the lower bounding face, while they are cancelled in subsequent layers. Instead,    C α i   ,    D α i   ,    d i   , and    e i    allow satisfying the three equilibria (18) at two points for each intermediate layer. In the lower layer, such coefficients enable the two boundary conditions on    σ  α ς     to be enforced along with the three equilibrium equations at a single point. In this way, free variables still remain that allow meeting three equilibrium equations at a single point across the upper layer and the boundary conditions at the upper bounding surface. When more equilibrium points are desired, each layer can be subdivided into two or more computational layers. However, this doesn’t mean an increased expansion order or number of variables, since coefficients can be recomputed using the same order of representation for each computational layer, and the d.o.f. remain fixed. As for ZZA, closed-form expressions of all of the coefficients of ZZA* within contributions     [ … ]   i + c     are determined once and for all for a specific lay-up using a symbolic calculus tool.





3.2. HWZZ Mixed Theory


Such a theory was developed in [47] in order to reduce the computational effort of ZZA by keeping only the essential contributions to the displacement, strain, and stress fields, and hopefully preserving its accuracy. Developed within the framework of the Hu–Washizu theorem, HWZZ forms the basis of another mixed theory here used and called HWZZM, which considers a different zig-zag layerwise function.



3.2.1. Master Displacements


The displacements of HWZZ are derived from those of ZZA neglecting the contributions of    Ω k   , because they are supposed to give imperceptible slope variations compared to those by    Φ α k   ,    Ψ k   . Also higher-order and adaptive contributions    A  α 4    z 4  + … +  A  α n    z n    and    A  ς 5    z 5  + … +  A  ς n    z n    are neglected and no decomposition into mathematical layers is allowed. As a consequence, contributions by     α   C u j    and    C ς j    are omitted. So, the displacement field of HWZZ is written:


       u α  ( x , y , z ) =  [  u α    0  ( x , y ) + z (  Γ α 0  ( x , y ) −  w 0    ( x , y )   , α   )  ] 0  +  [  C α i  ( x , y )  z 2  +  D α i  ( x , y )  z 3   ] i  +           [   ∑  k = 1    n i      Φ α k  ( x , y ) ( z −  z k  )  H k  ( z )     ]   c           u ς  ( x , y , z ) =  [   w 0  ( x , y )  ] 0  +  [   b i  ( x , y ) z +  c i  ( x , y )  z 2  +  d i  ( x , y )  z 3  +  e i  ( x , y )  z 4   ] i  +          [   ∑  k = 1    n i      Ψ k  ( x , y ) ( z −  z k  )  H k  ( z )    ] c        



(23)








3.2.2. Master Strains


Out-of-plane strains    ε  z z    ,    γ  x z    ,    γ  y z     are constructed on the basis of the ZZA layer-by-layer representation of displacements as:


       u α   ℑ   ( x , y , z )     = [  u α    0  ( x , y ) + z (  Γ α 0  ( x , y ) −  w 0    ( x , y )   , α   )   ]  0  +  [  C α i  ( x , y )  z 2  +  D α i  ( x , y )  z 3   ] i  +         [   ∑  k = 1    n i      Φ α k  ( x , y ) ( z −  z k  )  H k  ( z ) +   ∑  j = 1  ℑ    C u j   α  ( x , y )  H j     ] c           w ς   ℑ   ( x , y , z ) =      [  w 0  ( x , y )  ] 0  +  [   b i  ( x , y ) z +  c i  ( x , y )  z 2  +  d i  ( x , y )  z 3  +  e i  ( x , y )  z 4   ] i  +         [   ∑  k = 1    n i      Ψ k  ( x , y ) ( z −  z k  )  H k  ( z )   +   ∑  j = 1  ℑ    C ς j  ( x , y )  H j     ] c       



(24)







The symbol     ( . )      ℑ    states that they refer to the computational layer  ℑ . On the contrary, no decomposition into mathematical layers is allowed for the in-plane strains:


      ε  x x   ( x , y , z ) =   U ˜  ⌣    ( x , y , z )   , x   +   ∑  k = 1  s    Φ  x , x  k    ( z −  z k  )  H k       ε  y y    ( x , y , z ) =   V ˜  ⌣    ( x , y , z )   , y   +   ∑  k = 1  s    Φ  y , y  k    ( z −  z k  )  H k       ε  z z     ℑ  ( x , y , z ) =   W ˜  ⌣    ( x , y , z )   , z   +   ∑  k = 1  s    Ψ  k     H k       γ  x z     ℑ  ( x , y , z ) = [   U ˜  ⌣    ( x , y , z )   , z   +   ∑  k = 1  s    Φ x k     H k  +   W ˜  ⌣    ( x , y , z )   , x   +   ∑  k = 1  s    Ψ  , x  k    ( z −  z k  )  H k  ]      γ  y z     ℑ  ( x , y , z ) = [   V ˜  ⌣    ( x , y , z )   , z   +   ∑  k = 1  s    Φ y k     H k  +   W ˜  ⌣    ( x , y , z )   , y   +   ∑  k = 1  s    Ψ  , y  k    ( z −  z k  )  H k  ]      γ  x y   ( x , y , z ) = [   U ˜  ⌣    ( x , y , z )   , y   +   ∑  k = 1  s    Φ  x , y  k    ( z −  z k  )  H k  +   V ˜  ⌣    ( x , y , z )   , x   +   ∑  k = 1  s    Φ  y , x  k    ( z −  z k  )  H k  ]     



(25)







The expressions of membrane stresses    σ  x x    ,    σ  y y    , and    σ  x y     are obtained in a straightforward way from stress–strain relations and previous strains, while those of the out-of-plane counterparts are assumed as specified next.




3.2.3. Master Stresses


Out-of-plane stresses are obtained from membrane stresses by integrating local equilibrium equations:


   σ  x z   =    ∫  − h / 2   h / 2    (  b x     −  σ  x x , x   −  σ  x y , y   ) d z ;    σ  y z   =    ∫  − h / 2   h / 2    (  b y     −  σ  x y , x   −  σ  y y , y   ) d z ;    σ  z z   =    ∫  − h / 2   h / 2    (  b z     −  σ  x z , x   −  σ  y z , y   ) d z  



(26)




and then


   σ  z z   =    ∫  − h / 2   h / 2     {   b z     − [    ∫  − h / 2   h / 2    (  b  x , x      −  σ  x x , x x   −  σ  x y , x y   ) d z ] − [    ∫  − h / 2   h / 2    (  b  y , y      −  σ  x y , x y   −  σ  y y , y y   ) d z ]  }  d z  



(27)







In this way, stress jumps resulting from the omission of contributions by    Ω k    are recovered. As a consequence of simplifying the assumptions that are made, HWZZ needs to be post-processed by ZZA in order to accurately represent displacements when very strong layerwise effects rise.





3.3. Other Mixed Theories


3.3.1. HWZZM Theory


Murakami’s zig-zag contributions are assumed [51], which are variations of the canonical form


   M k  ( z ) =   ( − 1 )  k   ζ k   



(28a)




where:


   ζ k  =  a k  z −  b k  ,    a k  =  2   z  k + 1   −  z k    ,    b k  =    z  k + 1   +  z k     z  k + 1   −  z k     



(28b)







In fact, the displacement field of HWZZM is assumed as:


     u α    ℑ  ( x , y , z ) =  [   u α    0  ( x , y ) + z (  Γ α 0  ( x , y ) −  w 0    ( x , y )   , α   )   ]  0  +  [   F α u  ( z )   ]  i  +          [   A k   u α    ( z ) [   2 z    z  k + 1   −  z k    −    z  k + 1   +  z k     z  k + 1   −  z k    ] +  C α k  ( x , y )  ] c     



(29)






       u ς    ℑ  ( x , y , z ) =  [   w 0  ( x , y )    ]   0  +  [   F ζ  ( z )   ]  i  +            [  A k   u ς    ( z ) [   2 z    z  k + 1   −  z k    −    z  k + 1   +  z k     z  k + 1   −  z k    ] +  B k   u ς    ( z ) [     ( 2 z )  2     z  k + 1   −  z k    ] +  C ς k  ( x , y ) ]  c      



(30)







Differently to Murakami’s theories proposed in the literature, here, multiplier coefficients    A k   u ε     ,    A k   u ς     , and    B k   u ς      are incorporated, which can be defined differently across the thickness to improve the accuracy. As has been done previously, their expressions are a priori determined by enforcing the continuity of the transverse shear and normal stress, and of the transverse normal stress gradient at layer interfaces, so that they are no longer uniform across the thickness. As before,    C α k    and    C ς k    restore the continuity of displacements at interfaces of mathematical layers.



HWZZM is developed starting from the displacement field in Equations (29) and (30) in the same way as HWZZ; namely, the decomposition into fictitious computational layers is not allowed for the displacement and in-plane strain fields, while it is allowed for out-of-plane strains. Contributions to in-plane displacements over the third-order and to the transverse displacement over the fourth-order are neglected. Stress–boundary conditions are enforced at the top and bottom laminate faces, while local equilibrium equations are enforced at the inner layers. Membrane stresses    σ  x x    ,    σ  y y    , and    σ  x y     come from stress–strain relations, while out-of-plane master stresses are derived integrating local equilibrium equations. The numerical findings will show that although different zig-zag functions contradistinguish ZZA, HWZZ, and HWZZM, their results are indistinguishable, so there will be evidence that the choice of such functions is immaterial, provided that     [ … ]  i    and     [ … ]  c    are recomputed at each interface.




3.3.2. HWZZM* New Theory and Theories Derived from It


In order to assess the effect of the choice of different zig-zag functions, a new theory called HWZZM* is derived from ZZA*, similar to how HWZZ was derived from ZZA. Then, other theories are particularized from HWZZM, assuming    A k   u α    ( z )  ,    A k   u ς    ( z )  , and    B k   u ς    ( z )   are equal to those at a specific interface, which differ from one another.



3.3.2.1. HWZZM* Theory


The displacement field of HWZZM* is assumed in the following form


     u α  ( x , y , z ) =   [  u α    0  ( x , y ) + z (  Γ α 0  ( x , y ) −  w 0    ( x , y )   , α   )   ]  0  +  {    ∑  k = 1    n ℑ       B ˜  α i  k   ( x , y ) z +      + [  C α i  ( x , y )  z 2  ] + [  D α i  ( x , y )  z 3  ]   }   i + c      



(31)






     u ς  ( x , y , z ) =   [  w 0  ( x , y )   ]  0  +  {  [  b i  ( x , y ) z +   ∑  k = 1    n ℑ       b ˜   i  k   ( x , y ) z ] + [  c i  ( x , y )  z 2  ] +      + [  d i  ( x , y )  z 3  ] +  e i  ( x , y )  z 4   }  i + c      



(32)




whose amplitudes are computed at each interface from the enforcement of the stress compatibility conditions in Equation (19). In this case, terms     [ … ]  i    only serve to satisfy the stress–boundary conditions and local equilibrium equations, while the satisfaction of stress compatibility conditions is demanded to     [ … ]  c   .



It should be noted that Equations (31) and (32) imply a little reduction of the processing time, which is equal to 10% per each layer with respect to ZZA and to a somewhat lesser extent equal to 6% with respect to HWZZ. Of course, such an advantage will become more consistent as soon as the number of computational/constituent layers increase.




3.3.2.2. Theories with a Priori Chosen Zig-Zag Amplitudes


Several theories are particularized assuming a priori zig-zag amplitudes as the ones by HWZZM competing at a specific interface and then keeping them unchanged across the thickness, which is something similar to what is done using Murakami’s zig-zag functions, whose amplitudes are assumed a priori.



The amplitudes of HWZZMA are assumed to be coincident with those of HWZZM at the first interface from below, while the    A k   u ς    ( z )   and    B k   u ς    ( z )   of HWZZMB are assumed to be the same as those of HWZZMA at the first interface from below, but instead,    A k   u α    ( z )   is calculated as in HWZZM theory. In HWZZMC, only    B k   u ς    ( z )   is assumed to be uniform across the thickness and coincident with that of HWZZM at the first interface from below, while the remaining are computed at each interface.    B k   u ς    ( z )   are neglected in HWZZM0 theory, while    A k   u α    ( z )   and    A k   u ς    ( z )   are assumed in the same way as HWZZMB.



The HWZZMB2 and HWZZMC2 theories are the same as those of HWZZMB and HWZZMC, respectively, but currently, the amplitudes are assumed to be coincident with those of HWZZM at the first interface from above. Since zig-zag amplitudes are assumed, discontinuous out-of-plane stress may result; hence, the integration of local equilibrium equations is required to obviate this discontinuity, with a corresponding increase in costs by 0.9%. However, it must be considered that zig-zag amplitudes are not being computed at each interface, so a processing time saving of 10% is obtained, and in the end, a positive balance is achieved. However, applications will show a loss of accuracy, making it vain.







4. Lower-Order Theories


Lower-order theories are particularized from ZZA through limiting assumptions that take features that are reminiscent to those of the theories in the literature.



4.1. MHR Theory


MHR considers piecewise cubic in-plane displacements, wherein Murakami’s zig-zag function in Equation (28) is incorporated as the layerwise function, alongside a fourth-order polynomial transverse displacement [47]:


     u α  ( x , y , z ) =  [   u α    0  ( x , y ) + z (  Γ α 0  ( x , y ) −  w 0    ( x , y )   , α   )   ]  0  +  [   C α   ( x , y )  z 2  +  D α  ( x , y )  z 3    ]  i  +  u  α z   ( x , y )  M k  ( z )      u ς  ( x , y , z ) =  [   w 0  ( x , y )   ]  0  +  [  a ( x , y ) z + b ( x , y )  z 2  + c ( x , y )  z 3  + d ( x , y )  z 4   ] i     



(33)







Coefficients    C α   ,    D α   ,  a ,  b ,  c  and  d  are still calculated by enforcing the fulfilment of the stress boundaries conditions in Equation (16), while    u  α z     is calculated by enforcing the fulfilment of the first and second equilibrium in Equation (18) at the middle plane of the laminate. Since out-of-plane stresses may be still discontinuous at layer interfaces, and since    u  α z     is assumed to be uniform across the thickness, the expressions of out-of-plane stresses are derived integrating local equilibrium equations within the framework of an HR variational theorem (2). A refined version that is referred as MHR±, is obtained by determining the right sign of Murakami’s zig-zag function (28) on a physical basis, instead of being forced to reverse at interfaces by the coefficient     ( − 1 )  k   . The right slope is determined at each interface without a cost burden evaluating what sign     ( ± 1 )  k    attain the lowest residual force norm from three local equilibrium equations.




4.2. MHR4, MHWZZA and MHWZZA4 Theories


A refined variant MHR4 of MHR is obtained assuming the in-plane displacement field    u α    by Equation (31), and a fourth-order piecewise variation of the transverse displacement [47]:


   u ς  ( x , y , z ) =  [   w 0  ( x , y )  ] 0  +  [  a ( x , y ) z + b ( x , y )  z 2  + c ( x , y )  z 3  + d ( x , y )  z 4   ] i  +  w z  ( x , y )  M k  ( z )  



(34)







Coefficients  a  to  d  are determined by enforcing the fulfillment of the stress boundary conditions in Equation (16), whereas    w z    is calculated by enforcing the fulfilment of the third local equilibrium equation at the middle plane.



MHWZZA is developed assuming the same master displacement field as that of MHR in Equation (33) and the same master strain and stress fields as those of the HWZZ model, in Equations (25) and (26), respectively. To improve the accuracy, the displacement, strain, and stress fields of MHWZZA are recovered using ZZA as the post-processor.



Similarly to MHR±, a refined theory MHR4± is obtained from MHR4 determining the sign of Murakami’s zig-zag functions on a physical basis.



A further theory MHWZZA4 is derived assuming the in-plane displacement field in Equation (31) by MHR, the transverse displacement in Equation (13) by ZZA, and as the master strain and stress fields those by HWZZ in Equations (25) and (26), respectively. The only substantial difference of MHWZZA4 with respect to HWZZ and ZZA is a different zig-zag function; the just-mentioned theories along with ZZA* and HWZZM* make it possible to verify whether the accuracy is sensitive to the choice of zig-zag functions.




4.3. HRZZ and HRZZ4


HRZZ theory is developed postulating a uniform transverse displacement and a third-order zig-zag representation of in-plane displacements [47]:


     u α  ( x , y , z ) =    [   u α    0  ( x , y ) + z (  Γ α 0  ( x , y ) −  w 0    ( x , y )   , α   )  ] 0  +  [   C α i  ( x , y )  z 2  +  D α i  ( x , y )  z 3   ] i  +       [    ∑  k = 1   n i     Φ α k  ( x , y ) ( z −  z k  )  H k  ( z ) +   ∑  k = 1  ℑ    C u k  α   ( x , y )  H k     ] c         u ς  ( x , y , z ) =    w 0  ( x , y )    



(35)







Within the framework of the HR theorem, the transverse normal stress    σ  33     is assumed to be the same as that of the ZZA model, while the transverse shear stresses    σ  i 3     are derived from the equilibrium equations assuming kinematic relations in Equation (25) to define membrane stresses. However, currently, second and higher-order derivatives of the d.o.f. are neglected, and a unique computational layer is assumed. Since a uniform transverse displacement is chosen and transformed, reduced stiffness properties are assumed. Then,    ε  i j  σ  =  C  i j k l    σ  k l    ,    C  i j k l     is the inverse of    E  i j k l    ;   i , j = 1 , 2 ≡ x , y  ;   3 ≡ z  ;    ε  i j  u  = 1 / 2 (  u  i , j   +  u  j , i   )  ;    γ  i j ( i 3 ) ( 33 )   = 2  ε  i j ( i 3 ) ( 33 )    , and     ε ^   33  σ  = 1 /  C  3333   (  σ  33   −  C  33 i j    ε  i j  u  )  .



In order to increase the accuracy of HRZZ, the ZZA theory will be used as the post-processor and the results obtained in this way will be indicated as HRZZ PP in the figures.



HRZZ4 assumes the same in-plane representation of HRZZ, the following fourth-order polynomial approximation of the transverse displacement [47]:


   u ς  ( x , y , z ) =  [   w 0  ( x , y )  ] 0  +  [  b ( x , y ) z + c ( x , y )  z 2  + d ( x , y )  z 3  + e ( x , y )  z 4   ] i   



(36)




and the same stress fields of HRZZ. In this case,    ε  33  u    being no longer null, it is unnecessary to use transformed, reduced stiffness properties. Similar to in the previous theories, coefficients b to e of Equation (36) are determined by enforcing the stress boundary conditions at the upper     +    and lower     −    faces (16). The out-of-plane master shear stresses    σ  i 3     are obtained through integrating local equilibrium equations, while the   ∂  σ  33     appearing in Equation (2) is assumed to be the same as that of ZZA.





5. Numerical Assessments and Discussion


The accuracy of previous theories is assessed, analysing free vibration modes and the transient dynamic behaviour under impulsive loading of simply supported and clamped, laminated, and sandwich beams and plates.



The lay-up, geometric, and material properties of each case are grouped in Table 3 and Table 4; the trial functions and the expansion order that are used in each study are reported in Table 2; the normalization of quantities is brought in Table 5; while the results are carried in Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19 and Table 20 and the computational cost is reported in Table 21 and Table 22.



5.1. Propped Cantilever Sandwich Plate in Cylindrical Bending under Uniform Static Loading


Firstly, a static analysis of two propped cantilever sandwich plates in cylindrical bending under a uniform load    p 0     ( + )     on the top face are considered, in order to preliminary assess the accuracy of the theories in predicting the displacement and stress fields. The structure is clamped at x = 0 and restrained on the lower face at x = Lx; the elastic moduli of faces and core are assumed to be Eu/El = 1.6 and Eu/Ec = 166.6, respectively, and with a Poisson’s ratio   υ = 0.3  ; the lower (l) and upper (u) faces are tl = c/2 and tu = c/4 thick, respectively, where c is the core thickness. The results of the theories are compared to the ones by 3D FEA [48], whose elements are formulated in order to fulfil Equations (16) and (18), and the displacements and out-of-plane stresses are assumed as nodal d.o.f. The length-to-thickness ratios Lx/h = 5.714 (case a1) and 20 (case a2) are considered.



Regarding case a1, according to Mattei and Bardella [27] and Icardi and Sola [21], its through-thickness displacement and stress fields are very challenging, and require a very accurate description of the transverse shear force resultant at the clamped (7) and at the simply supported edges (10), and a very accurate description of the transverse normal stress; otherwise, incorrect stress predictions are obtained. Moreover, what makes this a tough case is the opposite sign that is assumed at the upper and lower faces by the transverse shear stress at the supported edge. Figure 1 shows the results for the thickest case (Lx/h = 5.714). It can be seen that, contrary to what was postulated by Murakami’s zig-zag function, at the supported edge, the slope of    u ς    never reverses, while    u α    doesn’t reverse near the upper interface, so MHR and MHR4 obtain inaccurate results. Even MHR± and MHR4±, whose interfacial displacement slope is determined on a physical basis, are not adequate, because their kinematics are too poor. MHWZZA4 and MHWZZA, incorporating strain and stress fields from HWZZ, obtain better results than MHR and MHR4, while HRZZ calculates an incorrect null transverse displacement at the supported edge. Summarizing, all of the lower-order theories obtain inaccurate results. Since the results of HWZZM are in good agreement with those of the adaptive theories ZZA, ZZA*, HWZZ, and 3D FEA, it is proven that the choice of layerwise functions is immaterial as long as higher-order coefficients are defined as in Section 3.1 and Section 3.3. HWZZMB, HWZZMB2, and HWZZM0 assuming arbitrarily zig-zag amplitudes can accurately predict the axial displacement but not the transverse one, while HWZZMC and HWZZMC2 calculate precise displacements, whereas HWZZMA always provides wrong results (so they are not reported in the figures). It should be noticed that the behaviour of theories arbitrarily assuming zig-zag amplitudes is very case-dependent, and only some are quite accurate.



The results for the slender case Lx/h = 20 are reported in Figure 2; the calculations show that a still significant difference between the predictions of theories exists, and    σ  α ς     differs from that which is expected for the rather thin sandwich structures. Again, only higher-order theories obtain a good degree of accuracy, and HWZZMA is so inaccurate that results cannot be reported. The obvious conclusion is that even for a length-to-thickness ratio of 20, an accurate description of kinematics is of primary importance in the present case.



On the basis of the processing time required (see Table 21 and Table 22 and Section 5.10), it can be concluded that the adaptive theories ZZA, ZZA*, HWZZ, HWZZM, and HWZZM* are the most efficient ones, as they combine accuracy and low cost. It should be remembered that the same representation with the same low expansion order (Section 2.2) dictated by industrial needs is used for all of the theories. Since the results in the literature for MZZ have shown that greatly increasing the expansion order along with that of the representation across the thickness obviously produces more accurate results, prior statements are valid only for the conditions that are examined here. Below, dynamic tests are carried out that consider progressively more challenging benchmarks that highlight the need for sophisticated theories.




5.2. Free Vibration Modes of Simply Supported Laminated and Sandwich Plates in Cylindrical Bending


First, the analysis of simply supported cross-ply [0/90/0] (case b1) and [0/90]2 (case b2) plates in cylindrical bending is presented, which primarily serves as a preliminary test of the accuracy of 3D FEA [48] in solving dynamics problems, this having yet been tested. Then, a [0/core/0] simply supported sandwich plate in cylindrical bending (cases b3) is studied, which has more marked layerwise effects.



The first fundamental frequency predicted by the present theories for case b1 is given in Table 6 considering a length-to-thickness ratio of 10. Comparisons are carried out with the exact solution and the results of EFSDT and EHSDT theories by Kim [49].



It can be seen that only ZZA, HWZZ, HWZZM, ZZA*, and HWZZM* higher-order theories provide very accurate results, but a sufficient accuracy is obtained by the HRZZ, HRZZ4, MHWZZA, MHWZZA4, MHR, MHR4, MHR±, MHR4±, and HWZZMC simplified theories. Instead, HWZZMA, HWZZMB, HWZZMB2, and HWZZM0 give an inaccurate prediction of it. However, case b1 does not appear to be severe, as many theories prove adequate. Although they have dissimilar characteristics, it is noted that HSDT and FSDT (shear correction factor of 5/6 chosen to minimize the error) calculate even the fundamental frequency inaccurately. The same considerations apply for case b2, with the same length-to-thickness ratio of 10, as shown in Table 6; therefore, the previous considerations are not repeated.



The fundamental frequency for a [0/core/0] simply supported sandwich plate constituting case b3 [49] is reported in Table 7 for three different length-to-thickness ratios (four, 10 and 20). Contrary to what one would expect, errors don’t dramatically decrease as Lx/h increases, and the behaviour of theories remains quite diversified. In particular, MHWZZA, MHWZZA4, and HWZZMA, HSDT, and FSDT (shear correction factor is 5/6) prove to be inaccurate irrespective of the length-to-thickness ratio.



Modal displacements and stresses are reported In Figure 3, Figure 4 and Figure 5, where the results are normalized as shown in Table 5, and show that the axial displacement    u α    and the in-plane stress    σ  α α     are accurately calculated except by MHWZZA and MHWZZA4, while the transverse shear stress    σ  α ς     is inaccurately calculated by MHR, MHR4, MHR±, MHR4±, MHWZZA, and MHWZZA4 for the thickest case. An even bigger scattering is shown for    u ς   , which is accurately calculated only by ZZA, HWZZ, HWZZM, ZZA*, and HWZZM*, while on the contrary, the transverse normal stress    σ  ς ς     is accurately calculated by all of the theories. Note that the results by HWZZMA are never reported in Figure 3 and Figure 4 as being too wrong. For the same reason, the stress and displacement distributions are not reported for FSDT and HSDT. Such big errors highlight the inapplicability of the most simplified theories even for slender cases, which is contrary to what is often claimed in the literature.




5.3. Fundamental Frequency and Modal Displacements and Stresses of a Simply Supported, Anti-Symmetric Cross-Ply Plate


The fundamental frequency of [0/90/0/90], simply supported, cross-ply square plates with a length-to-thickness ratio of five [4], is examined in Table 8 for increasing the values of the degree of orthotropy E1/E2 ranging from three to 40 (case c1).



Comparisons are given with the results by a global–local higher-order theory [4] and by Matsunaga [56], which were obtained using a higher-order ESL. It can be seen that all of the theories of this paper provide fairly accurate predictions of the fundamental frequency in correspondence with the lowest orthotropy ratios, while quite dispersed results are shown as this ratio reaches the value of 20. In particular, very incorrect results are given by ESL, FSDT (shear correction factor    π 2  / 12  ), and HSDT for E1/E2 values greater than 30 and by theories MHR, MHR4, MHWZZA, MHWZZA4, HWZZM0, HWZZMB2, and HWZZMC2. Adaptive theories ZZA, ZZA*, HWZZ, HWZZM, and HWZZM* instead always provide results that are in very well agreement with the exact solution, irrespective of the orthotropy ratio.



The through-thickness variation of modal displacement    u ς   , transverse shear    σ  α ς    , and transverse normal    σ  ς ς     modal stresses are reported in Figure 6 and Figure 7 for ratios E1/E2 of 3 and 40, respectively. Note that    u α    is correctly captured by all of the theories only for E1/E2 = 3, so just the results for this highest ratio are reported. The results by HWZZMB2 and by HWZZM0 are only reported for E1/E2 = 40, as they are inaccurate for all of the other cases. All of the other theories provide a quite accurate prediction of the in-plane displacement as well as of    σ  α ς    , with the only exceptions being MHR and MHR4, while there is a bigger scattering of results regarding    σ  ς ς    .



The fundamental frequencies for case c2 with an orthotropy ratio E1/E2 of 30 and a length-to-thickness ratio of 10/3 are reported in Table 9. Modal displacements and modal in-plane and transverse shear and normal stresses for this case are shown in Figure 8, along with the results by 3D FEA, Zhen and Wanji [4], and Matsunaga [56]. These results show that MHWZZA, MHWZZA4, MHR, and MHR4 overestimate the fundamental frequency, while MHWZZA, MHWZZA4, MHR, and MHR4 incorrectly predict the in-plane displacement and stress, while MHR± and MHR4±, whose slope is defined on a physical basis, obtain better results than their counterparts MHR and MHR4 with the slope assumed a priori.



A rather large dispersion of results is shown for    u ς    and for the transverse normal stress, while the transverse shear stress is erroneously provided by HRZZ, HRZZ4, MHWZZA, MHWZZA4, MHR, and MHR4 only across the first layer. Again, in this case, with the slope being defined on a physical basis, HSDT and FSDT (the latter uses π2/12 as the shear correction factor in order to improve the accuracy of the results) appear inadequate to perform the analysis.




5.4. Fundamental Frequency of a Cross-Ply Plate with Different Thickness Ratios and Boundary Conditions


The fundamental frequency of a [0/90/0] cross-ply square plate with a thickness ratio ranging from 4 to 100 and simply supported (case d1), all clamped, or simply supported edges and clamped on opposite sides (case d2), are reported in Table 10 and Table 11, respectively. The results are compared to those by Di Sciuva and Icardi [50] (RFSDT, RHSDT, theories and RHQ40 elements) and to 3D FEA [48], as well as to those by FSDT and HSDT.



The results of case d1 show a very well agreement among the theories each other, as well as with 3D FEA reference solutions when the length-to-thickness ratio increases, because the layerwise effects become less important, while remarkable differences are shown for the thickest cases. All of the theories appear to be accurate except for HWZZM0, MHWZZA, and MHWZZA4 (even for moderately thin plates), FSDT (shear correction factor 5/6), and HSDT (the latter two are accurate only for the lengths-to-thickness greater than 10).



The results for the different boundary conditions considered (case d2), namely clamped and simply supported edges (CSCS) and all-clamped edges (CCCC), are reported in Table 11 for a length-to-thickness ratio Lx/h = 10, along with the results for simply supported edges (SSSS).



It is noted that only ZZA, ZZA*, HWZZ, HWZZM and HWZZM* give predictions of the fundamental frequency that are always very well in agreement with 3D FEA, while all of the other theories are less accurate.



It is also noted that the errors are greater for CSCS and CCCC, which therefore prove more problematic than SSSS because the mechanical boundary constraints are more difficult to satisfy identically for clamped edges. In this case, FSDT (shear correction factor 5/6) and HSDT do not provide valid results for any boundary condition. Therefore, it is deduced that for cases d1 and d2 FSDT and HSDT are unsuitable, similarly to other theories with a fixed representation.



So, it is confirmed also in this case that only adaptive theories whose coefficients can be redefined across the thicknesses (ZZA, ZZA*, HWZZ, HWZZM, and HWZZM*) obtain always accurate results with low computational cost (see Section 5.10), and then, they should be preferred in the applications.




5.5. First and Higher-Order Free Vibration Frequencies of Potpourri Cases


Here, the vibration behaviour of plates made of different materials and with different boundary conditions is discussed. Table 12, Table 13 and Table 14 report the first five frequencies for a [0/90/0] square plate (the intermediate layer has a thickness of h/2, while the outer ones have a thickness of h/4) here referred to as case e1, which is retaken from Kapuria et al. [5] (ZIGT and TOT theories). This plate is simply supported along the edges parallel to the y-axis and free at the other two edges (SFSF). Length-to-thickness ratios of 5, 10 and 20 are considered.



Again, adaptive theories ZZA, HWZZ, ZZA*, HWZZM, ZZA*, and HWZZM* appear as the most accurate among those considered, irrespective of the mode examined. On the contrary, the other theories exhibit errors that grow with the frequency order and with the increasing thickness. Only ZZA, HWZZ, ZZA*, HWZZM, ZZA*, HWZZM*, HRZZ, HRZZ4, and MHWZZA4 obtain quite accurate results for length-to-thickness ratios of 5, while MHR, MHR4, MHR±, MHR4±, HWZZMA, and HWZZM0 can’t get the fourth and the fifth frequencies for the intermediate length-to-thickness ratio of 10. Instead, for Lx/h = 20, all of the theories except FSDT (shear correction factor    π 2  / 12  ) and HSDT give accurate predictions of frequencies, as the layerwise effects tend to wears off, even if contrary to what is claimed in the literature, this does not always occur in all of the examined cases.



The first eight frequencies for a [0/90/0] square plate with clamped edges (CCCC), which is retaken from Zhen and Wanji [4] and Liew [52], and is here referred to as case e2, are reported in Table 15. In this case, in addition to 3D FEA, comparisons can be carried out with results obtained assuming a linear in-plane displacement across the thickness and a uniform transverse displacement. Errors less than 2% are shown by adaptive theories ZZA, ZZA*, HWZZ, HWZZM, and HWZZM* with respect to 3D FEA, whereas the other theories exhibit larger errors that increase with the order of frequency that is considered. However, guessing the shear correction factor, accurate results can be achieved by FSDT (in the current case with a shear correction factor of 5/6), as also shown in [56], despite the very simple kinematics. This gives a reason at least for the case that is currently examined, to those who consider ESL suitable for dynamic analysis. However, it could be argued that an appropriate shear correction factor could not easily be chosen in the industrial applications.



Table 16 reports the first six frequencies of case e3, which concerns a simply supported (SSSS) [0/90/core/0/90] soft-core sandwich plate with a length-to-thickness ratio of 10. It should be noted that for this case, it is necessary to enforce two additional conditions across the upper layer in the adaptive theories, which means the first two local equilibrium equations; otherwise, the accuracy drops. Having done this, again, all of the higher-order adaptive theories obtain accurate results for all of the frequencies.



Also HRZZ, HRZZ4, HWZZMB, HWZZMC, and HWZZMC2 provide quite accurate results, while other lower-order theories are inaccurate. As in many other cases, MHR and MHR4 are not adequate, because Murakami’s rule is not respected, so MHR± and MHR4±, whose slope sign is determined on a physical basis, obtain better results. Also, in this case, FSDT (shear correction factor 5/6) and HSDT (no need of shear correction factor) obtain inaccurate results.




5.6. Through-Thickness Mode of a Simply Supported, Cross-Ply Plate in Cylindrical Bending


A simply supported cylindrically bent [0/90] plate (case f) is now studied, which is retaken from Pagani et al. [53], who analysed it via finite elements. The interesting aspect of this case is that great cross-section deformations are already involved by the first four frequencies, which could undermine the concept of the plate on which the theories that are considered in this paper are based. Indeed, deformations from the first to the fourth frequency are respectively: a bending mode, a bending/torsional mode, a torsional mode, and finally an axial/shear mode.



The structure is 200-mm thick, while its length-to-thickness and length-to-side ratios are 10. In this case, a suited choice of even and odd trial functions should be made to obtain accurate results by the present theories, and a sufficiently high expansion order of the representation must also be considered, as indicated in Table 2.



The results for this case, which are reported in Table 17, where they are compared to the present FEA results and the ones from [53], show that adaptive ZZA, ZZA*, HWZZ, HWZZM, and HWZZM* theories only commit an error of the order of 2% or less, albeit their representation order across the thickness and their number of unknowns are lower of those of the theory that was used to construct finite elements in [53]. Since there is only one interface, HWZZMA, HWZZMB, HWZZMB2, HWZZMC, and HWZZMC2 achieve the same accuracy of HWZZM, whereas all of the other lower-order theories predict wrong frequencies, which is a sign that a refined kinematics is required. In this case, the results by FSDT and HSDT aren’t reported as being totally wrong.




5.7. First Five Free Vibration Frequencies of a Soft-Core Sandwich with Strong Transverse Normal and Shear Deformability Effects


For the purpose of checking which theory is able to effectively capture strong 3D effects related to transverse normal and shear deformability, case g is examined. It concerns a simply supported cylindrically bent sandwich plate with stiff faces and a compliant core that has not yet been considered in the literature. Each face has a thickness of 0.2 h, and is made of three layers having different thickness and properties, as indicated in Table 3, while the core is 0.6-h thick. The first and the third face layers proceeding from the outside toward the inside are made of the same very stiff material (m2), while the interposed layer is made of a more compliant material in tension, compression, and shear (m1); finally, the core is made of the most compliant material (m3), as indicated in Table 4. A length-to-thickness ratio of five is considered.



Table 18 reports the first five free vibration frequencies for this case, as predicted by the theories of this paper and by 3D FEA. The results indicate that the first, second, and fifth frequencies represent the bending modes, while the third and fourth ones represent more interesting motions that occur across the thickness in a symmetrical manner with respect to the mid-plane. So, specific boundary conditions should be enforced to get rid of these modes.



Moreover, the fulfillment of local equilibrium equations should be enforced near the core interfaces in the adaptive theories, the only ones where it is possible to do it; otherwise, poor results similar to those of other theories are obtained. The results demonstrate the superior accuracy of the adaptive theories ZZA, ZZA*, HWZZA, HWZZM, and HWZZM*, which were obtained thanks to the imposition of these constraints, irrespective of whether they directly considered a piecewise transverse displacement or recovered the effects of the normal transverse deformation differently. Naturally, in this case, the gap with other theories is much more marked than in the previous cases because of the greater importance assumed by the transverse normal deformation, it being the one that was less accurately reproduced. In this case, HWZZMC and HWZZMC2 obtain inaccurate results, with their errors increasing with the frequency order, i.e., the third and fourth frequencies are progressively more inaccurate.



From Figure 9, which reports the in-plane modal displacement, in-plane and transverse shear modal stresses for the first mode, and a minor subject to errors, it can be seen that all of the theories except HWZZMA, MHR, MHR4, MHR±, and MHR4± obtain quite accurate results, which is a sign that Murakami’s theories are inappropriate for this case. However, it is noted that the greatest errors occur on the transverse modal displacement and the normal modal stress. Figure 10 reports the modal stresses and displacements for the third frequency by ZZA, ZZA*, HWZZA, HWZZM, HWZZM*, HWZZMC, and HWZZMC2, while the results by other theories are not reported as being too wrong.




5.8. Free Vibration of a Thick Simply Supported [0/90/Core/0/90] Sandwich Plate


The first six free vibration modes of a simply supported sandwich plate having the same thickness of faces and core of case e3 and the same orientation is studied assuming a thicker length-to-thickness ratio of five. With the same purpose, stiffer faces are considered, as indicated in Table 3, while the core has the same properties as case e3. These choices, which are distinctive of a benchmark that has never been investigated before, here called case h, enhance the layerwise effects, and consequently they should highlight the quite different behaviours of the theories.



Table 19 reports the first six free vibration frequencies predicted by the present theories and by 3D FEA for this new case. Similar to the previous case g, the first five frequencies are bending modes, while the sixth represents a motion that occurs in a symmetrical manner in the thickness direction. So, the same considerations about the constraints that must be imposed apply again, and consequently, it is still demonstrated that the material properties and thickness of constituent layers constitutes a strong discriminatory effect on the accuracy of the theories.



Considerations that are similar to those of the previous case g apply, because only adaptive theories are always in well agreement with 3D FEA results. All of the other theories, except HWZZMC and HWZZMC2, which obtain results accurate enough, give inaccurate predictions, especially for the sixth mode.




5.9. Blast Pulse Loading


In this section, two square plates with a different lay-up and subject to step and exponential blast pulse loadings are analysed. The first is a sandwich plate that is subject to a step pulse (case i1), which has a length Lx of 609.6 mm, its core is 25.4-mm thick, and its two faces, each one being a five-layer laminate, have a total thickness of 1.905 mm. The second is a laminated [0/90/0] square plate whose central layer is two times thicker than the outer ones, whose length is 2540 mm and whose overall thickness is 170 mm (case i2), which is subject to an exponential blast pulse. Such case studies are retaken respectively from Hause and Librescu [54], where the step blast pulse overpressure loading is described as:


  p =  {     p 0     ( + )     i f   t < 5   ms     0   i f   t ≥ 5   ms      



(37)




and from Librescu and Noisier [55], where the exponential blast pulse overpressure is considered as:


  p =  p 0     ( + )   ( 1 − t /  t p  )  e  − 2 t /  t p     



(38)




where tp is 0.1 s.



The results for the first case i1 are reported in Figure 11 as the central plate deflection at the mid-plane normalized to the plate thickness. It can be seen that also in this case, only theories ZZA, ZZA*, HRZZ, HRZZ4, and HRZZ4* provide a correct time-variation of the deflection, which is in good agreement with 3D FEA. Notice that the results by [54] differ from the FEM results because of the lower-order model used therein. However, we see a similar behaviour where errors tend to disappear with respect to the present theories if a single half-wave in the x and y directions is considered instead of the expansion order that is reported in Table 2.



As for the other cases considered previously, again, MHR and MHR4 appear to be inadequate because Murakami’s rule is not respected, while their counterparts MHR± and MHR4±, whose slopes are computed on a physical basis, appear to be more accurate.



The results for the case i2 are reported in Figure 12, where again the transverse displacement is reported at z = 0 and at the center of the plate, and is still normalized to the plate thickness. Since now the layer has the same material properties and a symmetric stack-up, the layerwise effects fade, so the discrepancies between the results by theories also fade.



Anyway, MHWZZA4, MHR4, MHR4±, HWZZMA, and HWZZM0 still appear inaccurate, whereas the adaptive theories once again obtain results that are in very good agreement with 3D FEA. Table 20, which reports results for specific instants (0.9 ms, 4.5 ms, 5.6 ms, 6.5 ms, and 7.4 ms for i1 and 3.9 ms, 8.0 ms, 19.96 ms, and 24.08 ms for i2) show that the erroneous predictions (both frequency and amplitude of response are wrong) given by HRZZ, HRZZ4, HWZZMB, HWZZMB2, and HWZZMC2 are erroneous, which had not been noticed for the initial instant (0.9 ms for i1 and 3.9 ms for i2, which corresponded to the occurrence of the first peak of ZZA in each of the two cases) considered in Figure 11 and Figure 12).



It is worth noting that in both cases i1 and i2, there is no detectable difference when the transverse displacement is evaluated in points across the thickness other than at the middle plane as reported in the tables and figures, because both structures are thin. However, splitting the core into two halves whose upper half is much more compliant than the lower one (case i3), similar as to when a face is damaged, and assuming Lx/h = 10 and a different orientation of layers of faces, the results of Figure 13 are obtained, which show visible differences between the results of the theories. Those assuming a uniform or a polynomial transverse displacement in this case don’t account properly for this effect, so less accurate results are obtained, see e.g., MHR±, MHWZZA, MHWZZA4, HRZZ, HRZZ4, FSDT, and HSDT.



It is specified that a Newmark implicit time integration scheme was adopted for solving transient dynamic equations, since alternative explicit time integration schemes need extremely small time steps to be stable. However, for reasons of the stability of the algorithm, small time-steps are still required (30   μ s  ) to limit the convergence and rounding errors. Since geometrical and material non-linearity are disregarded, the system to solve is a linear system, and the computational burden isn’t adversely affected by such a small time step.




5.10. Computational Effort of Theories


Table 21 and Table 22 reports the calculation times that are necessary to solve each of the benchmarks considered by the examined theories, which being based on the same five d.o.f., therefore have a memory storage occupation that is practically indistinguishable from one another. As closed-form solutions are considered even when other researchers recoursed to FEA due to the complexity of the solutions in the cases examined, calculation times are very short for all of the theories; that is, they remain comparable to those of FSDT and HSDT.



This testifies to the efficiency of the present adaptive and higher-order, because they require just a reduced expansion order, both with regard to the in-plane and through-thickness representation to achieve accurate results for all of the challenging benchmarks examined. So, it can be said that a level of accuracy that is comparable to that of the FEA has been obtained with a lower computational burden. However, FEA remains indispensable for solving the problems of industrial complexity, while the preliminary parametric studies can be performed as in this paper.



It appears that the MHR and MRH4 theories have the lowest processing time out of all of the theories, but this advantage is totally negated because they provide inaccurate results whenever strong layerwise effects rise, because in these cases, the slope varies differently from what is expected by Murakami’s rule. Although slightly more expensive, MHR± and MHR4± obtain often rather accurate results, since their slope sign of displacements is decided on a physical basis. HRZZ and HRZZ4 result in slower processing times than the adaptive theories for static cases whenever stresses must be computed through time-consuming procedures, but if this is not required, that is only global quantities are required, they result in faster processing times than the adaptive theories. However, this advantage nullified the results of HRZZ and HRZZ4, which were inaccurate in almost all of the cases that were considered.



Higher-order theories HWZZ, HWZZM, ZZA*, and HWZZM* provided rather more accurate results in all of the cases examined, and required a little longer processing time than HRZZ and HRZZ4. However, it is noted that HWZZM* with a priori assumed zig-zag amplitudes requires 20% less processing time than HWZZ, but they don’t appear to be the most accurate theories. In particular, HWZZMA, HWZZMB, HWZZMB2, HWZZMC, and HWZZMC2 appear to be inadequate in many cases. ZZA, HWZZ, HWZZM, ZZM*, and HWZZM* don’t qualify for the lowest calculation time between all of the theories, appear to be the most efficient theories, and thus are preferred in the applications, which are always very accurate and still have affordable costs. However, the best of such adaptive theories from this point of view turns out to be ZZA*, which has a slightly lower calculation cost.





6. Concluding Remarks


Various displacement-based and mixed zig-zag theories, which differ in the layerwise functions and in the scheme of the through-thickness representation of the displacements that are used, have been applied to investigate the free vibration behaviour and the response of blast-loaded laminated and sandwich plates with different length-to-thickness ratios, lay-ups, constituent materials, and boundary conditions. To homogenise the results, they are compared using the same type and order of representation as closed-form solutions, with the appropriate trial functions being selected for each benchmark to minimize the expansion order. The intended aim is to evaluate the merits and drawbacks of theories in order to establish which are significantly much more accurate and efficient.



The numerical applications show the importance of very accurately accounting for the transverse normal deformability whenever the layers have non-uniform mechanical properties and a different thickness. Indeed, adaptive zig-zag theories whose layerwise contributions identically satisfy interfacial stress constrains and whose displacement fields are redefined for each layer prove superiority. ZZA* theory shows that the choice of zig-zag functions is immaterial whenever the coefficients of displacements are recomputed across the computational layers. In this context, zig-zag functions can even be omitted, as the stress continuity constraints can be enforced in order to define the coefficients of displacement fields in a more computationally efficient way.



The accuracy of results is shown to be independent of the choice of zig-zag functions for ZZA*, but this result is extensible to all of the theories that in the same way provide a redefinition of the coefficients of displacements across the thickness, so as to satisfy the physical constraints. Vice versa, the theories whose coefficients of displacements are fixed fail to be accurate whenever strong layerwise effects rise or there is a strong transverse anisotropy, since finding a kind of fixed representation that is always suitable is impossible, unless a very high order of representation is used. That is the opposite of what this paper sets out, which is wanting to find accurate solutions at a low cost. Indeed, the accuracy of theories with a fixed representation appears to be largely case-dependent. Mixed theories such as MHWZZA and MHWZZA4 based on Murakami’s zig-zag function (as well as all those for which zig-zag amplitudes are a priori assumed) are often proven inaccurate, although not in all cases, even though they benefit from strain and stress fields by adaptive theories. The same happens even when the slope sign of displacements at interfaces is established on a physical basis, at least for the low orders of the in-plane and through-thickness representation that are considered in this paper, which however allow the adaptive theories to be already very accurate. Anyhow, it is not easy to discern for which cases the limiting assumptions of such theories do not have weight. Therefore, it is not possible to establish a general rule, although the results undoubtedly show that the theories accounting for layerwise effects without the determination of zig-zag amplitudes on a physical basis cannot provide an adequate level of accuracy with the low expansion orders that are considered in this paper.



A simplified uniform or polynomial representation of the transverse displacement is shown to be ineffective even when the strain and stress fields are retaken from other more accurate structural models, such as for MHWZZA. In particular, FSDT and HSDT theories are proven to be inaccurate in the majority of the examined cases.



Although the adaptive theories whose coefficients of displacements are redefined across the thickness do not get the lowest processing time, they were proven to be the efficient ones, since they always achieve the best accuracy with a processing time that is still short, while the other theories have lower calculation times, but also a much lower accuracy.
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Figure 1. Case a1: Propped cantilever sandwich plate in cylindrical bending (Lx/h = 5.714) under a uniform loading on the top layer. 
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Figure 2. Case a2: Propped cantilever sandwich plate in cylindrical bending (Lx/h = 20) under a uniform loading on the top layer. 
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Figure 3. Case b3: Normalized modal displacements and stresses of a simply supported sandwich plate in cylindrical bending (Lx/h = 4). 
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Figure 4. Case b3: Normalized modal displacements and stresses of a simply supported sandwich plate in cylindrical bending (Lx/h = 10). 
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Figure 5. Case b3: Normalized modal displacements and stresses of a simply supported sandwich plate in cylindrical bending (Lx/h = 20). 
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Figure 6. Case c1: Normalized modal displacements and stresses of a simply supported laminated plate (Lx/h = 5, E1/E2 = 3). 
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Figure 7. Case c1: Normalized modal displacements and stresses of a simply supported laminated plate (Lx/h = 5, E1/E2 = 40). 
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Figure 8. Case c2: Normalized modal displacements and stresses of a simply supported laminated plate (Lx/h = 10/3). 
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Figure 9. Case g: Normalized modal displacements and stresses of a simply supported sandwich plate in cylindrical bending (Lx/h = 5, first mode). 
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Figure 10. Case g: Normalized modal displacements and stresses of a simply supported sandwich plate in cylindrical bending (Lx/h = 5, third mode). 
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Figure 11. Case i1: Normalized transverse displacement of a simply supported sandwich plate under a step blast pulse loading (Lx/h = 20.8696). 
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Figure 12. Case i2: Normalized transverse displacement of a simply supported laminated plate under an exponential blast pulse loading (Lx/h = 14.941). 
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Figure 13. Case i3: Normalized transverse displacement of a simply supported sandwich plate under a step blast pulse loading (Lx/h = 10). 
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Table 1. Acronyms.






Table 1. Acronyms.





	Acronym
	Meaning
	Acronym
	Meaning





	3D FEA
	Mixed solid 3D elements (Ref. [48]).
	MHR
	HR mixed theory with Murakami’s zig-zag function (see Section 4.1, Ref. [47]).



	DL
	Discrete-layer theories.
	MHR±
	MHR with slope defined on a physical basis (see Section 4.1).



	DZZ
	Di Sciuva’s zig-zag theory (Ref. [22]).
	MHR4
	MHR with fourth-order polynomial transverse displacement (see Section 4.2, Ref. [47]).



	EFSDT
	Theory from Ref. [49].
	MHR4±
	MHR4 with slope defined on a physical basis (see Section 4.2).



	EHSDT
	Theory from Ref. [49].
	MHWZZA
	Modified HWZZ theory, type A (see Section 4.2, Ref. [47]).



	ESL
	Equivalent single-layer.
	MHWZZA4
	Modified MHWZZA theory, with fourth-order piecewise polynomial transverse displacement (see Section 4.2, Ref. [47]).



	FSDT
	First-order shear deformation theory.
	MZZ
	Murakami’s like zig-zag theory (Ref. [23]).



	HR
	Hellinger–Reissner variational theorem.
	PVW
	Principle of virtual work.



	HRZZ
	HR zig-zag theory (see Section 4.3, Ref. [47]).
	RFSDT
	Theory from Ref. [50].



	HRZZ PP
	Post-processed HRZZ (see Section 4.3).
	RHQ40
	Finite element from Ref. [50].



	HRZZ4
	HRZZ with fourth-order polynomial transverse displacement (see Section 4.3, Ref. [47]).
	RHSDT
	Theory from Ref. [50].



	HSDT
	Higher-order shear deformation theory.
	RZT
	Theory from Ref. [42].



	HW
	Hu–Washizu variational theorem.
	SEUPT
	Strain energy update technique (Ref. [29]).



	HWg
	Hu–Washizu canonical functional (see Section 2.1).
	TOT
	Theory from Ref. [5].



	HWZZ
	HW zig-zag mixed theory (see Section 3.2, Ref. [47]).
	ZIGT
	Theory from Ref. [5].



	HWZZM
	Modified HWZZ theory, type M, (see Section 3.3.1).
	ZZ
	Plate theories with zig-zag contributions.



	HWZZM*
	Modified HWZZ theory, type M*, (see Section 3.3.2).
	ZZA
	Zig-zag adaptive theory (see Section 3.1, Ref. [29]).



	HWZZM(†)
	Modified HWZZM theories, type † (see Section 3.3.2.2).
	ZZA*
	Modified ZZA theory (see Section 3.1.1).







† = A, B, B2, C, C2, 0 (variants of theory).
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Table 2. Trial functions.






Table 2. Trial functions.





	
Case

	
Expansion Order

	
Mesh (xa·yb·zh) (+)

	
Trial Function






	
b1

	
1

	
16·2·60

	
     u 0  ( x , y ) =   ∑  m = 1  M    A m    cos  (    m π x    L x     )  ;      w 0  ( x , y ) =   ∑  m = 1  M    C m    sin  (    m π x    L x     )  ;      γ x 0  ( x , y ) =   ∑  m = 1  M    D m    cos  (    m π x    L x     )  ;    




	
b2

	
1

	
16·2·60




	
b3

	
1

	
16·2·60




	
e1

	
5

	
16·2·60




	
g

	
3

	
16·2·60




	
c1

	
1

	
10·10·28

	
    u 0  ( x , y ) =   ∑  m = 1  M     ∑  n = 1  N    A  m n   cos  (    m π    L x    x  )      sin  (    n π    L y    y  )  ;    v 0  ( x , y ) =   ∑  m = 1  M     ∑  n = 1  N    B  m n   sin  (    m π    L x    x  )      cos  (    n π    L y    y  )  ;   

    w 0  ( x , y ) =   ∑  m = 1  M     ∑  n = 1  N    C  m n   sin  (    m π    L x    x  )      sin  (    n π    L y    y  )  ;   

    γ x    0  ( x , y ) =   ∑  m = 1  M     ∑  n = 1  N    D  m n   cos  (    m π    L x    x  )      sin  (    n π    L y    y  )  ;    γ y    0  ( x , y ) =   ∑  m = 1  M     ∑  n = 1  N    E  m n   sin  (    m π    L x    x  )      cos  (    n π    L y    y  )  ;   




	
c2

	
1

	
10·10·28




	
d1

	
1

	
10·10·28




	
d2

	
1

	
10·10·28




	
e3

	
6

	
10·10·28




	
h

	
5

	
10·10·28




	
i1

	
11

	
10·10·28




	
i2

	
11

	
10·10·28




	
i3

	
11

	
10·10·28




	
a1

	
9

	
16·2·60

	
     u 0  ( x , y ) =   ∑  i = 1  I    A i       (   x L   )   i  ;     w 0  ( x , y ) =   ∑  i = 1  I    C i       (   x L   )   i  ;     γ x 0  ( x , y ) =   ∑  i = 1  I    D i       (   x L   )   i     




	
a2

	
9

	
16·2·60




	
d2

	
4

	
10·10·28

	
     u α    0  ( x , y ) =   ∑  j = 1  J     ∑  i = 1  I    A  α i        (   x   L x     )   i     (   y   L y     )   j    ;      γ α 0  ( x , y ) =   ∑  j = 1  J     ∑  i = 1  I    D  α i        (   x   L x     )   i     (   y   L y     )   j    ;    




	
e2

	
10

	
10·10·28




	
f

	
6

	
10·10·28








(+) A uniform mesh is used; xa and yb represent the number of elements in x and y directions, respectively, zh is the number of elements across the thickness.
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Table 3. Data of cases.






Table 3. Data of cases.





	Case
	Lay-Up
	Layer Thickness
	Material
	BCS
	Lx/h
	Ly/Lx





	a1 [27]
	[0/0/0]
	[(2h/7)/(4h/7)/(h/7)]
	[n/n/n]
	CS
	5.714
	-



	a2
	[0/0/0]
	[(2h/7)/(4h/7)/(h/7)]
	[n/n/n]
	CS
	20
	-



	b1 [49]
	[0/90/0]
	[h/3]3
	[p]3
	SS
	10
	-



	b2 [49]
	[0/90/0/90]
	[0.25h]4
	[p]4
	SS
	10
	-



	b3 [49] (†)
	[0/0/0]
	[0.1h/0.8h/0.1h]
	[p/mc/p]
	SS
	4, 10, 20
	-



	c1 [4]
	[0/90/0/90]
	[0.25h]4
	[a]4
	SSSS
	5
	1



	c2 [4]
	[90/0/90/0]
	[0.25h]4
	[b]4
	SSSS
	10/3
	1



	d1 [5]
	[0/90/0]
	[h/3]3
	[c]3
	SSSS
	4, 10, 20, 30, 50, 100
	1



	d2 [50]
	[0/90/0]
	[h/3]3
	[c]3
	SSSS, CCCC, CSCS
	10
	1



	e1 [5]
	[0/90/0]
	[0.25h/0.5h/0.25h]
	[d]3
	SFSF
	5, 10, 20
	-



	e2 [52]
	[0/90/0]
	[h/3]3
	[e]3
	CCCC
	10
	1



	e3 [4]
	[0/90/0/0/90]
	[(h/24)2/(5h/12)]S
	[f2/g]S
	SSSS
	10
	1



	f [53]
	[0/90]
	[h/2]2
	[h]2
	SS
	10
	0.1



	g (*†)
	[0]8
	[0.025h/0.05h/0.125h/0.3h]S
	[m2/m1/m2/m3]S
	SS
	5
	-



	h (*†)
	[0/90/0/0/90]
	[(h/24)2/(5h/12)]S
	[l1/l2/g/l1/l2]
	SSSS
	5
	1



	i1 [54]
	[(45/−45)2/45/0]S
	[(0.381mm)5/(12.7mm)]S
	[o15/o2]S
	SSSS
	20.8696
	1



	i2 [55]
	[0/90/0]
	[(h/4)/(h/2)/(h/4)]
	[q]3
	SSSS
	14.941
	1



	i3 (*†)
	[(0/90)2/02]S
	[(0.381mm)5/(12.7mm)]S
	[o15/o2/o3/o15]
	SSSS
	10
	1







* Transverse anisotropy; † Strong layerwise effects; (BCS: boundary conditions name; SS simply supported, C clamped).
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Table 4. Mechanical Properties.






Table 4. Mechanical Properties.





	Material Name
	a
	b
	c
	d
	e
	f
	g
	h
	l1
	l2
	m1
	m2
	m3
	mc
	n [iso]
	o1
	o2
	o3
	p
	q





	E1 [GPa]
	M1
	30E2
	25E2
	181
	40E2
	131
	6.89 × 10−3
	25E2
	33.5
	139
	1
	33
	0.05
	0.1
	-
	206.84
	0.138
	0.0138
	172.4
	132.4



	E2 [GPa]
	-
	-
	-
	10.3
	-
	10.34
	6.89 × 10−3
	-
	8
	3.475
	1
	1
	0.05
	0.1
	-
	5.171
	0.138
	0.0138
	6.9
	10.8



	E3 [GPa]
	E2
	E2
	E2
	10.3
	E2
	10.34
	6.89 × 10−3
	E2
	8
	3.475
	1
	1
	0.02
	0.1
	M2
	5.171
	0. 138
	0. 0138
	6.9
	10.8



	G12 [GPa]
	0.6E2
	0.6E2
	0.5E2
	7.17
	0.6E2
	6.205
	3.45 × 10−3
	0.5E2
	2.26
	1.7375
	0.02
	8
	0.0217
	0.04
	-
	2.551
	0.1027
	0.01027
	3.45
	5.6



	G13 [GPa]
	0.6E2
	0.6E2
	0.5E2
	7.17
	0.6E2
	6.895
	3.45 × 10−3
	0.2E2
	2.26
	1.7375
	0.02
	8
	0.0217
	0.04
	-
	2.551
	0.1027
	0.01027
	3.45
	5.6



	G23 [GPa]
	0.5E2
	0.5E2
	0.2E2
	2.87
	0.5E2
	6.895
	3.45 × 10−3
	0.2E2
	3
	0.695
	0.02
	8
	0.0217
	0.04
	-
	2.551
	0.06205
	0.006205
	1.38
	5.6



	υ12
	0.25
	0.25
	0.25
	0.25
	0.25
	0.22
	0
	0.25
	0.35
	0.25
	0.25
	0.25
	0.15
	0.25
	0.33
	0.25
	0.35
	0.35
	0.25
	0.24



	υ13
	0.25
	0.25
	0.25
	0.25
	0.25
	0.22
	0
	0.25
	0.35
	0.25
	0.25
	0.25
	0.15
	0.25
	0.33
	0.25
	0.35
	0.35
	0.25
	0.24



	υ23
	0.25
	0.25
	0.25
	0.33
	0.25
	0.49
	0
	0.25
	0.33
	0.25
	0.25
	0.25
	0.15
	0.25
	0.33
	0.25
	0.02
	0.02
	0.25
	0.24



	Density [kg/m3]
	ρ
	ρ
	ρ
	1587
	ρ
	1627
	97
	ρ
	1627
	1627
	1558.35
	1558.35
	16.3136
	ρ
	ρ
	1558.35
	16.3136
	16.3136
	ρ
	1443







M1 E1/E2 = 3, 10, 20, 30, 40; M2 Eu/El = 1.6, Eu/Ec = 166.66; [iso] = isotropic E1 = E2 = E3 G12 = G13 = G23.
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Table 5. Normalization of displacements, stresses and frequencies.






Table 5. Normalization of displacements, stresses and frequencies.





	Case
	Normalization





	a1
	      u α   ¯  =   u  (   L x  , z  )    h  p 0         u ς   ¯  =    u ς   (   L x  , z  )    h  p 0         σ  α α    ¯  =    σ  α α    (   L x  , z  )     p 0     (   L x  / h  )   2         σ  α ς    ¯  =   A  σ  α ς   (  L x  , z )    P 0   L x         σ  ς ς    ¯  =    σ  ς ς    (   L x  , z  )     p 0      



	a2
	      u α   ¯  =   u  (   L x  , z  )    h  p 0         u ς   ¯  =    u ς   (   L x  , z  )    h  p 0         σ  α α    ¯  =    σ  α α    (   L x  , z  )     p 0     (   L x  / h  )   2         σ  α ς    ¯  =   A  σ  α ς   (  L x  , z )    P 0   L x         σ  ς ς    ¯  =    σ  ς ς    (   L x  , z  )     p 0      



	b1 b2 b3
	    ω ¯  = ω h      ρ  _ M A T p      G  12 _ M A T p            u i   ¯  =    u i       |   u i   |    max          σ  i j    ¯  =    σ  i j        |   σ  i j    |    max       



	c1
	    ω ¯  = 10 ω h      ρ  _ M A T a      E  2 _ M A T a            u i   ¯  =    u i       |   u i   |    max          σ  i j    ¯  =    σ  i j        |   σ  i j    |    max       



	c2
	    ω ¯  = 10 ω h      ρ  _ M A T b      E  2 _ M A T b            u i   ¯  =    u i       |   u i   |    max          σ  i j    ¯  =    σ  i j        |   σ  i j    |    max       



	d1 d2
	    ω ¯  = ω    L x   h       L x 2     ρ  _ M A T c      E  2 _ M A T c         



	e1
	    ω ¯  = ω    L x 2   h       ρ  _ M A T d      E  2 _ M A T d         



	e2
	    ω ¯  = ω    L y 2     π 2         ρ  _ M A T e     h    D 0         D 0  =    E  2 _ M A T e    h 3    12 ( 1 −  ν  21 _ M A T e    ν  12 _ M A T e   )      ν  21 _ M A T e   = 0.00625   



	e3
	    ω ¯  = ω    L x 2   h       ρ  _ M A T f      E  2 _ M A T f         



	f
	    ω ¯  = ω    L x 2     L y         ρ  _ M A T h      E  2 _ M A T h         



	g
	    ω ¯  = ω    L x 2   h       ρ  _ M A T m 2      E  2 _ M A T m 2            u i   ¯  =    u i       |   u i   |    max          σ  i j    ¯  =    σ  i j        |   σ  i j    |    max       



	h
	    ω ¯  = ω    L x 2   h       ρ  _ M A T l 2      E  2 _ M A T l 2         



	i1 i2
	      u ς   ¯  =    u ς   h    



	i3
	     u ς   ¯  =    u ς   w   ,   w   static   response  
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Table 6. Normalized fundamental frequencies, cases b1 and b2.






Table 6. Normalized fundamental frequencies, cases b1 and b2.













	Theory
	0/90/0 (b1)
	0/90/0/90 (b2)
	Theory
	0/90/0 (b1)
	0/90/0/90 (b2)





	3D [49]
	0.1462
	0.1095
	HWZZMC
	0.1463
	0.1095



	EFSDT [49]
	0.1448
	0.1125
	HWZZMC2
	0.1465
	0.1095



	EHSDT [49]
	0.1460
	0.1090
	HWZZM0
	0.1550
	0.1220



	HSDT [49]
	0.1505
	0.1139
	HRZZ
	0.1462
	0.1094



	FSDT [49]
	0.1616
	0.1186
	HRZZ4
	0.1462
	0.1095



	3D FEA [48]
	0.1464
	0.1096
	MHWZZA
	0.1460
	0.1095



	ZZA
	0.1463
	0.1095
	MHWZZA4
	0.1461
	0.1094



	ZZA*
	0.1463
	0.1095
	MHR
	0.1463
	0.1115



	HWZZ
	0.1463
	0.1095
	MHR4
	0.1463
	0.1162



	HWZZM
	0.1463
	0.1095
	MHR±
	0.1463
	0.1115



	HWZZM*
	0.1463
	0.1095
	MHR4±
	0.1463
	0.1162



	HWZZMA
	0.2499
	0.1130
	HSDT
	0.1511
	0.1157



	HWZZMB
	0.2199
	0.1095
	FSDT
	0.1565
	0.1162



	HWZZMB2
	0.1518
	0.1124
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Table 7. Normalized fundamental frequencies, case b3.






Table 7. Normalized fundamental frequencies, case b3.





	Lx/h
	4
	10
	20
	Lx/h
	4
	10
	20





	3D [49]
	0.1011
	0.0343
	0.0155
	HWZZMC
	0.1017
	0.0343
	0.0156



	EFSDT [49]
	0.0848
	0.0332
	0.0153
	HWZZMC2
	0.1017
	0.0343
	0.0155



	EHSDT [49]
	0.0972
	0.0341
	0.0155
	HWZZM0
	0.1016
	0.0343
	0.0155



	FSDT [49]
	0.3325
	0.1005
	0.0316
	HRZZ
	0.0992
	0.0342
	0.0155



	3D FEA [48]
	0.1011
	0.0343
	0.0155
	HRZZ4
	0.0995
	0.0342
	0.0155



	ZZA
	0.1015
	0.0343
	0.0155
	MHWZZA
	0.1107
	0.0373
	0.0170



	ZZA*
	0.1015
	0.0343
	0.0155
	MHWZZA4
	0.1083
	0.0374
	0.0170



	HWZZ
	0.1015
	0.0343
	0.0155
	MHR
	0.1015
	0.0343
	0.0155



	HWZZM
	0.1015
	0.0343
	0.0155
	MHR4
	0.1015
	0.0343
	0.0155



	HWZZM*
	0.1015
	0.0343
	0.0155
	MHR±
	0.1015
	0.0343
	0.0155



	HWZZMA
	0.1250
	0.0357
	0.0159
	MHR4±
	0.1015
	0.0343
	0.0155



	HWZZMB
	0.1019
	0.0343
	0.0155
	HSDT
	0.1384
	0.0503
	0.0213



	HWZZMB2
	0.1016
	0.0343
	0.0155
	FSDT
	0.3055
	0.0956
	0.0310
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Table 8. Normalized fundamental frequencies, case c1.






Table 8. Normalized fundamental frequencies, case c1.





	Theory
	E1/E2 = 3
	10
	20
	30
	40





	Exact [4]
	2.6182
	3.2578
	3.7622
	4.0660
	4.2719



	Zhen and Wanji [4]
	2.6127
	3.2513
	3.7523
	4.0532
	4.2568



	Matsunaga [56]
	2.6021
	3.2380
	3.7400
	4.0425
	4.2477



	3D FEA [48]
	2.6118
	3.2492
	3.7500
	4.0509
	4.2546



	ZZA
	2.6026
	3.2387
	3.7406
	4.0430
	4.2481



	ZZA*
	2.6026
	3.2387
	3.7406
	4.0430
	4.2481



	HWZZ
	2.6026
	3.2387
	3.7406
	4.0430
	4.2481



	HWZZM
	2.6026
	3.2387
	3.7406
	4.0430
	4.2481



	HWZZM*
	2.6026
	3.2387
	3.7406
	4.0430
	4.2481



	HWZZMA
	2.6158
	3.2591
	3.7664
	4.0716
	4.2783



	HWZZMB
	2.6121
	3.2529
	3.7572
	4.0603
	4.2653



	HWZZMB2
	3.1157
	4.3980
	5.7265
	6.7186
	7.4660



	HWZZMC
	2.6064
	3.2468
	3.7537
	4.0601
	4.2681



	HWZZMC2
	2.6277
	3.3004
	3.8541
	4.1970
	4.4252



	HWZZM0
	2.8890
	3.4550
	3.9188
	4.2047
	4.4024



	HRZZ
	2.5977
	3.2289
	3.7250
	4.0230
	4.2247



	HRZZ4
	2.5980
	3.2293
	3.7255
	4.0238
	4.2256



	MHWZZA
	2.0844
	4.0468
	3.3020
	3.1347
	2.9820



	MHWZZA4
	2.0639
	4.0052
	3.2626
	3.1124
	2.9785



	MHR
	2.6101
	3.3696
	4.1243
	4.6940
	5.1627



	MHR4
	2.6265
	3.3970
	4.1616
	4.7389
	5.2142



	MHR±
	2.6038
	3.2915
	3.9165
	4.3440
	4.6645



	MHR4±
	2.6312
	3.3774
	4.0187
	4.4254
	4.7118



	HSDT
	2.6003
	3.2781
	3.8505
	4.2139
	4.4686



	FSDT
	2.5986
	3.2836
	3.8651
	4.2342
	4.4919
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Table 9. Normalized fundamental frequencies (NFQ), case c2.






Table 9. Normalized fundamental frequencies (NFQ), case c2.













	c2
	NFQ
	Theory
	NFQ
	Theory
	NFQ





	3D FEA [48]
	0.7041
	HWZZMB2
	0.7268
	MHWZZA4
	0.7652



	ZZA
	0.7044
	HWZZMC
	0.7043
	MHR
	0.9394



	ZZA*
	0.7044
	HWZZMC2
	0.7199
	MHR4
	0.7596



	HWZZ
	0.7044
	HWZZM0
	0.7047
	MHR±
	0.7609



	HWZZM
	0.7044
	HRZZ
	0.6860
	MHR4±
	0.7674



	HWZZM*
	0.7044
	HRZZ4
	0.6855
	HSDT
	0.7432



	HWZZMA
	0.7094
	MHWZZA
	0.7505
	FSDT
	0.7451



	HWZZMB
	0.7084
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Table 10. Normalized fundamental frequencies, case d1.






Table 10. Normalized fundamental frequencies, case d1.





	Lx/h
	4
	10
	20
	30
	50
	100





	RFSDT [50]
	7.1630
	11.7000
	14.0120
	14.6450
	15.0090
	15.1720



	RHSDT [50]
	7.0270
	11.4620
	13.8880
	14.5790
	14.9830
	15.1650



	3D FEA [48]
	6.8436
	11.4306
	13.9231
	14.6593
	15.0696
	15.2550



	ZZA
	6.9254
	11.4583
	13.8889
	14.5800
	14.9833
	15.1654



	ZZA*
	6.9254
	11.4583
	13.8889
	14.5800
	14.9833
	15.1654



	HWZZ
	6.9254
	11.4583
	13.8889
	14.5800
	14.9833
	15.1654



	HWZZM
	6.9254
	11.4583
	13.8889
	14.5800
	14.9833
	15.1654



	HWZZM*
	6.9254
	11.4583
	13.8889
	14.5800
	14.9833
	15.1654



	HWZZMA
	9.0597
	14.2814
	15.0815
	15.0371
	15.0748
	15.1730



	HWZZMB
	8.3007
	15.9403
	18.0802
	15.8433
	15.1554
	15.1760



	HWZZMB2
	7.6251
	12.6836
	13.9248
	14.5871
	14.9843
	15.1655



	HWZZMC
	6.9999
	11.4660
	13.8897
	14.5802
	14.9834
	15.1654



	HWZZMC2
	7.1409
	11.4823
	13.8915
	14.5806
	14.9834
	15.1654



	HWZZM0
	7.2859
	12.5356
	17.7326
	21.7236
	27.4298
	33.3973



	HRZZ
	6.3896
	11.4502
	13.8862
	14.5787
	14.9828
	15.1653



	HRZZ4
	6.9104
	11.4569
	13.8888
	14.5799
	14.9833
	15.1654



	MHWZZA
	9.9632
	9.1000
	12.3099
	13.8952
	14.7385
	15.1043



	MHWZZA4
	9.9815
	9.1054
	12.3100
	13.8952
	14.7385
	15.1043



	MHR
	6.9913
	11.4647
	13.8896
	14.5802
	14.9834
	15.1654



	MHR4
	7.4725
	11.6644
	14.0961
	14.7437
	15.0712
	15.1924



	MHR±
	6.9913
	11.4647
	13.8896
	14.5802
	14.9834
	15.1654



	MHR4±
	7.4725
	11.6644
	14.0961
	14.7437
	15.0712
	15.1924



	HSDT
	7.1160
	11.7900
	14.0600
	14.6700
	15.0190
	15.1750



	FSDT
	7.4130
	12.1630
	14.2300
	14.7570
	15.0530
	15.1830
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Table 11. Normalized fundamental frequencies, case d2.






Table 11. Normalized fundamental frequencies, case d2.















	Theory
	SSSS
	CSCS
	CCCC
	Theory
	SSSS
	CSCS
	CCCC





	RHQ40 [50]
	11.4000
	15.9550
	17.4810
	HWZZM0
	12.5356
	17.1426
	18.2727



	3D FEA [48]
	11.4306
	15.3895
	16.6658
	HRZZ
	11.4502
	16.1304
	17.5659



	ZZA
	11.4583
	15.1875
	16.4575
	HRZZ4
	11.4569
	16.1481
	17.6134



	ZZA*
	11.4583
	15.1875
	16.4575
	MHWZZA
	9.1000
	6.0313
	20.8865



	HWZZ
	11.4583
	15.1875
	16.4575
	MHWZZA4
	9.1054
	6.3368
	21.0304



	HWZZM
	11.4583
	15.1875
	16.4575
	MHR
	11.4647
	16.6145
	18.0505



	HWZZM*
	11.4583
	15.1875
	16.4575
	MHR4
	11.6644
	16.9713
	18.4802



	HWZZMA
	14.2814
	17.4395
	19.2037
	MHR±
	11.4647
	16.6145
	18.0505



	HWZZMB
	15.9403
	20.8031
	20.9520
	MHR4±
	11.6644
	16.9713
	18.4802



	HWZZMB2
	12.6836
	16.8409
	17.8968
	HSDT
	11.7900
	17.4157
	18.5237



	HWZZMC
	11.4660
	14.5666
	14.7679
	FSDT
	12.1630
	16.4436
	17.5603



	HWZZMC2
	11.4823
	16.5033
	18.0240
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Table 12. Normalized fundamental frequencies, case e1.






Table 12. Normalized fundamental frequencies, case e1.





	Lx/h = 5
	Mode 1
	Mode 2
	Mode 3
	Mode 4
	Mode 5





	Exact [5]
	6.8060
	16.5150
	26.6880
	37.2550
	48.0350



	Zhen and Wanji [4]
	6.8161
	16.6154
	27.4212
	39.8230
	54.1984



	ZIGT [5]
	6.8128
	16.7297
	27.8623
	40.9060
	56.1529



	TOT [5]
	6.9762
	16.8783
	27.1417
	38.1864
	50.3407



	FSDT [5]
	7.4458
	18.2491
	28.7697
	41.1668
	49.2839



	3D FEA [48]
	6.8115
	16.5343
	26.7475
	37.3746
	48.3752



	ZZA
	6.8116
	16.5253
	26.7123
	37.2801
	49.1224



	ZZA*
	6.8116
	16.5253
	26.7123
	37.2801
	49.1224



	HWZZ
	6.8116
	16.5253
	26.7123
	37.2801
	49.1224



	HWZZM
	6.8116
	16.5253
	26.7123
	37.2801
	49.1224



	HWZZM*
	6.8116
	16.5253
	26.7123
	37.2801
	49.1224



	HWZZMA
	6.8351
	17.5435
	27.2260
	39.0876
	55.4790



	HWZZMB
	6.8136
	16.5504
	26.8150
	37.5666
	49.9111



	HWZZMB2
	6.8165
	16.5876
	26.9680
	37.9747
	50.6078



	HWZZMC
	6.8153
	16.5795
	26.9446
	37.9232
	50.5189



	HWZZMC2
	6.8150
	16.5769
	26.9400
	37.9217
	50.5219



	HWZZM0
	6.8136
	16.6907
	27.1274
	38.0196
	50.2967



	HRZZ
	6.8140
	16.5026
	26.6062
	37.0322
	48.7296



	HRZZ4
	6.8080
	16.4870
	26.6057
	37.1091
	48.9903



	MHWZZA
	6.4175
	15.5732
	25.2021
	35.8711
	46.9424



	MHWZZA4
	6.8271
	16.5673
	26.8199
	37.4702
	49.4131



	MHR
	6.8198
	16.6463
	27.2066
	38.5180
	51.6381



	MHR4
	6.8202
	16.6614
	27.2706
	38.6497
	51.8742



	MHR±
	6.8198
	16.6463
	27.2066
	38.5180
	51.6381



	MHR4±
	6.8202
	16.6614
	27.2706
	38.6497
	51.8742



	HSDT
	6.9828
	16.8828
	27.1485
	38.1713
	51.2504



	FSDT
	7.4237
	18.1565
	28.5888
	38.7856
	50.1428
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Table 13. Normalized fundamental frequencies, case e1.






Table 13. Normalized fundamental frequencies, case e1.





	Lx/h = 10
	Mode 1
	Mode 2
	Mode 3
	Mode 4
	Mode 5





	Exact [5]
	9.3434
	27.2240
	46.4190
	66.0580
	86.1690



	Zhen and Wanji [4]
	9.3748
	27.3267
	46.6609
	66.6898
	87.7990



	ZIGT [5]
	9.3434
	27.2512
	46.6511
	66.9168
	88.4094



	TOT [5]
	9.4742
	27.9046
	47.6259
	67.5113
	87.7200



	FSDT [5]
	9.7639
	29.7831
	51.4787
	72.9941
	94.1827



	3D FEA [48]
	9.3534
	27.1962
	46.4747
	66.3024
	86.8487



	ZZA
	9.3556
	27.2463
	46.4492
	66.0544
	87.6999



	ZZA*
	9.3556
	27.2463
	46.4492
	66.0544
	87.6999



	HWZZ
	9.3556
	27.2463
	46.4492
	66.0544
	87.6999



	HWZZM
	9.3556
	27.2463
	46.4492
	66.0544
	87.6999



	HWZZM*
	9.3556
	27.2463
	46.4492
	66.0544
	87.6999



	HWZZMA
	9.3634
	27.3403
	46.9501
	70.1202
	89.1944



	HWZZMB
	9.3561
	27.2544
	46.4856
	66.1550
	88.2045



	HWZZMB2
	9.3568
	27.2661
	46.5389
	66.3042
	88.5122



	HWZZMC
	9.3561
	27.2612
	46.5239
	66.2718
	88.4563



	HWZZMC2
	9.3560
	27.2598
	46.5189
	66.2615
	88.4411



	HWZZM0
	9.3562
	27.4362
	46.8354
	66.7382
	89.0772



	HRZZ
	9.3589
	27.2560
	46.4346
	65.9635
	87.7726



	HRZZ4
	9.3549
	27.2320
	46.3866
	65.9012
	87.7148



	MHWZZA
	7.4987
	20.7918
	42.6638
	65.0068
	87.5899



	MHWZZA4
	9.3733
	27.3067
	46.5481
	66.2214
	88.3184



	MHR
	9.3577
	27.2792
	46.6134
	66.5364
	89.1480



	MHR4
	9.3577
	27.2808
	46.6293
	66.5962
	89.3332



	MHR±
	9.3577
	27.2792
	46.6134
	66.5364
	89.1480



	MHR4±
	9.3577
	27.2808
	46.6293
	66.5962
	89.3332



	HSDT
	9.4832
	27.9312
	47.6368
	67.4822
	89.5987



	FSDT
	9.7608
	29.6950
	51.2648
	72.5723
	95.7078
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Table 14. Normalized fundamental frequencies, case e1.






Table 14. Normalized fundamental frequencies, case e1.





	Lx/h = 20
	Mode 1
	Mode 2
	Mode 3
	Mode 4
	Mode 5





	Exact [5]
	10.6400
	37.3740
	71.7440
	108.8900
	147.0400



	Zhen and Wanji [4]
	10.6897
	37.6810
	72.6193
	110.5376
	149.6296



	ZIGT [5]
	10.6400
	37.3740
	71.7440
	108.9989
	147.4811



	TOT [5]
	10.6932
	37.8972
	73.2506
	111.6123
	150.8630



	FSDT [5]
	10.7890
	39.0558
	77.0531
	119.1257
	162.4792



	3D FEA [48]
	10.6527
	37.3755
	71.5020
	108.9389
	147.0909



	ZZA
	10.6575
	37.4222
	71.8164
	108.9263
	149.6777



	ZZA*
	10.6575
	37.4222
	71.8164
	108.9263
	149.6777



	HWZZ
	10.6575
	37.4222
	71.8164
	108.9263
	149.6777



	HWZZM
	10.6575
	37.4222
	71.8164
	108.9263
	149.6777



	HWZZM*
	10.6575
	37.4222
	71.8164
	108.9263
	149.6777



	HWZZMA
	10.6601
	37.4536
	71.9498
	109.2996
	150.7192



	HWZZMB
	10.6577
	37.4243
	71.8267
	108.9586
	149.7543



	HWZZMB2
	10.6580
	37.4272
	71.8418
	109.0057
	149.8559



	HWZZMC
	10.6575
	37.4246
	71.8334
	108.9862
	149.8207



	HWZZMC2
	10.6575
	37.4242
	71.8312
	108.9804
	149.8098



	HWZZM0
	10.6583
	37.6355
	72.2589
	109.6109
	150.6415



	HRZZ
	10.6589
	37.4357
	71.8491
	108.9650
	149.2023



	HRZZ4
	10.6574
	37.4197
	71.7993
	108.8690
	149.2281



	MHWZZA
	10.5652
	37.1202
	71.2611
	108.0743
	146.5888



	MHWZZA4
	10.6719
	37.4952
	71.9809
	109.1660
	148.0695



	MHR
	10.6581
	37.4306
	71.8579
	109.0565
	150.0877



	MHR4
	10.6581
	37.4307
	71.8588
	109.0624
	150.1300



	MHR±
	10.6581
	37.4306
	71.8579
	109.0565
	150.0877



	MHR4±
	10.6581
	37.4307
	71.8588
	109.0624
	150.1300



	HSDT
	10.7061
	37.9327
	73.3318
	111.6654
	153.6012



	FSDT
	10.8047
	39.0433
	76.9153
	118.7217
	164.5034










[image: Table] 





Table 15. Normalized fundamental frequencies, case e2.






Table 15. Normalized fundamental frequencies, case e2.





	Theory
	Mode 1
	Mode 2
	Mode 3
	Mode 4
	Mode 5
	Mode 6
	Mode 7
	Mode 8





	Liew [54]
	4.4470
	6.6420
	7.7000
	9.1850
	9.7380
	11.3990
	11.6440
	12.4660



	Zhen and Wanji [4]
	4.5400
	6.5240
	8.1780
	9.4730
	9.4920
	11.7690
	12.3950
	12.9040



	3D FEA [48]
	4.4815
	6.4637
	7.9938
	9.3025
	9.3507
	11.3722
	11.5329
	12.3221



	ZZA
	4.4682
	6.5561
	8.1065
	9.3271
	9.3371
	11.1756
	11.7574
	12.1556



	ZZA*
	4.4682
	6.5561
	8.1065
	9.3271
	9.3371
	11.1756
	11.7574
	12.1556



	HWZZ
	4.4682
	6.5561
	8.1065
	9.3271
	9.3371
	11.1756
	11.7574
	12.1556



	HWZZM
	4.4682
	6.5561
	8.1065
	9.3271
	9.3371
	11.1756
	11.7574
	12.1556



	HWZZM*
	4.4682
	6.5561
	8.1065
	9.3271
	9.3371
	11.1756
	11.7574
	12.1556



	HWZZMA
	5.8520
	7.5208
	8.1724
	10.4894
	11.1722
	11.2569
	12.0353
	13.1691



	HWZZMB
	4.9570
	6.9202
	8.1959
	9.6129
	10.7028
	11.1675
	11.9800
	13.0014



	HWZZMB2
	6.0808
	7.7635
	8.8739
	10.0492
	10.8949
	11.2114
	12.6851
	13.2650



	HWZZMC
	4.4859
	6.6243
	8.1606
	9.6488
	9.8538
	11.1884
	11.8340
	13.2442



	HWZZMC2
	4.5001
	6.6668
	8.0939
	9.6464
	10.3489
	11.1834
	11.8285
	13.6387



	HWZZM0
	4.4380
	6.4692
	8.6268
	9.6356
	10.2157
	11.1670
	11.9858
	12.6024



	HRZZ
	4.4780
	6.5756
	8.6593
	9.0735
	9.5258
	10.9819
	11.6335
	12.1995



	HRZZ4
	4.4923
	6.5622
	8.6120
	9.4418
	9.4418
	10.9114
	11.6410
	12.2389



	MHWZZA
	5.7704
	12.5575
	12.8292
	14.2568
	15.3680
	18.8049
	21.7441
	28.1598



	MHWZZA4
	5.8917
	11.1227
	12.9126
	14.1157
	15.2158
	18.6187
	21.5288
	27.8810



	MHR
	4.6236
	6.4996
	9.0278
	9.5643
	9.7380
	12.2893
	12.3381
	14.5644



	MHR4
	5.7578
	10.8328
	12.8328
	14.3956
	14.4156
	19.1566
	19.9439
	20.5045



	MHR±
	4.6236
	6.4996
	9.0278
	9.5643
	9.7380
	12.2893
	12.3381
	14.5644



	MHR4±
	5.7578
	10.8328
	12.8328
	14.3956
	14.4156
	19.1566
	19.9439
	20.5045



	HSDT
	4.2424
	6.4851
	9.0818
	9.6084
	10.3515
	11.5880
	14.3931
	13.3191



	FSDT
	4.1816
	6.5979
	8.5147
	9.3171
	10.2948
	11.3770
	11.5306
	13.1945
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Table 16. Normalized fundamental frequencies, case e3.






Table 16. Normalized fundamental frequencies, case e3.





	Theory
	Mode 1
	Mode 2
	Mode 3
	Mode 4
	Mode 5
	Mode 6





	Zhen and Wanji [4]
	1.9445
	3.3796
	4.5914
	5.5268
	6.5128
	8.4311



	3D FEA [48]
	1.8497
	3.2308
	4.3091
	5.2810
	6.1583
	7.7796



	ZZA
	1.8566
	3.2341
	4.3215
	5.2778
	6.1782
	7.8258



	ZZA*
	1.8566
	3.2341
	4.3215
	5.2778
	6.1782
	7.8258



	HWZZ
	1.8566
	3.2341
	4.3215
	5.2778
	6.1782
	7.8258



	HWZZM
	1.8566
	3.2341
	4.3215
	5.2778
	6.1782
	7.8258



	HWZZM*
	1.8566
	3.2341
	4.3215
	5.2778
	6.1782
	7.8258



	HWZZMA
	2.9945
	8.2464
	13.0020
	23.1893
	27.6448
	29.3959



	HWZZMB
	1.8699
	3.2238
	4.4780
	6.4664
	7.0973
	8.4051



	HWZZMB2
	2.5594
	3.3902
	4.4765
	6.7477
	7.1172
	19.0397



	HWZZMC
	4.3268
	3.2572
	4.3669
	5.3203
	6.2311
	7.8900



	HWZZMC2
	1.8603
	3.3297
	4.4768
	5.4447
	6.3394
	8.0418



	HWZZM0
	3.0133
	7.4920
	10.3910
	11.3215
	15.1346
	21.7804



	HRZZ
	1.8359
	3.1546
	4.1342
	4.9488
	5.6326
	6.5177



	HRZZ4
	1.8375
	3.1628
	4.1541
	4.9832
	5.6931
	6.6864



	MHWZZA
	4.5991
	6.3956
	2.5602
	2.9859
	55.0032
	35.4337



	MHWZZA4
	4.5536
	6.3323
	2.5349
	2.9563
	54.4586
	35.0828



	MHR
	13.9456
	29.5039
	41.6109
	68.7426
	65.8617
	71.6472



	MHR4
	13.9456
	29.5039
	41.6109
	68.7426
	65.8617
	71.6472



	MHR±
	1.8542
	3.2453
	4.3281
	5.2674
	6.1564
	7.7888



	MHR4±
	11.0690
	14.1130
	14.9723
	15.2744
	16.5324
	18.4374



	HSDT
	6.5797
	12.7968
	14.5661
	22.9323
	26.7542
	30.9263



	FSDT
	13.9752
	31.0136
	42.0946
	51.7209
	59.2477
	72.5151
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Table 17. Normalized fundamental frequencies, case f.






Table 17. Normalized fundamental frequencies, case f.





	Theory
	Mode 1
	Mode 2
	Mode 3
	Mode 4





	3D FEA [53]
	5.7720
	8.7220
	17.8210
	95.3190



	N = 3 (30 DOFS) [53]
	5.7976
	8.8428
	19.5380
	98.1640



	3D FEA [48]
	5.7769
	8.7914
	17.8705
	95.3828



	ZZA
	5.7770
	8.8424
	17.7962
	97.1215



	ZZA*
	5.7770
	8.8424
	17.7962
	97.1215



	HWZZ
	5.7770
	8.8424
	17.7962
	97.1215



	HWZZM
	5.7770
	8.8424
	17.7962
	97.1215



	HWZZM*
	5.7770
	8.8424
	17.7962
	97.1215



	HWZZMA
	5.7770
	8.8424
	17.7962
	97.1215



	HWZZMB
	5.7770
	8.8424
	17.7962
	97.1215



	HWZZMB2
	5.7770
	8.8424
	17.7962
	97.1215



	HWZZMC
	5.7770
	8.8424
	17.7962
	97.1215



	HWZZMC2
	5.7770
	8.8424
	17.7962
	97.1215



	HWZZM0
	5.7791
	8.8522
	17.7800
	101.5429



	HRZZ
	5.7722
	8.8389
	18.4970
	101.6298



	HRZZ4
	5,7767
	8,8087
	18,4986
	101,6402



	MHWZZA
	6.1101
	9.8335
	22.2173
	99.8945



	MHWZZA4
	5.8063
	9.8330
	22.2071
	99.2816



	MHR
	5.8766
	9.6492
	20.5639
	97.0202



	MHR4
	5.8955
	9.6492
	20.2339
	105.1698



	MHR±
	5.8766
	9.6492
	20.5639
	97.0202



	MHR4±
	5.8955
	9.6492
	20.2339
	105.1698
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Table 18. Normalized fundamental frequencies, case g.






Table 18. Normalized fundamental frequencies, case g.





	Theory
	Mode 1
	Mode 2
	Mode 3
	Mode 4
	Mode 5





	3D FEA [48]
	4.1785
	10.4238
	14.6587
	16.4979
	19.0105



	ZZA
	4.1788
	10.4263
	14.6864
	16.5272
	19.0239



	ZZA*
	4.1788
	10.4263
	14.6864
	16.5272
	19.0239



	HWZZ
	4.1788
	10.4263
	14.6864
	16.5272
	19.0239



	HWZZM
	4.1788
	10.4263
	14.6864
	16.5272
	19.0239



	HWZZM*
	4.1788
	10.4263
	14.6864
	16.5272
	19.0239



	HWZZMA
	14.6663
	51.8295
	82.2952
	171.8208
	89.6849



	HWZZMB
	4.2350
	33.5909
	91.3964
	157.6279
	68.3833



	HWZZMB2
	4.3790
	24.8306
	91.5540
	159.3091
	58.0426



	HWZZMC
	4.1790
	10.4292
	14.6857
	16.5275
	19.1303



	HWZZMC2
	4.1790
	10.4288
	14.6860
	16.5276
	19.0365



	HWZZM0
	4.2300
	11.5140
	91.2793
	157.4339
	41.1479



	HRZZ
	4.1373
	9.9206
	88.7309
	151.5792
	16.6322



	HRZZ4
	4.1380
	9.9266
	88.6647
	151.2531
	16.6531



	MHWZZA
	3.0776
	5.0099
	20.3131
	29.1520
	6.3628



	MHWZZA4
	4.1977
	11.3344
	21.3343
	24.6261
	21.2708



	MHR
	15.2050
	42.4682
	77.9566
	154.7082
	70.0325



	MHR4
	15.2011
	42.2872
	65.2275
	65.4027
	66.8219



	MHR±
	15.2050
	42.4682
	77.9566
	154.7082
	70.0325



	MHR4±
	15.0620
	32.3678
	17.9254
	26.7157
	57.4925



	HSDT
	14.1892
	37.7022
	***
	***
	61.7475



	FSDT
	16.3886
	49.9499
	***
	***
	87.0203







*** Not provided by the theory.
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Table 19. Normalized fundamental frequencies, case h.






Table 19. Normalized fundamental frequencies, case h.





	Theory
	Mode 1
	Mode 2
	Mode 3
	Mode 4
	Mode 5
	Mode 6





	3D FEA [48]
	1.6882
	2.8796
	3.4723
	4.3033
	4.6899
	5.7441



	ZZA
	1.6898
	2.8855
	3.4777
	4.3171
	4.7030
	5.7500



	ZZA*
	1.6898
	2.8855
	3.4777
	4.3171
	4.7030
	5.7500



	HWZZ
	1.6898
	2.8855
	3.4777
	4.3171
	4.7030
	5.7500



	HWZZM
	1.6898
	2.8855
	3.4777
	4.3171
	4.7030
	5.7500



	HWZZM*
	1.6898
	2.8855
	3.4777
	4.3171
	4.7030
	5.7500



	HWZZMA
	5.3141
	7.2110
	11.3333
	19.3264
	21.7117
	46.2461



	HWZZMB
	1.7010
	2.8913
	3.5605
	4.3693
	4.7101
	34.1888



	HWZZMB2
	1.7651
	4.7210
	3.5473
	5.0578
	10.6544
	34.7002



	HWZZMC
	1.6898
	2.8855
	3.4778
	4.3171
	4.7030
	5.7500



	HWZZMC2
	1.6898
	2.8855
	3.4778
	4.3171
	4.7030
	5.7500



	HWZZM0
	2.5169
	5.6364
	5.9019
	8.8827
	11.3106
	34.3120



	HRZZ
	1.6823
	2.8517
	3.3940
	4.1648
	4.5907
	34.3046



	HRZZ4
	1.6821
	2.8525
	3.3965
	4.1720
	4.5948
	34.1832



	MHWZZA
	11.7654
	2.7153
	2.7264
	3.7526
	6.8737
	1.4635



	MHWZZA4
	1.1776
	3.9325
	4.3165
	4.3950
	4.5656
	5.6519



	MHR
	12.7147
	15.1380
	16.4288
	27.1626
	27.6009
	64.6322



	MHR4
	12.7626
	16.6121
	22.2689
	27.7771
	27.8687
	75.2673



	MHR±
	1.6959
	2.9097
	3.4919
	4.3405
	4.7643
	61.7387



	MHR4±
	5.1510
	5.8356
	6.7704
	7.2618
	7.2672
	66.5689



	HSDT
	16.5610
	28.7206
	37.7283
	44.0301
	44.2319
	***



	FSDT
	11.0783
	17.6361
	20.9784
	25.0619
	25.3697
	***







*** Not provided by the theory.
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Table 20. Normalized fundamental frequencies, cases i1 and i2.






Table 20. Normalized fundamental frequencies, cases i1 and i2.





	
Case

	
i1

	
i2




	
t [s]

	
0.0009

	
0.0045

	
0.0056

	
0.0065

	
0.0074

	
0.0039

	
0.0080

	
0.01996

	
0.02408






	
3D FEA [48]

	
2.0268

	
2.0165

	
−1.3291

	
1.3278

	
−1.3174

	
0.4064

	
-0.0467

	
0.3316

	
−0.1147




	
ZZA

	
2.0399

	
2.0179

	
−1.3298

	
1.3286

	
−1.3181

	
0.4079

	
−0.0468

	
0.3319

	
−0.1147




	
ZZA*

	
2.0399

	
2.0179

	
−1.3298

	
1.3286

	
−1.3181

	
0.4079

	
−0.0468

	
0.3319

	
−0.1147




	
HWZZ

	
2.0399

	
2.0179

	
−1.3298

	
1.3286

	
−1.3181

	
0.4079

	
−0.0468

	
0.3319

	
−0.1147




	
HWZZM

	
2.0399

	
2.0179

	
−1.3298

	
1.3286

	
−1.3181

	
0.4079

	
−0.0468

	
0.3319

	
−0.1147




	
HWZZM*

	
2.0399

	
2.0179

	
−1.3298

	
1.3286

	
−1.3181

	
0.4079

	
−0.0468

	
0.3319

	
−0.1147




	
HWZZMA

	
1.5226

	
1.2548

	
−0.2519

	
0.2502

	
−0.1867

	
0.4774

	
−0.0963

	
0.3901

	
−0.1635




	
HWZZMB

	
0.8607

	
0.8663

	
−0.5765

	
0.5915

	
−0.5914

	
0.3870

	
−0.0420

	
0.3162

	
−0.0798




	
HWZZMB2

	
0.0000

	
0.0001

	
−0.0001

	
−0.0001

	
−0.0001

	
0.3097

	
−0.0357

	
0.2522

	
−0.0870




	
HWZZMC

	
0.6718

	
0.5765

	
−0.4677

	
0.1563

	
−0.2202

	
0.4080

	
−0.0468

	
0.3320

	
−0.1147




	
HWZZMC2

	
1.0741

	
0.9654

	
−0.5935

	
0.9727

	
−1.0830

	
0.4064

	
−0.0466

	
0.3308

	
−0.1142




	
HWZZM0

	
0.8562

	
0.8598

	
−0.5746

	
0.5855

	
−0.5822

	
0.2912

	
0.0232

	
−0.0443

	
0.2659




	
HRZZ

	
2.0219

	
1.9176

	
−1.6341

	
1.4543

	
−1.5171

	
0.4079

	
−0.0468

	
0.3320

	
−0.1147




	
HRZZ4

	
2.0212

	
1.9175

	
−1.6332

	
1.4540

	
−1.5169

	
0.4076

	
−0.0468

	
0.3317

	
−0.1146




	
MHWZZA

	
1.6544

	
1.1687

	
−0.0994

	
0.1028

	
−0.0331

	
0.4080

	
−0.0468

	
0.3320

	
−0.1147




	
MHWZZA4

	
1.7847

	
1.7135

	
−0.8618

	
0.8970

	
−0.8344

	
0.4600

	
−0.0362

	
0.2485

	
0.0311




	
MHR

	
0.7774

	
0.9828

	
−0.4954

	
−0.0765

	
0.7464

	
0.4077

	
−0.0466

	
0.3319

	
−0.1146




	
MHR4

	
0.7320

	
1.0386

	
−0.2750

	
−0.2267

	
0.5604

	
0.3737

	
0.0019

	
0.1197

	
0.1580




	
MHR±

	
1.9734

	
1.9659

	
−1.2595

	
1.2568

	
−1.2586

	
0.4077

	
−0.0466

	
0.3319

	
−0.1146




	
MHR4±

	
1.2527

	
0.0008

	
−0.6226

	
0.8942

	
−1.0796

	
0.3737

	
0.0019

	
0.1197

	
0.1580
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Table 21. Processing time[s].






Table 21. Processing time[s].





	Case
	a1
	a2
	b1
	b2
	b3
	c1
	c2
	d1
	d2





	ZZA
	15.0671
	15.9719
	5.3866
	6.8790
	5.1194
	29.6992
	30.6735
	26.4457
	27.3202



	HRZZ
	18.2312
	18.2261
	4.6117
	6.1888
	4.8988
	27.7977
	28.4370
	24.2019
	25.0022



	HRZZ4
	18.2237
	18.4891
	5.0138
	5.0387
	5.0302
	34.1087
	36.4426
	26.3526
	27.2240



	HWZZ
	12.4271
	12.8490
	4.9640
	6.2761
	4.8679
	27.3591
	28.5739
	24.5286
	25.3396



	MHR
	6.9574
	6.6258
	2.8107
	4.8288
	2.7918
	22.1087
	23.6429
	17.3712
	17.9456



	MHR4
	6.4946
	6.9702
	2.9093
	5.1452
	2.6853
	23.0599
	24.0987
	17.8493
	18.4395



	MHWZZA
	7.2359
	7.6952
	3.7606
	5.2613
	3.6640
	25.6959
	25.6960
	20.5304
	21.2093



	MHWZZA4
	7.8365
	7.5861
	3.7602
	5.2608
	3.6636
	25.7012
	25.8412
	20.5553
	21.2350



	HWZZM
	11.5344
	11.7059
	4.1887
	5.5954
	4.0014
	27.2368
	27.1604
	22.0831
	22.8133



	HWZZMA
	11.5265
	11.6018
	4.1595
	5.4061
	3.9401
	26.7922
	26.4161
	21.6381
	22.3536



	HWZZMB
	11.5307
	11.6289
	4.1817
	5.5216
	3.9819
	26.5349
	26.8692
	21.8242
	22.5459



	HWZZMC
	11.5314
	11.6457
	4.1869
	5.5926
	3.9198
	26.5605
	26.8951
	21.8288
	22.5506



	HWZZMB2
	11.5310
	11.6389
	4.1659
	5.5490
	3.9905
	26.5797
	26.9146
	21.8544
	22.5770



	HWZZMC2
	11.5317
	11.6401
	4.1849
	5.5951
	3.8996
	26.5905
	26.9255
	21.8184
	22.5399



	HWZZM0
	11.4287
	11.5912
	4.1554
	5.5079
	3.7994
	26.2617
	26.3411
	21.4596
	22.1692



	MHR±
	6.9574
	6.6258
	3.0388
	4.8770
	2.8197
	22.1087
	23.6429
	17.4648
	18.0423



	MHR4±
	6.4946
	6.9702
	3.0384
	5.1967
	2.7122
	23.0599
	24.0987
	17.9451
	18.5385



	ZZA*
	11.4951
	11.6125
	3.8722
	5.1722
	3.8378
	25.3302
	25.2592
	20.7581
	21.6727



	HWZZM*
	10.9577
	11.0035
	3.9374
	5.3156
	3.8013
	24.0637
	24.5123
	19.5104
	20.3723



	FSDT
	-
	-
	3.0397
	3.8151
	2.6100
	8.7624
	8.8968
	11.7092
	12.0963



	HSDT
	-
	-
	3.2507
	4.1839
	2.6134
	11.5608
	11.6764
	13.1811
	13.6169







Processing time of 3D FEA is always about 12 times longer than that of ZZA, excluding meshing preparation.
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Table 22. Processing time[s].






Table 22. Processing time[s].





	Case
	e1
	e2
	e3
	f
	g
	h
	i1
	i2
	i3





	ZZA
	15.2146
	49.8998
	52.3788
	20.9916
	20.4415
	57.4363
	147.6859
	76.1909
	143.1814



	HRZZ
	13.9237
	45.6660
	57.0334
	19.2106
	18.7072
	52.5631
	135.1555
	69.7264
	130.4250



	HRZZ4
	15.1610
	49.7241
	53.0857
	20.9177
	20.3696
	57.2341
	147.1661
	75.9227
	150.2565



	HWZZ
	14.1116
	46.2823
	37.5954
	19.4698
	18.9596
	53.2725
	136.9795
	70.6674
	138.1438



	MHR
	9.9939
	32.7772
	38.6301
	13.7886
	13.4273
	37.7277
	97.0092
	50.0468
	93.0318



	MHR4
	10.2689
	33.6793
	44.4327
	14.1681
	13.7968
	38.7660
	99.6791
	51.4242
	100.9251



	MHWZZA
	11.8114
	38.7383
	44.4865
	16.2963
	15.8692
	44.5891
	114.6519
	59.1487
	117.1169



	MHWZZA4
	11.8257
	38.7852
	47.7931
	16.3160
	15.8884
	44.6430
	114.7906
	59.2202
	116.9716



	HWZZM
	12.7047
	41.6680
	46.8301
	17.5287
	17.0694
	47.9613
	123.3228
	63.6220
	119.6847



	HWZZMA
	12.4487
	40.8284
	47.2328
	17.1755
	16.7254
	46.9949
	120.8379
	62.3400
	117.8773



	HWZZMB
	12.5558
	41.1795
	47.2427
	17.3232
	16.8693
	47.3990
	121.8770
	62.8761
	122.6692



	HWZZMC
	12.5584
	41.1881
	47.2981
	17.3269
	16.8728
	47.4089
	121.9025
	62.8892
	121.4148



	HWZZMB2
	12.5731
	41.2365
	47.2202
	17.3472
	16.8926
	47.4645
	122.0455
	62.9630
	125.2797



	HWZZMC2
	12.5524
	41.1686
	46.4436
	17.3186
	16.8648
	47.3864
	121.8446
	62.8594
	125.6217



	HWZZM0
	12.3460
	40.4915
	37.7979
	17.0338
	16.5874
	46.6071
	119.8407
	61.8256
	114.0284



	MHR±
	10.0477
	32.9538
	38.8376
	13.8629
	13.4996
	37.9309
	97.5317
	50.3164
	93.58166



	MHR4±
	10.3241
	33.8602
	47.7931
	14.2442
	13.8709
	38.9742
	100.2145
	51.7004
	98.46074



	ZZA*
	12.0695
	38.7513
	44.4886
	16.4770
	16.2159
	44.6040
	114.6902
	59.8047
	112.7978



	HWZZM*
	11.2246
	37.2096
	41.8193
	15.4866
	14.7633
	42.3786
	106.6619
	56.2164
	106.5141



	FSDT
	6.7364
	22.0938
	25.3415
	-
	9.0508
	25.4307
	65.3900
	33.7345
	64.1452



	HSDT
	7.5832
	24.8711
	28.5271
	-
	10.1885
	28.6275
	73.6099
	37.9752
	75.5128







Processing time reported include symbolic computation. For calculation, a laptop computer with quad-core CPU@2.60 GHz. 64-bit operating system and 8.00 GB RAM was used.
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