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Abstract: Recent trend in the aeronautic industry is to introduce a novel prognostic solution for critical
systems in the attempt to increase vehicle availability, reduce costs, and optimize the maintenance
policy. Despite this, there is a general lack of literature about prognostics for hydraulic flight
control systems, especially looking at helicopter applications. The present research was focused on
a preliminary study for an integrated framework of fault detection and failure prognosis tailored
for one of the most common architectures for flight control actuation. Starting from a high-fidelity
dynamic model of the system, two different faults were studied and described within a dedicated
simulation environment: the opening of a crack in the coils of the centering springs of the actuator and
the wear of the inner seals. Both failure modes were analyzed through established models available
in the literature and their evolution simulated within the model of the actuator. Hence, an in-depth
feature selection process was pursued aimed at the definition of signals suitable for both diagnosis
and prognosis. Results were then reported through an accuracy-sensitivity plane and used to define
a prognostic routine based on particle filtering techniques. The more significant contribution of the
present research was that no additional sensors are needed so that the prognostic system can be
potentially implemented for in-service platforms.

Keywords: prognostics; hydraulic flight control; stability and command augmentation system;
feature selection; particle filtering

1. Introduction

Aeronautic systems are the most frequent cause of unpredicted interruptions of aircraft availability,
and a relevant fraction of failures can be traced down to the actuation devices. The development
of novel prognostic techniques for such systems, aimed at enabling condition-based maintenance
policies, is hence of significant interest within the optics of reducing aircraft downtimes and its
associated costs, optimizing the logistics of spare parts, and increase as much as possible the aircraft
availability. The latter is of particular interest for helicopters, which have been the subject of studies on
advanced health monitoring since the beginning of the research on prognostics [1]. Helicopters come
with some interesting characteristics that make them a natural choice for prognostics-related studies.
On-board equipment tends to degrade faster than their counterparts in the fixed-wing vehicle due to
the extremely stressful vibratory environment, resulting in lower values of mid-time-between failures.
The literature on prognostics and health management (PHM) on helicopters has so far been centered
around the structural monitoring of the power transmission elements, conveying the mechanical
energy produced by the engine to the main and tail rotors [2,3].

Little-to no references can be found on flight control systems, and most of the prognostics works
on flight control systems are made on electromechanical actuators [4,5]. While some information
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could be deducted from a few papers pursuing PHM for the hydraulic actuation technologies most
commonly adopted for large passengers’ aircraft [6,7], the architecture of the flight control actuator
usually employed in a helicopter is starkly different from those used in fixed-wing configurations.
As such, not only different failure modes may arise or not be present, while similar degradations could
lead to different effects on actuator behavior. At the same time, some features proven for fixed-wing
flight control actuators could be incomputable on helicopters due to the different sensors set usually
equipped on the actuation system [8].

We presented in this paper a first study on the prognosability of flight control systems for
helicopters, based on the classical configuration of hydraulic actuation with mechanical feedback
and stability and control augmentation systems (SCAS). At first, the architecture of the actuator
was introduced, and the function of each component underlined. A paramount step to pursue
a rigorous study of the system behavior under nominal and degraded health conditions is the
definition of a statistically representative database of data [9]. In the absence of a long and expensive
experimental campaign, we chased this objective through a high-fidelity physical model of the system,
whose underlying equations were experimentally validated, comprehensive of theoretically inferred
degradations model. Hence, extensive simulation campaigns counting more than 100 simulations
each were performed, both in healthy and faulty conditions, following the approach already used
by authors in [7]. It permitted to generate a statistically-representative number of simulations under
different, growing levels of degradation that granted to build a reference database for the prognostic
analysis. In order to pledge the statistical variance of the results, all of the possible uncertainty
sources (i.e., electrical disturbances on the servovalves’ current and LVDT’s voltage and uncertainties
on fluid properties and spring geometry) were characterized and inserted within the simulation
model. Hence, features for each considered fault mode were selected based on accuracy and sensitivity
criteria [10]. The selected features were used within a data-driven framework based on an advanced
declination of particle filtering to pursue fault detection and prognosis. Results were, hence, investigated
through traditional metrics of the PHM field.

2. System Configuration and Physical Model

2.1. System Configuration

The reference architecture for the study presented in this paper is depicted in Figure 1, where one
of the actuators controlling the collective and the cyclic pitch of the main rotor is represented. The pilot
input acted on the central linkage that established the position of the main control valves spool. The
main control valves commanded the tandem hydraulic actuator, which was connected to the stationary
swashplate, while the position feedback of the hydraulic actuator was purely mechanical and exercised
through the linkage. Two SCAS actuators acted on the linkage as well; controlled through two
servovalves, the SCAS actuators had limited authority over the position of the main actuator, and their
main use was to stabilize the helicopter when subjected to particularly demanding aerodynamic
conditions, such as low-height hovering, flight nearby vertical walls, heavy gusts environment,
and so forth. As shown in Figure 1, SCAS actuators had two centering springs, which kept the actuator
in a neutral position in the absence of command. Each SCAS was equipped with at least one LVDT
used to measure the rods’ positions and to close the control loop. Given this traditional architecture,
the avionics only collected the signals associated with the servovalve currents and the SCAS actuator
position. Any PHM system would have, hence, to deal with the low number of available signals.
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SCAS centering springs are two compression helical springs with a small spring index. As 
pointed out in [12], in these kinds of springs, fatigue cracks always nucleate at the surface and 
propagate under torsion in a direction inclined of 45° with respect to the spring wire axis. Therefore, 
the presence of a surface crack on the inside of one coil was considered; the examined shape is shown 
in Figure 2. 
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Figure 1. Reference configuration.

2.2. Physical Model

A high-fidelity physical model was developed, and a complex set of differential equations was
implemented in order to reproduce the dynamical behavior of the system. The aim was carried out
both in healthy and faulty conditions. The healthy physical model of the actuator was derived from
the experimentally validated set of equations provided by authors in [11]. The models describing the
presence and the progression of a few selected fault cases were instead defined ex-novo. In particular,
two of the most critical failure modes affecting the SCAS actuator were studied—the opening of a crack
in one of the centering spring and the wear of the inner seals of the hydraulic actuator.

2.2.1. Spring Cracking

SCAS centering springs are two compression helical springs with a small spring index. As pointed
out in [12], in these kinds of springs, fatigue cracks always nucleate at the surface and propagate under
torsion in a direction inclined of 45◦ with respect to the spring wire axis. Therefore, the presence of
a surface crack on the inside of one coil was considered; the examined shape is shown in Figure 2.
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The crack modified the stiffness of the spring that is given by the series of the N coils as,

1
K

=
N∑

i=1

1
Ki

=
Kh Kf

Kh + Kf
(1)

where Kh is the stiffness of (N− 1) healthy coils, and Kf is the stiffness of the faulty coil. Starting from
the maximum stress equation for springs [13]:

τmax =
F R r

J
+

F
A

(2)

where F is the force acting on the spring, R and r are, respectively, the radius of spring coil and
of the spring wire, J is the polar second moment of inertia, and A is the resistant area of the coil.
Combining Equation (2) with Hooke’s law, we obtained,

Kf =
τmax

δ
(

R r
J + 1

A

) (3)

the displacement δ is geometrically linked to the maximum shear strain γmax through the spring index
C and the shear modulus G.

τmax

G
= γmax =

δ

2 π R
2 C + 1

2 C2 (4)

No plastic deformation within the coil was assumed. Combining Equations (3) and (4), an explicit
expression for the stiffness of the faulty coil could be obtained.

Kf =
G (2C + 1)

2 C2πD
(

R r
J + 1

A

) (5)

As shown in Figure 2, the presence of a crack modified the polar second moment of area (J) that
could be computed by the linearity of integration and the resistant area (A). Then, the connection
between the depth of the crack and these two quantities could be expressed as,

ε = 4 arcsin
√

a
2 r

A = πr2
−Ac = πr2

−
r2

2 (ε− sin ε )
J = Js + Jv = (2 π− ε) r4

4 + r
2 sin sin

(
ε
2

)
(r− a)3

(6)

Please refer to Figure 2 and to Symbols section for the parameters involved in the above equation.
The reduction of the spring stiffness and the crack depth could, under these assumptions, be considered
directly proportional, as shown in Figure 3.
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two quantities. Crack growth was computed by Paris’ Law [15], combined with the Rainflow method; 
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The occurrence of wear of the actuator piston seals implied a progressive increase of the internal 
leakages. To model the thickness of the removed material (λ), we resolved to apply the well-known 
Archard’s law [16], which states λ(t) = Lୟ(t)β Aୡ  (8)

Figure 3. Spring stiffness in healthy and faulty state.

Considering the faulty coil as a beam subjected to a torsional strain, the stress intensity factor for
the edge of the crack could be computed as,

KIII =
π

2
τmaxFT(η)

√
r (7)

where η = a/(2 r) is the dimensionless crack depth, and FT(η) is a geometrical factor given by [14].
Reversing this equation and replacing KIII with its critical value associated with the brittle failure of
the coil, it was possible to compute the critical value of crack depth at which fracture occurred (ac).
Also, the critical value of crack depth at which plastic collapse occurred (ap) was computed. The final
value of crack depth associated with the failure conditions was, hence, the minimum between these
two quantities. Crack growth was computed by Paris’ Law [15], combined with the Rainflow method;
results obtained for one of the considered cases are shown in Figure 4.
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2.2.2. Seals Wear

The occurrence of wear of the actuator piston seals implied a progressive increase of the internal
leakages. To model the thickness of the removed material (λ), we resolved to apply the well-known
Archard’s law [16], which states

λ(t) =
La(t)
β Ac

(8)
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where La is the friction work, β is a constant of the employed materials, and Ac is the contact area
between the piston seal and the barrel. The internal leakages were supposed to be directly proportional
to the pressure differential across the two chambers ∆p. Considering both laminar and turbulent
leakage flows, the total flow loss due to leakage was,

Ql = Ki1∆p + Ki2

√∣∣∣∆p
∣∣∣sign(∆p) (9)

where Ki1 and Ki2 are two leakage coefficients, both function of λ(t).
Figure 5 shows that the cut-off frequency of the system is inversely proportional to leakage

coefficients. Critical values of these two coefficients were defined as the values at which the cut-off

frequency was 10% lower with respect to the healthy condition one.
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3. Scenario Definition and Simulation

In order to preserve the simulations variability and to allow a suitable statistical analysis,
all of the most significant uncertainty sources were described within the model. In particular,
Gaussian noise describing electrical disturbances was applied over the servovalve currents of the
SCAS and on the LVDT’s voltage on the secondary windings. The same was pursued for the supply
pressure, where it was introduced to simulate the fluctuations due to changes in the behavior of the
hydraulic system not present in the model. Moreover, the properties of the hydraulic fluid were
described as a function of the fluid temperature and air fraction, both variable within the simulations,
while geometrical tolerances were considered in the definition of the spring geometry and mechanical
behavior. Each above-mentioned variable was supposed to have a mean value and a variance, in order
to describe the uncertainty on the functions. The pdf (probability density function) chosen to describe
the distribution around the mean value was a normal one. Two main operating conditions were
considered: complete mission profiles and dedicated, and pre-flight on-ground test. Both conditions
are hereby detailed.

3.1. On-Ground Tests

To highlight the presence of faults, which might be difficult to observe during flights,
authors proposed the use of a dedicated set of commands to be provided to the actuators prior
to each flight [17]. Several tests were performed on the ground by applying the position command to
the SCAS actuator reported in Figure 6, in the absence of any pilot command.
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3.2. In-Flight Conditions

Mission profiles for helicopters are extremely variable and difficult to predict a-priori since
they heavily depend on the purpose of the mission, its objectives, and the environmental conditions
encountered while flying relatively close to the ground. A simplified model was employed in which
SCAS and pilot commands were combinations of the sinusoidal signals of Table 1, plus a possible
random variation of variance equal to 10% of the reported amplitude values. Although simplistic in the
description of the pilot input, this assumption could be considered realistic for SCAS actuators since
their main purpose was to enforce the horizontal stability of the vehicle, mostly against oscillatory
behaviors. Signals were combined, guaranteeing command continuity and preserving the frequency
of occurrence of each command. The external force was defined in a similar way, though it must be
noted that the influence of the external force over the behavior of the SCAS actuator was expected to
be minimal since its presence affects only the equilibrium of the main actuator.

Table 1. SCAS (stability and control augmentation systems) and pilot command.

Occurrence Command Amplitude (mm) Frequency (Hz)

2%
XSCAS 0 0

Xi 50 0.05

60%
XSCAS 0.3 2

Xi 0.5 1.5

30%
XSCAS 0.3 1.5

Xi 0.8 1

8%
XSCAS 2 0.8

Xi 10 0.8

4. Feature Selection

Feature selection is the process that aims to exploit a certain combination of signals to determine
the best possible indexes associated with the studied fault modes among a pool of candidates.
Theoretically, a feature should exhibit a high correlation with the on-going fault severity, a high value
of signal-to-noise ratio, and low dependency on all the other possible fault modes. More than 100
simulations were performed for eight growing levels of fault severity, ranging from health conditions
to catastrophic failure, all while considering the presence of external disturbances and noise, as defined
in Section 5. From the preliminary analysis conducted in this study, only two out of three available
signals were proven to be useful to pursue this aim, namely the servovalve currents and the SCAS
actuator position. The main actuator position was largely unaffected by issues occurring within the
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SCAS system, so this signal was not considered. By focusing on the remaining two signals, the effects
of their introduction within the system could be observed. In particular, the opening of a crack in
the actuator spring caused an asymmetry in the elastic force applied to the actuator, which had to be
compensated by continuously operating the servovalve, whose currents, hence, exhibited a growing
null-bias, as shown in Figure 7a. Seals wear, on the other hand, caused a reduction of the servo system
gain due to the loss of hydraulic energy, as depicted in Figure 7b.
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healthy and worn seals conditions.

These considerations laid down the physical basis to define a significant number of feature
candidates, reported in Table 2, both for on-ground (G) and in-flight (I) simulated data sets.

Table 2. SCAS and pilot command.

Feature Description

G1 mean(i) Current mean value
G2 (max(x)-set)/set % displacement overshoot
G3 i/x Current/displacement
I1 abs(fft(x))(2Hz) Displacement FFT amplitude at 2 Hz

I2 mean(xcorr(i,ih)) Mean value cross-correlation with
respect to baseline (current)

I3 mean(xcorr(x,xh)) Mean value cross-correlation with
respect to baseline (displacement)

I4 mean(xcorr(x)) Displacement auto-correlation
I5 rms(abs(fft(x))) RMS displacement FFT amplitude
I6 rms(x) Displacement RMS
I7 rms(i)/rms(x) RMS current/RMS displacement

Defining the feature candidates, a preliminary analysis was done to eliminate redundant elements
from the pool by applying the Kullback–Leibler divergence to each possible couple of candidates [18].
As a result, candidates I5 and I6 were deemed redundant, and I5 removed due to complexity issues.

To select the best features from the considered pool of candidates, four metrics were considered.
The correlation between each candidate and the fault severity, the signal-to-noise ratio, the accuracy
or probability of a correct response, as defined in [19], and the average severity at detection was
obtained by applying a data-driven fault detection algorithm, presented in Section 5, to the considered
degradation paths. The results of the feature selection process are depicted in Figure 8, where the
candidates are ranked as a function of the severity at detection, accuracy, and correlation coefficient.
The radius of each data point was proportional to the signal-to-noise ratio.
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Figure 8. Feature selection results: (a) Spring cracking; (b) Seal wear.

Therefore, the best features for spring cracking under the hypothesis of the presented study were
G3 (on-ground) and I2 (in-flight), while for seals wear, they were G3 (on-ground) and I6 (in-flight).
G3 was affected by both fault modes but showed opposite behavior on their occurrences (it grew for
crack openings, decreased in response to leakages). As such, it was considered suitable in the first
approximation under the hypothesis of the absence of multiple concurrent degradations.

5. PHM Algorithm

5.1. Fault Detection

A purely data-driven approach was chosen to pursue fault detection. Following this method,
the selected features were continuously computed and compared to baseline conditions: the fault was
declared when the 95% of the running distribution of one of the features overcame the 95th percentile
of its baseline distribution defined for health conditions. Although simple, this technique is widely
reported in dedicated literature for its robustness, simplicity of implementation, and extremely low
computational requirements. As already shown in Figure 8, the average fault severity at detection over
the considered degradation path was 25% of the critical level for the crack opening case and 9% for the
wear of the piston seals.

5.2. Failure Prognosis

The final aim of any PHM algorithm was to predict the behavior of the remaining useful
life (RUL) of the faulted component, meaning to provide probability distribution of the possible
time of failure coupled with indication on the risk of failure. We pursued this goal through
an advanced declination of particle filtering, whose complete logic is described in [20]. Particle
filters or Sequential-Monte-Carlo techniques are a class of algorithm based on Bayesian inference
suitable for non-linear tracking problems affected by non-Gaussian noise [21,22], which have, hence,
found a natural application in prognostics [23]. The prognostic framework takes advantage of a
nonlinear process (fault/degradation) model, a Bayesian estimation method using particle filtering and
real-time measurements. The estimate of the fault severity is achieved by performing two sequential
steps—prediction and filtering. The prediction uses both the knowledge of the previous state estimate
and the process model to generate the a priori state pdf estimate for the next time instant,

p
(
x0:t

∣∣∣y1:t−1

)
=

∫
p
(
xt

∣∣∣yt−1

)
p
(
x0:t−1

∣∣∣y1:t−1

)
dx0:t−1 (10)
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Particle filters are used to numerically solve Equation (10) in real by approximating the state pdf using
samples or “particles” having associated discrete probability masses (“weights”) as,

p
(
xt

∣∣∣y1:t

)
≈ w̃t

(
xi

0:t

)
δ
(
x0:t − xi

0:t

)
dx0:t−1 (11)

where xi
0:t is the state trajectory, and y1:t are the measurements up to time t. Weights are,

hence, resampled once the features computed from the field are made available. We employed
a fast and simple resampling scheme based on sequential importance resampling, which updates
the weights based on the likelihood. Long-term predictions were then performed by iterating the
prediction step, Equation (11), until meeting failure conditions. It was, hence, possible to estimate the
distribution of the remaining useful life and compute the associated risk of failure, as proposed in [24].
An example of the output provided by such a framework is reported in Figure 9, where the algorithm
was applied to the case of a crack in the actuator spring. Performances of the prognostic algorithm
were evaluated through the traditional metrics proposed in [25]. In particular, the relative accuracy
(RA) and cumulative relative accuracy (CRA), both derived from the α-λ analysis, were evaluated.
These metrics showed prognostics’ effectiveness for both faults. The relative accuracy for the opening
of a crack in the spring coils never fell below 80% over the course of the whole degradation process,
while the one related to the wear of the seals always remained over 90%. The final value of CRA for
the crack opening was 86%, while for the worn seals was 94%. Both results suggested confidence in
the selected features, which provided a reliable forecast of the RUL over the performed simulations,
provided that more fault cases need to be investigated to assess their robustness.
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6. Conclusions

There are presently no papers in literature explicitly dedicated to flight control actuators for
helicopters, despite the criticality of this component. Under the hypothesis of only one fault occurring at
a time, this paper presented a few features suitable for use to detect the presence of a crack in the SCAS
actuators springs and the wear of the inner seals of the same actuators. Moreover, those same features
proved to be suitable for prognostics analysis. Although more fault modes need to be investigated to
fully assess its merits, the proposed systems provided encouraging results towards the opportunity of
realizing a comprehensive PHM system for flight control actuators without the need for additional
sensors. Moreover, the structure of the study is easily extendable to the introduction of other fault
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modes. Further developments would consist of injecting additional faults (e.g., backlash in linkage’s
hinge), evaluating possible fault classification schemes, and possibly corroborating theoretical results
through experimental tests.
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Abbreviations

CRA Cumulative relative accuracy
FFT Fast Fourier Transform
LVDT Linear Variable Differential Transformer
PHM Prognostics and health management
pdf Probability density function
RA Relative accuracy
RMS Root Mean Square
RUL Remaining useful life
SCAS Stability and command augmentation system

Symbols

a Depth of crack, m
A Area, m2

C Spring index R/r, dimensionless
D Diameter of the spring coil, m
F Axial force action on the spring, N
FT(η) Geometrical factor, dimensionless
G Shear modulus, Pa
i Current, A
J Polar second moment of area, m4

K Spring stiffness, N/m
Ki1 First leakage parameter, m3/s/Pa
Ki2 Second leakage parameter, m3/s/

√
Pa

KIII Stress intensity factor, Pa
√

m
La Friction work, J
N Number of spring turns, dimensionless
Ql Volumetric flow rate, m3/s
R Radius of the spring coil, m
r Radius of the spring wire, m
x Displacement, m
β Experimental material parameter, N/m
γ Shear strain, dimensionless
∆p Differential pressure, Pa
δ Spring displacement, m
ε Opening angle of the crack, rad
η Dimensionless crack depth a/(2r)
λ Thickness of removed material, m
τ Shear stress, Pa
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