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Abstract: In view of the upcoming missions to obtain resources from the lunar surface, it is essential to
have highly-accurate navigation systems to locate surface vehicles in shadowed regions. In response,
we propose a dual-satellite lunar navigation system that is based on a multi-epoch double-differenced
pseudorange observations (MDPO) algorithm. We used multi-epoch observations in a new way that
reduces the number of navigation satellites required. In addition, the double-differenced pseudorange
is used in order to eliminate the bias effects of the satellite and user clocks that conventional
dual-satellite navigation algorithms did not fully take into account. Furthermore, a pre-known lunar
digital elevation model is used to reduce the number of observations. The theoretical behavior of the
MDPO algorithm was confirmed by simulation and the results indicate that user position accuracy
can be several tens of meters with 95% probability (2drms) within a one-minute observation.
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1. Introduction

The estimation of a rover vehicle’s position on the lunar surface is one of the key technologies
for the successful operation of the rover, and it is also important for mapping resources and making
scientific observations on the lunar surface. From an operational perspective, data concerning the
position of the rover are vitally important in order to plan safe paths for the rover to take. From resource
mapping and scientific observation perspectives, the position of the rover must be known in order
to assign observed objects to proper locations on the lunar map. Some studies have reported that
positions on the lunar surface must be known within an accuracy of 100 m to support both purposes [1].

It is well-known that valuable resources, including water ice and volatile compounds are located
in the permanently shadowed regions (PSRs) on the lunar surface. Because of the lack of illumination
by sunlight in the PSRs, navigation methods that use visual images, such as visual simultaneous
localization and mapping (SLAM), will be constrained significantly if not completely invalidated.
Therefore, some alternative navigation methodology is needed to enable long and efficient exploration
of the PSRs. From another perspective, in order to reduce the risk associated with lunar exploration
missions, the use of nano-rovers and/or micro-rovers is being discussed [2]. Since the locations of
various resources are not known precisely, wide-range exploration by multiple small rovers must
be conducted to identify the locations of resources precisely. Therefore, multiple-user navigation
is urgently required. Furthermore, considering that the budget for early-stage lunar exploration is
limited, we reason that a low-cost system using microsatellites has a great potential to accelerate lunar

Aerospace 2020, 7, 122; doi:10.3390/aerospace7090122 www.mdpi.com/journal/aerospace

http://www.mdpi.com/journal/aerospace
http://www.mdpi.com
http://dx.doi.org/10.3390/aerospace7090122
http://www.mdpi.com/journal/aerospace
http://www.mdpi.com/2226-4310/7/9/122?type=check_update&version=2


Aerospace 2020, 7, 122 2 of 19

missions. In summary, our target in this study is a low-cost micro-sized lunar navigation satellite
system that can provide precise locations, i.e., within 100 m, for multiple small rovers.

To date, navigation technologies for the shadowed regions have been studied extensively.
One study investigated the use of rovers with visual sensor-based navigation using a stereo camera
with artificial light to explore the PSRs [3,4]. However, considering that a huge amount of power
(calculated to be 864 W based on [3,4]) is required to provide sufficient light to illuminate a broad and
continuous area, this approach is limited to large-scale rovers, i.e., rovers that weigh several hundred
kilograms. Another study was conducted that considered the use of another type of visual sensor-based
navigation, i.e., laser triangulation systems, on rovers to identify terrain profiles in the shadowed
regions [3]. A laser triangulation system effectively uses its own light source by limiting the sensing
area, and its power consumption can be reduced to a few watts by carefully selecting short distances,
i.e., a few meters [3]. However, such applications have an inherent problem in that they cannot
determine distances if the lunar surface is flat and repetitive and if there are no landmarks that can be
used to assess distances [5]. Therefore, given the uncertainty of lunar terrains, there is significant risk
associated with using visual sensor-based methods that have limited sensing ranges. Another study
investigated a combination of the rover’s inertia accelerometers and star tracker measurements for
navigating rovers on the lunar surface [6]. In order to achieve 100-m position accuracy with this
method, theoretically, 11.8-arcsecond user attitude determination is required, which is not feasible
in the presence of sensor alignment errors. Another recent study introduced the idea of deploying
orbiters in Halo orbits to establish a lunar global navigation satellite system (Lunar GNSS) analogous
to Earth GNSS [7,8]. The Lunar GNSS proposed by these previous studies was based on time of
arrival (TOA), i.e., pseudorange measurement, and it requires that at least four satellites be visible
all the time, which inevitably requires a large number of satellites and, consequently, a large cost,
but it only requires users to carry a passive ranging receiver. In an attempt to further reduce the
costs of the system, some researchers have investigated the reduction of the number of satellites.
Navigation technologies that use fewer than two satellites with a passive user receiver have been
discussed extensively in the field of Earth GNSS applications [9]. One of these studies used angle
of arrival (AOA) data and reduced the number of navigation satellites down to one [10]. However,
this algorithm provides low position accuracy because a very small error in the AOA measurement
results in a large error in the user position; i.e., a 1-degree error in the AOA for a distance of a few
hundred km between the satellite and the user results in an error of a few kilometers in the position
on the lunar surface. Another algorithm uses time difference of arrival (TDOA or single-differenced
pseudorange) and/or frequency difference of arrival (FDOA, or single-differenced Doppler) to reduce
the number of navigation satellites to a minimum of two [11]. Moreover, one study successfully showed
that single-differenced Doppler using a static reference station, known as Law of Cosines (LOC),
can provide a high-accuracy position with as little as one satellite on the lunar surface at the specified
condition with several tens of minutes observation [12]. Furthermore, the authors of reference [12]
also proposed an algorithm that uses a combination of range and Doppler measurements with a static
reference station, known as Joint Doppler and Ranging (JDR), and achieved 3D positioning with as
little as one satellite [13]. Basically, these previous studies [7–13] are based on the assumption that
both the satellite and the user system or either the satellite system or the user system can provide
a stable clock and/or a stable frequency without an offset (bias), and the estimation algorithms do not
have to account for those errors. Such approaches also require the satellites and/or the user to carry
a highly stable clock source, such as an atomic clock, in order to maintain a sufficiently small clock
bias and frequency bias between bias estimations by ground segments (i.e., ground stations on the
earth); otherwise the accuracy of the user position deteriorates immediately. In addition, the target of
our study comprises a micro-sized satellite and rover systems whose power generation capability is
limited by size and consequently, not compatible with the deep space atomic clock (DSAC). In this
case, the best current clock technology that is compatible with the micro-sized satellite is the Chip
Scale Atomic Clock (CSAC). As reported in [14], while CSAC can suppress the frequency instability
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of the clock down to about 1 ppb for 24 h, CSAC incurs several tens to hundreds of meters of error
in pseudorange observation after 24 h, which further increases over time. As a result, using CSAC
inevitably requires pseudorange-based navigation systems to conduct frequent estimations of the
satellite and/or user clock bias using earth ground stations, which is very challenging in Lunar GNSS
because of the limitation of the availability and number of earth ground stations that are capable of
Earth–Moon distance communication. Another approach to eliminating the biases of the satellite and
user clocks at the same time is to use two-way ranging between the user and the satellite [15]. However,
this requires an active ranging operation between the satellite segment and the user segment (the user
must send a radio signal to the satellite, and the satellite has to send the received radio signals back to
each user separately), and this consequently imposes an extra burden and cost on the user segment as
well as on the satellite side. In order to reduce the total cost of the system, including the user segment,
a method that uses passive ranging is ideal, especially for the multiple rover missions that will occur
in the future. Contrary to these previous studies, our research uses multi-epoch double-differenced
pseudorange observations (MDPO), which is a passive system using a static reference station, and it
works while accounting for the instability of both the satellite and user clocks. The comparison of the
proposed method with other conventional methods is summarized in Table 1.

Table 1. Benchmark of navigation systems for lunar shadowed region exploration.

Method User (Rover)
Segment Burden

Space (Satellite)
Segment Burden

Ground
Segment Burden

Visual Sensor-based
Navigation

Visual Sensor-based
navigation does not work
when the lunar surface is
flat with no landmarks.

- -

Accelerometers and Star
Tracker Navigation

Sensor alignment precision
becomes outrageous to

achieve high
position accuracy.

- -

Lunar Global Navigation
Satellite Systems
using TOA

Use a passive
ranging receiver.

At least four satellites in
view with a stable

satellite clock
are required.

Frequent satellite clock
bias estimation by the

ground segment
is required.

Single Satellite
AOA Navigation

Use a passive ranging
receiver. User position

accuracy is very sensitive
to AOA error.

Single satellite in view
with a stable satellite

clock is required.

Frequent satellite clock
bias estimation by the

ground segment
is required.

Dual Satellite
TDOA/FDOA Navigation

Use a passive ranging
and/or Doppler receiver.

Two satellites in view
with a stable satellite

clock and/or frequency
are required.

Frequent satellite clock
bias estimation by the

ground segment
is required.

Law of Cosines

Use a passive Doppler
receiver with a static

reference station.
The frequency of the

receiver must be stable.

Single satellite in view is
required, with no need

for a stable
satellite frequency.

No need for frequent
satellite clock bias
estimation by the
ground segment.

Joint Doppler and Ranging
(single satellite case)

Use a passive ranging and
Doppler receiver with

a static reference station.
The clock and frequency of
the receiver must be stable
or must be compensated

by two-way ranging.

Single satellite in view is
required, with no need

for a stable satellite clock.

No need for frequent
satellite clock bias
estimation by the
ground segment.



Aerospace 2020, 7, 122 4 of 19

Table 1. Cont.

Method User (Rover)
Segment Burden

Space (Satellite)
Segment Burden

Ground
Segment Burden

Two-way Ranging
based Navigation

Active ranging between
the satellite and user

is required.

Two satellites in view are
required, with no need

for a stable satellite clock.

No need for frequent
satellite clock bias
estimation by the
ground segment.

Dual Satellite
MDPO Navigation
(This research)

Use a passive ranging
receiver with a static

reference station.

Two satellites in view are
required, with no need

for a stable satellite clock.

No need for frequent
satellite clock bias
estimation by the
ground segment.

In this study, we target mobile applications such as lunar rovers as users, which requires
observation periods to be small. Since a method using only Doppler observation needs several tens of
minutes of observation to provide a high user position accuracy [12], pseudorange observation data
must be used. Besides this, regarding biases of the satellite and user clocks, methodologies using
TOA or TDOA (pseudorange or single-differenced pseudorange) are insufficient because they were
not designed to cope with both the satellite and user clock biases at the same time. Instead, in this
study, double-differenced pseudorange was used to remove the bias of both the satellite and user
clocks from the estimation (note that the double-differenced pseudorange is explained further in the
following section). Moreover, our proposed method does not use frequency observation and uses
the double-differenced pseudorange only, which can contribute to making the pseudorange receiver
hardware design as simple as possible. Furthermore, in order to reduce the number of satellites,
we introduce multi-epoch observations that use pseudorange measurements from multiple epochs
(Figure 1).Aerospace 2020, 7, x FOR PEER REVIEW 5 of 20 
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Figure 1. Overview of the MDPO concept in comparison with a conventional pseudorange-
based method.

This paper consists of the following sections. In Section 2, the algorithm of MDPO is formulated
and the expected accuracy of user position is discussed. In Section 3, the theoretical behavior of MDPO
is confirmed by numerical simulation, along with achievable user position accuracy. Section 4 provides
our conclusions.
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2. Algorithm

2.1. Multi-Epoch Double-Differenced Pseudorange Observations (MDPO) Algorithm

In a pseudorange-based algorithm, the pseudorange (ρ) observation between one user and one
satellite is presented by the following equation:

ρS
R(ti) = rS

R(ti) + c
(
dτR(ti) − dTS

(
ts
i

))
+ωS

R(ti) (1)

rS
R(ti) =

√(
xS

(
ts
i

)
− xR(ti)

)2
+

(
yS

(
ts
i

)
− yR(ti)

)2
+

(
zS

(
ts
i

)
− zR(ti)

)2
(2)

where
(
xS

(
ts
i

)
, yS

(
ts
i

)
, zS

(
ts
i

))
is the satellite position at the time of signal transmission ts

i ,
(xR(ti), yR(ti), zR(ti)) is the user position at the time of signal reception ti, c is the speed of light, dτR is
user clock bias, dTS is satellite clock bias, and ωS

R is receiver observation error. In this study, we assume
that receiver observation error ωS

R follows a white Gaussian distribution. The coordinate frame of
the satellite position and user position is based on a topocentric frame that is a Moon-fixed frame,
with the origin of the frame being at the user position: i.e., the x-axis points local east, the y points local
north and the z-axis points local up (East-North-Up). The equations are formulated using the relative
position between the satellite and the user, and both the satellite and user positions have a constant
rotational offset with respect to the Moon-centered inertial frame.

A method called double difference is used to remove both the satellite and user clock biases from
estimation parameters, by subtracting four pseudorange observations between two users (user1, user2)
and two satellites (satellite1, satellite2), as shown in Equations (3)–(7):

ρ1
1(ti) = r1

1(ti) + c
(
dτ1(ti) − dT1

(
t1
i

))
+ω1

1(ti) (3)

ρ2
1(ti) = r2

1(ti) + c
(
dτ1(ti) − dT2

(
t2
i

))
+ω2

1(ti) (4)

ρ1
2(ti) = r1
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(
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(
t1
i
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+ω1

2(ti) (5)

ρ2
2(ti) = r2

2(ti) + c
(
dτ2(ti) − dT2

(
t2
i

))
+ω2

2(ti) (6)

∆∇ρ(ti) = ρ1
1(ti) − ρ

2
1(ti) −

(
ρ1

2(ti) − ρ
2
2(ti)

)
= r1

1(ti) − r2
2(ti) −

(
r1

2(ti) − r2
2(ti)

)
+

ω1
1(ti) −ω

2
1(ti) −

(
ω1

2(ti) −ω
2
2(ti)

)
= ∆∇r(ti) − ∆∇ω(ti)

(7)

where ∆∇ denotes double difference. In the double difference method, user2 is used as a reference
station whose position is fixed and known, and the position of user1 is estimated in relation to the
position of user2; i.e., user2′s position is referenced as the origin of navigation (0,0,0). In a lunar
navigation system, the lander can be used as a reference station (user2), and its geodetic position is
used as the origin of navigation. Note that the geodetic position of the lander must be obtained in
advance of the start of the rover navigation by other means, such as identification by satellite image.
Hereafter, the rover corresponds to user1 and the lander corresponds to user2.

In the MDPO algorithm, multiple double-differenced pseudorange observations,
i.e., ∆∇ρ(tk), . . . , ∆∇ρ(tk+N−1), are obtained from multiple epochs, i.e., tk − tk+N−1, where N is the
number of observed epochs, and k is the epoch number at which the estimation starts. Note that
the rover position must be fixed during multi-epoch observations taken in place in order to keep
the number of estimation parameters less than the number of observation equations. Otherwise,
the rover position cannot be identified deterministically by the MDPO algorithm and the rover position
accuracy changes depending on the quality of other navigation information used during multi-epoch
observations. Hereafter, (xR(tk), yR(tk), zR(tk)) represents a fixed rover position during tk − tk+N−1.

The standard approach to solving nonlinear systems, such as Equation (7), is known as the
Newton–Raphson method, which is a general iterative method that uses linear regression to find the
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root of a function. The idea is to start with rough estimates of the rover position and refine them
in stages so that the estimates fit the observations better. First, the range is calculated on an initial
estimated value of the rover position X0

R(tk) =
(
xR

0(tk), yR
0(tk), zR

0(tk)
)
:

rs 0
R (ti) =

√(
xS

(
ts
i

)
− xR0(tk)

)2
+

(
yS

(
ts
i

)
− yR0(tk)

)2
+

(
zS

(
ts
i

)
− zR0(tk)

)2
(8)

i = k, . . . , k + N − 1

Practically, the previous position of the rover can be used as an initial guess, i.e., X0
R(tk) = XR(tk−1).

Then, the double-differenced range on the initial estimated value of the rover position is calculated as

∆∇r0(ti) = r1 0
1 (ti) − r2 0

1 (ti) −
(
r1 0

2 (ti) − r2 0
2 (ti)

)
(9)

We also define a new parameter R:

R(ti) = ∆∇ρ(ti) − ∆∇r0(ti) (10)

where R is the difference between the measured double-differenced pseudorange value and
the calculated double-differenced range. By substituting Equation (10) into Equation (7),
the difference between the true double-differenced range and the calculated double-differenced
range, i.e., ∆∇r(ti) − ∆∇r0(ti), can be described:

∆∇r(ti) − ∆∇r0(ti) = R(ti) + ∆∇ω(ti) (11)

On the other hand, the residual error between the true double-differenced range and the calculated
double-differenced range can be written using a Taylor series approximation as:

∆∇r(ti) − ∆∇r0(ti) =
∂∆∇r(ti)

∂x
(∆x) +

∂∆∇r(ti)

∂y
(∆y) +

∂∆∇r(ti)

∂z
(∆z) (12)

∆x = xR(tk) − xR
0(tk) (13)

∆y = yR(tk) − yR
0(tk) (14)

∆z = zR(tk) − zR
0(tk) (15)

By substituting Equation (11) into (12), the following equation is obtained:

R(ti) =
∂∆∇r(ti)

∂x
(∆x) +

∂∆∇r(ti)

∂y
(∆y) +

∂∆∇r(ti)

∂z
(∆z) − ∆∇ω(ti) (16)

Equation (16) for multiple epochs tk − tk+N−1 can be written at once using the following matrix:

R = G∆X + w (17)

R =
[

R(tk) · · · R(tk+N−1)
]T

(18)

∆X = [∆x, ∆y, ∆z] (19)

w =
[
−∆∇ω(tk) · · · −∆∇ω(tk+N−1)

]T
(20)

G =


∂∆∇r(tk)

∂x
∂∆∇r(tk)

∂y
∂∆∇r(tk)

∂z
...

...
...

∂∆∇r(tk+N−1)
∂x

∂∆∇r(tk+N−1)
∂y

∂∆∇r(tk+N−1)
∂z

 (21)
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where G is known as an observation matrix. By solving the least-square problem that minimizes the
residual error |R−G∆X|, an estimated value of ∆X, defined as ∆̂X, is obtained:

∆̂X =
(
GTG

)−1
GTR (22)

Then, a new estimated value X1
R(tk) =

(
xR

1(tk), yR
1(tk), zR

1(tk)
)

is given by Equation (23),
which provides a better fit to the observation.

X1
R(tk) = X0

R(tk) + ∆̂X (23)

This estimation process continues (X1
R, X2

R) until the number of iterations reaches the designed
value, i.e., n, and then final estimated value Xn

R(tk) is acquired. To estimate the rover’s three- dimensional
position XR = (xR, yR, zR), the number of multi-epoch observations must be larger than 3 (N > 3).

Next, we characterize the quality of the estimates. We can write an expression for the error as

∆̂X − ∆X =
(
GTG

)−1
GT(G∆X + w) − ∆X =

(
GTG

)−1
GTw (24)

Suppose that w follows a white Gaussian distribution that has a mean value of zero and covariance
matrix C: the covariance of ∆̂X − ∆X, defined as P, is given by

P =
(
GTG

)−1
GTCG

(
GTG

)−1
(25)

The expression becomes much simpler if the components of w, i.e., −∆∇ω(ti), are uncorrelated
and have an identical variance, i.e., C = σ2

∆∇ωI:

P = σ2
∆∇ω

(
GTG

)−1
(26)

where σ2
∆∇ω is the variance of double-differenced receiver observation errors. In GNSS terminology,(

GTG
)−1

is known as the dilution of precision (DOP) matrix, which is used to specify error propagation as
a mathematical effect of navigation satellite geometry on positional measurement precision. We define
the DOP matrix and its elements σDOP as

DOP =


σDOP 11 · · · σDOP 1N

...
. . .

...
σDOP N1 · · · σDOP NN

 =
(
GTG

)−1
(27)

where σDOP is elements of DOP. By substituting Equation (27) into Equation (26), theoretically,
the achievable rover position error, i.e., ∆̂X − ∆X, at a time of tk is given by

UPE(tk) =
∣∣∣∆̂X(tk) − ∆X(tk)

∣∣∣ =
√√√√ N∑

j=1

(
σDOP jj

)2
× σ∆∇ω (28)

where UPE represents the distance between the rover’s true position and an estimated rover position.
We define GDOP as

GDOP =

√√√√ N∑
j=1

(
σDOP jj

)2
(29)

Then Equation (28) is written as

UPE(tk) = GDOP× σ∆∇ω (30)
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As mentioned in the previous section, we assume receiver observation errors follow a normal
distribution with a zero mean (i.e., Gaussian white noise). As such, UPE also follows a 1-D Gaussian
distribution, and 95 percent of it lies inside the interval from −2s to +2s, where s is the standard
deviation. As a performance index, this research uses 2drms (2s), which is commonly used in
two-dimensional position estimation problems. Furthermore, in the MDPO algorithm, the UPE value,
as well as the GDOP value, changes over time, so an indicator that represents the overall UPE over the
course of the mission time is needed. For this purpose, Total UPE is newly defined, along with Total
GDOP, as below:

Total UPE =

√√
1
m

m∑
UPE(tk) = Total GDOP× σ∆∇ω (31)

Total GDOP =

√√
1
m

m∑
GDOP (32)

where m is the number of MDPO estimations over the course of the mission time. Note that σ∆∇ω is
independent of time and can be excluded from the square root without losing generality. As seen in
Equation (31), Total UPE also follows a 1-D Gaussian distribution. Therefore, 2drms can also be used
as a performance index for Total UPE.

2.2. Two-Dimentional MDPO Algorithm Using a Pre-Known User Altitude

It is known that when a user altitude zR is known by other means, ∆z in Equation (12) becomes
zero and can be eliminated [16]. Accordingly, the z-spatial distribution ∂∆∇r

∂z can be removed from G in
Equations (17)–(21):

R = G∆X + w (33)

R =
[

R(tk) · · · R(tk+N−1)
]T

(34)

∆X = [∆x, ∆y] (35)

w =
[
−∆∇ω(tk) · · · −∆∇ω(tk+N−1)

]T
(36)

G =


∂∆∇r(tk)

∂x
∂∆∇r(tk)

∂y
...

...
∂∆∇r(tk+N−1)

∂x
∂∆∇r(tk+N−1)

∂y

 (37)

We call this method two-dimensional (2D) MDPO. This helps the MDPO algorithm achieve
a smaller GDOP value in the same or a shorter observation period and, as a result, provide a better
user position accuracy compared with three-dimensional estimation. Therefore, in this study, only the
2D MDPO algorithm is used hereafter. In 2D MDPO, the number of multi-epoch observations can be
reduced to as low as 2 (N = 2).

In a lunar navigation problem, rover altitude zR can be pre-estimated using a lunar digital
elevation model (DEM) [17,18]. As shown in Equation (38), the DEM is a function of longitude
and latitude, which are not known at the start. The estimation of sequences proceeds in the
following sequence: First, X0

R(tk) is estimated using the rover position before its relocation,
i.e., XR(tk−1) = (xR(tk−1), yR(tk−1), zR(tk−1)). Then, a new estimated rover position, i.e., X1

R(tk),
is estimated as (xR

1(tk), yR
1(tk), zR(tk−1)) by Equation (23). Note that zR is not updated at this moment.

After that, the altitude of the rover is updated to zR
1(tk) using xR

1(tk) and yR
1(tk) by Equation (38).

The calculation continues until the number of iterations reaches the designed value, i.e., n.

zi
R(tk) = zR DEM

(
xi

R(tk), yi
R(tk)

)
(38)
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Here, zR DEM is a lunar DEM model that is a function of latitude and longitude. Note that, according
to Equation (38), when zR changes along with xR and yR, errors in the X-Y position induces errors in the
Z position, which ultimately induces errors in estimated xR and yR according to Equation (12), and as
a result, Total UPE deteriorates stochastically. In our research, we do not apply the case in which the
rover altitude changes too rapidly, such as the rover dropping off the cliff or roving on steep slopes.
In that case, Total UPE will not deteriorate too significantly, which was confirmed by the simulations
in the following section.

2.3. Other Systematic Errors

In an actual situation, with the presence of other systematic errors shown in this section,
the discussed achievable Total UPE in Equation (31) will increase. In this section, the theoretical
background of systematic errors as well as their impact on UPE is discussed. As the impact of such
errors on UPE cannot be predicted analytically, we used a numerical simulation, reported in the
following section, to quantitatively determine impact.

2.3.1. Satellite Orbit Determination Error

In the algorithm equations, the pseudorange ρ is calculated on the basis of pre-estimated
satellite positions Xs =

(
xS, yS, zS

)
. In an actual situation, satellite orbit determination is not perfect,

and pre-estimation of the satellite position entails some error relative to true positions (∆XS
sat OD ).

According to a general satellite orbit determination process, the error is decomposed along with
the satellite velocity direction (Along), satellite zenith direction (Radial), and cross-track direction
(Cross). In this simulation, orbit determination error is defined along with the Along, Radial, and Cross
directions and then converted into a user frame:

∆XS
sat OD(ti) = T × (∆Along(ti), ∆Radial(ti), ∆Cross(ti)) (39)

where T is a coordinate transformation matrix from Along, Radial, and Cross to a topocentric frame.
The definition of the topocentric frame is explained in the previous chapter. In multilateration theory,
only satellite orbit determination error in the line-of-sight direction (rover to satellite) matters, and other
directions have almost no impact on rover position error. In the MDPO algorithm, line-of-sight direction
error is eliminated by the Double Difference method, along with the satellite, the rover, and the lander
clock biases. Hence, basically, satellite orbit determination error has no impact on the rover position
error in the MDPO algorithm.

2.3.2. Time Tag Error

In the estimation process of the satellite position at a given time, the time tag of the receiver is
used to propagate estimated satellite positions. In common GNSS systems, the receiver time tag is
calibrated by a satellite clock via a navigation message. However, there is ambiguity in the signal
traveling between satellites and the rover. As a result, the receiver time tag entails continuous bias
error. As such, an estimated satellite position Xs =

(
xS, yS, zS

)
is deteriorated by the receiver clock bias

dτR(ti), and has some error relative to the true positions (∆XS
time tag), such as

∆XS
time tag(ti) =

(
Vx

S
R(ti), Vy

S
R(ti), Vz

S
R(ti)

)
× dτR(ti) (40)

where
(
Vx

S
R, Vy

S
R, Vz

S
R

)
is a pre-estimated satellite relative velocity in a topocentric frame. Basically,

satellite position error induced by a time tag error is eliminated from the estimation by the double
difference method in a manner similar to the way in which satellite orbit determination error is removed.
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2.3.3. DEM Information Error

As reported in [17,18], current lunar DEM information is developed from remote-sensing data
and, as a result, is not perfect. Therefore, the DEM error ∆zR DEM defined in Equation (41), which is
the difference between the true rover vertical position zR true and a pre-given rover vertical position
zR DEM, leads to position estimation error in the X–Y plane (xR, yR). The impact of DEM model error on
X–Y position estimation accuracy appears stochastically, and its value changes depending on satellite
position and velocity in relation to the rover and lander position.

∆zR DEM = zR true − zR DEM (41)

2.3.4. Other System Errors

In the general context of navigation satellite systems, other system errors need to be considered
such as ionospheric delay, tropospheric delay, antenna phase characteristics, and multi-pass. However,
such errors are negligible or not detrimental to rover position estimation in lunar surface navigation
systems. Ionospheric delay and tropospheric delay are deemed negligible. Antenna phase characteristics
appear in the same way and are almost negligible. Multi-pass is much smaller than earth’s surface
because there are fewer high objects in the surroundings. Therefore, these errors can be deemed
ignorable and were not considered in this research.

2.4. Design Parameters

The spatial position of two satellites is one of the most important design parameters that directly
impact the rover position accuracy. It is known that in order to acquire an accurate user position,
a small DOP value is required, and accordingly, the distance between two satellites has to be large.
In comparison, in order to keep both satellites in the rover’s view for a long time, a short distance
between two satellites is preferable. As a result, these two requirements conflict with each other,
and both impacts must be carefully considered to find the best compromise point in the satellite
trajectory selection. Figure 2 shows availability, which is the percentage of time at which both
satellites are in the rover’s view to total mission time, and the Total GDOP value at several orbit
conditions: circular orbits with four different satellite altitudes (300 km, 600 km, 900 km, 2100 km)
and five different orbital phase differences ∆Ω between two satellites (5 deg, 15 deg, 25 deg, 35 deg).
Rover/lander positions were fixed to the south-pole (−90 deg, 90 deg), and satellite orbital inclination
was fixed to 110 deg without losing the generality of the discussion.

As seen in Figure 2, availability and Total GDOP have a negative correlation. At the same time,
there are some good compromise points, such as “altitude 300 km/phase difference 15 deg,” where both
availability and Total GDOP have moderate values. The value of availability is also an important
factor to consider for rover operation. In the case of two low lunar orbiters, the value of availability
is limited up to around 15%. However, we think that this value is compatible with a mission that
requires a higher availability value for long-range exploration: essentially, the rover can rely on its
inertial navigation system (INS) when pseudorange-based navigation is not available and can retrieve
the precise position once the pseudorange-based navigation is back in service. In order to keep the
position error within 100 m all the time, the design margin should be considered in a way such that
the navigation accuracy of the dual-satellite pseudorange navigation has a sufficient margin to 100 m,
which is used to compensate for the position error induced by INS-based navigation during the time
that dual-satellite pseudorange navigation is not available.
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Figure 2. Availability and Total GDOP under different orbital conditions: circular orbits with four
different satellite altitudes (300 km (a), 600 km (b), 900 km (c), 2100 km (d)) and five different orbital
phase differences ∆Ω between two satellites (5 deg, 15 deg, 25 deg, 35 deg). Rover/lander position were
fixed to the south-pole (−90 deg, 90 deg) and satellite orbital inclination was fixed to 110 deg.

Another consideration is the required power for RF communication between satellites and
the rover/lander. In general, the higher the orbit altitudes, the more power that is required by RF
communication, and the free-space path loss increases proportionally to the square of the distance
between the satellites and the rover/lander. In order to reduce the system burden for RF power on the
satellite side as well as on the rover and lander side, a lower orbit, such as 300 km, is preferable.

Furthermore, for a long-period mission, orbit perturbation should also be considered. As a result
of cis-lunar perturbation, some important orbital parameters, such as altitude and phase difference,
are subject to change over time. In this study, the main focus is on algorithm verification and performance
evaluation under specific conditions. Therefore, the selection of satellite trajectories used in the next
section was not optimal, although it was good enough to maintain the phase difference between
15.0 deg and 17.5 deg over the course of the simulation period. Additionally, it is well-known that
there are several stable orbit families that repeat ground tracks on the Moon, known as repeat ground
track (RGT) orbits. For example, Ruam P. Russel successfully proved that stable or near-stable families
of solutions exist for a full range of average inclinations and altitudes, making them suitable for
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long-lifetime parking applications [19]. An optimal orbit should be chosen according to the specification
of each mission.

3. Simulation

In order to assess user position accuracy in the presence of the systematic errors discussed in the
previous chapter, we developed a numerical simulation model.

3.1. Simulation Overview

Figure 3 provides an overview of the simulation system. First, a rover trajectory in the
X–Y direction, i.e., a time-series dataset of xR and yR, was created, and then a rover position in
the Z direction, i.e., zR, was also created using lunar DEM data zR DEM. Then, by adding DEM error
(∆zR DEM) to a created rover trajectory, the true rover position XR true was developed. For lunar
DEM data, we used [20], which is 5-m resolution DEM data for latitude from −87.5 deg to −90 deg.
The DEM error dataset, i.e., ∆zR DEM, was prepared at a 1-m grid interval. In other words, the DEM
data change every 5-m grid, while DEM error data change every 1-m grid. The true rover altitude,
i.e., the z-component of XR true, is estimated using the DEM value and DEM error value of the
closest grid point from its horizontal location respectively: e.g., if the rover is horizontally located at
(xR, yR) = (11.3 [m], 3.5 [m]), it refers to the DEM data of the point (xR, yR) = (10.0 [m], 5.0 [m]) and the
DEM error data of the point (xR, yR) = (11.0 [m], 3.0 [m]) to calculate the true rover altitude. Next,
the true satellite trajectory XS

true was prepared separately. A precise cis-lunar dynamics model takes
into account the gravity models of the Moon to degree 40 as well as the gravity from the Earth and the
Sun, which was used to generate satellite trajectory data in the topocentric frame, whose origin is at
the lander position. The true range was calculated using the true satellite, rover and lander positions
while taking into account the Moon precession during the signal traveling time between the satellites
and rover/lander. Then, by adding receiver observation errors to a true range value, the pseudorange
observation ρS

R(ti) was prepared. Also, by adding Satellite orbit determination error and Time tag error
to the satellite’s true position XS

true, the observed satellite position XS
ob was prepared. The 2D MDPO

algorithm uses the pseudorange observation ρS
R(ti), observed satellite position XS

ob and lunar DEM
data zR DEM, and an estimated rover position XR est was calculated over the course of the simulation
period. Finally, the true rover position XR true and the estimated rover position XR est were compared
to evaluate the algorithm estimation accuracy.

Table 2 summarizes the general parameters used in the simulation. The total simulation period
was set to 15,000 min assuming a two-week-long mission. Range measurement resolution at the user
pseudorange receiver was set to 0.4 m assuming a typical space GNSS receiver specification with
a safety margin. The initial rover position and lander position were set to (−90 deg, 90 deg) assuming
a south-pole mission. The rover trajectory was created dynamically by changing the rover position
after each MDPO estimation according to the defined traveling distance and the random heading
direction specified in Table 2. Two-dimensional MDPO requires pseudorange observations from two
epochs, and the interval of pseudorange observations was set to 0.5 min. Hence, it takes 1.0 min for the
2D MDPO algorithm to estimate the rover position. The rover position was fixed during the MDPO
estimation for 1.0 min, and then the rover position was changed in the following 0.5 min and then
stopped for 1.0 min for another MDPO estimation, which continued over the course of the simulation
period. In addition, the rover moved only when both orbiters were in view. Initial satellite orbits were
selected, according to the discussion in Section 2.3, to be a 110 deg–300 km (inclination–altitude) orbit
with a 15–deg phase difference, as shown in Table 3.
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Table 2. Simulation parameters.

Items Value Unit Remarks

Simulation Period 15,000 min Approximately two weeks in
Earth time

Range measurement resolution of
the user pseudorange receivers 0.4 m Minimum observable range by the

rover and lander receivers
Latitude of Initial

Rover/Lander Position −90 deg

Longitude of Initial
Rover/Lander Position 90 deg

Interval of
pseudorange observations 0.5 min

Total observation period of one
MDPO estimation is equivalent to
1 min when the number of
multi-epoch observations is 2.

Rover traveling distance between
MDPO observations 3.75 m The rover travels at 7.5 m/min for

0.5 min between MDPO estimations

Rover traveling direction Random deg Heading direction is selected from
three values (+π

3 ,−π3 , 0) randomly.

Table 3. Satellite Orbital Parameters Used in the Simulation.

Items Value Unit Remarks

Initial Orbital Parameters of Satellite1
Perilune altitude 300 km
Apolune altitude 300 km

Inclination 110 deg
Right Ascension of the Ascending Node 0 deg

Argument of Perigee 0 deg
True Anomaly 0 deg
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Table 3. Cont.

Items Value Unit Remarks

Initial Orbital Parameters of Satellite2
Perilune altitude 300 km
Apolune altitude 300 km

Inclination 110 deg
Right Ascension of the Ascending Node 0 deg

Argument of Perigee 0 deg
True Anomaly −15 deg

Tables 4–6 show the systematic errors used in the simulation. Table 4 summarizes the satellite
orbit determination error value used in the simulation, i.e., ∆Along, ∆Radial and ∆Cross defined in
Equation (38). The value was chosen by adding a sufficient margin to the reference data from the
LRO project [21]. Table 5 summarizes the time tag error used in the simulation, i.e., dτR defined in
Equation (39). The value is based on the assumption that the rover clock is calibrated periodically by
a navigation message every orbital period. Through the navigation message, the rover clock can be
synchronized to the satellite clock with the uncertainty of the signal traveling time from the satellite to
the rover and lander receivers, which was modeled as white noise in the simulation. The time tag error
also contains an additive-type noise, which was modeled as a random walk noise that is reset to zero
periodically. Table 6 summarizes the DEM model error value used in the simulation, i.e., ∆zR DEM,
defined in Equation (41). Currently, the accuracy of the best existing DEM data in a vertical direction is
about 3 m within a ±60–deg latitude and about 10 m near polar regions [17,18]. The same parameters
were used in the following simulations unless otherwise mentioned.

Table 4. Overview of satellite orbit determination error used in the simulation.

Items Type Value Unit Remarks

Satellite Orbit Determination
Error in the Along direction

∆Along(ti)= ωOD−Along (ti) + cOD−Along

White Gaussian
noise ωOD−Along

100.0 m
ωOD t = Value× a random

scalar drawn from the
standard normal distribution.

Bias noise cOD−Along 200.0 m
Bias cOD is a random number
that is greater than or equal to
−Value and less than Value

Satellite Orbit Determination
Error in the Radial direction

∆Radial(ti)= ωOD−Radial(ti) + cOD−Radial

White Gaussian
noise ωOD−Radial

10.0 m
Same as above

Bias noise cOD−Radial 20.0 m

Satellite Orbit Determination
Error in the Cross direction

∆Cross(ti)= ωOD−Cross(ti) + cOD−Cross

White Gaussian
noise ωOD−Cross

100.0 m
Same as above

Bias noise cOD−Cross 200.0 m
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Table 5. Overview of time tag error used in the simulation.

Item Type Value Unit Remarks

Time Tag Error

dτR(ti) = ωtime tag + xtime tag

White Gaussian
noise ωtime tag

100.0 ms
ωtime tag t = Value× a random scalar

drawn from the standard
normal distribution.

Random walk
x time tag

0.1 ms/min

A random walk is a time series model
xtime tag t such that
xtime tag t = xtime tag t−1 +ωt where ωt is
a discrete white noise series. Random
walk noise is reset to zero periodically
assuming orbit determination takes place
every orbital period.

Table 6. Overview of DEM error used in the simulation.

Item Type Value Unit Remarks

DEM Error

∆zR = ωDEM + cDEM

White Gaussian
noise ωDEM

10.0 m
ωDEM t = Value× a random scalar

drawn from the standard
normal distribution.

Bias noise cDEM 5.0 m
Bias cDEM is a random number that is
greater than or equal to −Value and less
than Value

3.2. Simulation Results

To secure statistical accuracy, a Monte Carlo simulation was conducted 100 times, and averaged
data are presented for each specific scenario. Rover trajectory and model errors were renewed and
created with every simulation.

The simulation results with different receiver observation errors ∆∇ω are shown in Table 7.
Figure 4 shows an example of the estimated rover trajectory overlaying the true rover trajectory
when ∆∇ω (2 × σ∆∇ω) is 0.4 m. Figure 5 shows the distribution of the position error between the
true rover positions and the estimated rover positions of Figure 4. According to Figure 5, under the
condition of the satellite orbital parameters shown in Table 3, the error distribution does not have
a large anisotropy but may become more anisotropic for other cases, depending on the satellite orbital
parameters. Figure 6 shows the GDOP history of Figure 4. As seen in Figure 6, the GDOP is calculated
intermittently when both satellites are visible from both the rover and lander. Furthermore, the value
of GDOP changes because of the geolocation of two satellites over the course of the simulation period,
as well as within one consecutive observable period.

Table 7. Simulation results: MDPO algorithm performance evaluation.

Receiver Observation Errors ∆∇ω(2×σ
∆∇ω

) [m] Total GDOP Total UPE (2drms) [m]

0.4 44.3 45.6
0.8 44.3 55.4
1.6 44.3 89.6
3.2 44.3 172.6
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Figure 6. GDOP history over the course of the simulation period. (a) for 1000 min (closer look),
(b) for 15,000 min (overall). Unless both satellites are in view, DOP is not calculated and not shown in
the figures.

As seen in Table 7, it was confirmed that total UPE (2drms) is basically determined by the product
of Total GDOP and receiver observation errors (2 σ), as indicated in Equation (30), with additional
errors due to systematic errors, while the minimum UPE is determined by systematic errors when
receiver observation errors are small (such as 0.4 m), as discussed in Section 2.3. It was also confirmed
that the MDPO algorithm can provide a position accuracy of several tens of meters to a few hundred
meters with 95% probability (2drms) within a one-minute observation, depending on the receiver
observation errors.

3.3. Discussions

Theoretically, the MDPO algorithm works at any satellite trajectory and with any number of
satellites that is more than two. Moreover, it can be evolved into a larger lunar global navigation
system that is proposed by other studies [7,8], without any hardware modification. As proven by the
simulation, user position error is basically determined by the product of Total GDOP and receiver
observation errors according to Equation (31), while systematic errors determine a minimum user
position error when the receiver observation error is small. User position error due to systematic errors
is mostly derived from the steepness of the DEM function, i.e., zR DEM in Equation (38), and DEM
information error, i.e., ∆zR DEM, which changes depending on the selected mission site.
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4. Conclusions

In this research, we propose a low-cost navigation system that is based on a multi-epoch
double-differenced pseudorange observations (MDPO) algorithm. MDPO requires that only two
satellites be visible to locate a rover position, and unlike the conventional TOA or TDOA navigation
algorithm, it also can deal with the bias of the satellite and user clocks at the same time. The numerical
simulations for the considered mission scenarios demonstrated that the position error of the rover can
be predicted theoretically by using the Total GDOP and receiver observation errors, with an expected
exception that systematic errors induce additional user position error. It also demonstrated that the
rover position can be determined within several tens of meters with a probability of 95% (2drms)
within a one-minute observation using two low lunar orbits and lunar DEM information.
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