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Abstract: Background—In the field of aviation, maintenance and inspections of engines are vitally
important in ensuring the safe functionality of fault-free aircrafts. There is value in exploring
automated defect detection systems that can assist in this process. Existing effort has mostly been
directed at artificial intelligence, specifically neural networks. However, that approach is critically
dependent on large datasets, which can be problematic to obtain. For more specialised cases where
data are sparse, the image processing techniques have potential, but this is poorly represented in the
literature. Aim—This research sought to develop methods (a) to automatically detect defects on the
edges of engine blades (nicks, dents and tears) and (b) to support the decision-making of the inspector
when providing a recommended maintenance action based on the engine manual. Findings—For a
small sample test size of 60 blades, the combined system was able to detect and locate the defects with
an accuracy of 83%. It quantified morphological features of defect size and location. False positive
and false negative rates were 46% and 17% respectively based on ground truth. Originality—The
work shows that image-processing approaches have potential value as a method for detecting defects
in small data sets. The work also identifies which viewing perspectives are more favourable for
automated detection, namely, those that are perpendicular to the blade surface.

Keywords: automated defect detection; blade inspection; gas turbine engines; aircraft; visual inspec-
tion; image segmentation; image processing; applied computing; computer vision; object detection;
maintenance automation; aerospace; MRO

1. Introduction

Aircraft engine maintenance plays a crucial role in ensuring the safe flight state and
operation of an aircraft, and image processing—whether by human or automatic methods—
is key to decision-making. Aircraft engines are exposed to extreme environmental factors
such as mechanical loadings, high pressures and operating temperatures, and foreign
objects. These contribute to the risk of damage to the engine blades [1–4]. It is vitally
important to ensure high quality inspection and maintenance of engines to detect any
damage at the earliest stage before it propagates towards more severe outcomes. Missing
defects during inspection can cause severe damage to the engine and aircraft and have the
potential to cause harm and even fatalities [5–7].

There are several levels of inspection, each with their own tools and techniques. A
comprehensive inspection workflow is presented in Figure 1. The V-diagram shows the
different levels and their hierarchy. The more detailed the inspection (further down in
the diagram), the better the available inspection techniques, but at the same time the
higher the cost introduced for further disassembly and reassembly. The different inspection
levels can be summarised into two main types of inspection: in-situ borescope inspection
performed on-wing or during induction inspection and subsequent module and piece-part
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inspection where the parts are exposed. While borescope inspection is an essential first
mean of inspection to determine the health and condition of the parts and subsequently
make the decision as to whether further disassembly and detailed inspection is required,
it also has limitations of relatively low image quality and poor lighting conditions inside
the engine [8]. Furthermore, there is limited accessibility, which creates the need to use
different borescope tips, which in turn leads to a high variation of images [9]. Due to
the challenging borescope inspection environment, this research focuses on piece-part
inspections, where these conditions can be better controlled. If successful, the proposed
method could be refined and might then be transferable to higher levels of inspection,
namely, module and borescope inspection.
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Figure 1. Inspection workflow and hierarchy of levels of inspection.

During all visual inspections, a skilled technician obtains an appropriate view of the
part and evaluates the condition by searching for any damages. When a defect is detected,
the inspector has to make a decision whether or not it is acceptable, i.e., check if it is within
engine manual limits. This decision is based on the inspector’s experience and to some
extent on the risk appetite. Some inspectors tend to take a more risk adverse stand, which
may lead to a costly tear down of the engine or scrapping of airworthy parts. Both tasks,
defect detection and evaluation, are time consuming and tedious processes that are prone
to human error caused by fatigue or complacency. This entails the risk of missing a critical
defect during inspection. Thus, there is a need to overcome those risks and support the
human operator, while improving the inspection quality and repeatability, and decreasing
the inspection times. Ultimately, this has the potential to improve aviation safety through
reduction of accidents in which defects were missed during the inspection task [10,11].

In this research, the focus is on defects present on the leading and trailing edges of
compressor blades. These blades are located as per Figure 2 and highlighted in yellow. An
isolated blade is presented next to it.

The most common edge defects are dents, nicks and tears. An overview of the
defect types and their characteristics together with a sample photograph is shown in
Figure 3 below. It should be noted that the sample images show severe defects. This is for
demonstration purposes only, to highlight the difference between the different defect types.
The test dataset also contained blade images with smaller defects that are more difficult
to detect. Detecting those defect types is important as they can lead to fatigue cracks [13]
resulting in material separation and breakage of the entire blade under centrifugal load [14],
which has the potential to cause severe damage to the engine and aircraft.
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2. Literature Review
2.1. Automated Visual Inspection Systems (AVIS)

In aviation, automated inspection systems have been developed for detecting damages
on aircraft wings and fuselage [16–21], tyres [22], engines and composite parts [16,23–26].
Several airlines have shown increasing interest in automating visual inspection and tested
several systems, including inspection drones for detection of lightning strikes, marking
checks and paint quality assurance [27,28], robots with vacuum pads for thermographic
crack detection [29] and visual inspection robots for fuselage structures [30]. Engine



Aerospace 2021, 8, 30 4 of 27

parts such as shafts [31,32], fan blades [20,33], compressor blades [9,34,35] and turbine
blades [9,26,36–43] are also of particular interest as all are safety-critical to flight operations.

Deep learning is used in several types of classification problems where feature repre-
sentations are automatically learned using large amounts of labelled training data. These
models can have many, possibly millions of, trainable parameters. In contrast, the problem
at hand deals with simple geometrical characteristics of images that require few parameters
(e.g., slope of a line segment). Such problems can be solved directly using a small set of
image processing methods that extract and quantify relevant features. A small feature
space also makes it possible to use simple rule-based detection and classification algorithms.
Deep learning based solutions could still be attempted, where the entire blade image is
provided as input and classified into one of the defect types.

One drawback of these techniques, however, is the need for large training datasets in
order to produce good models. This is potentially problematic in the case of jet engines, as
there are many different parts with variations in geometry. In particular, the compressor
and turbine blades have different geometric features in addition to size changes. There are
also the stationary vanes between each row of moving blades. All this variety adds up to a
formidable detection task for AI systems, and hence is still the preserve of expert human
inspectors. Humans have the ability to understand the context of what they are looking at,
specifically what is and is not important in the visual field.

Several attempts to overcome the challenge with small datasets have been made,
including the approach developed by Kim et al., which was able to detect nicks with
a 100% accuracy on training data [43]. The approach used the scale invariant feature
transform (SIFT) algorithm [44,45] and principal component analysis to produce a damage
representation, which is then compared with input images. Should a sufficient level of
feature matching be achieved, the image was processed by a CNN to provide a classification.
Although it was able to achieve a high detection rate, the software was only able to detect
nicks, no other defect types.

Other research using CNN techniques have explored detection of cracking in wind
turbine blades [46], cracking on the surfaces of compressor blades in jet engines [9] and
detection of surface erosion on turbine blades in jet engines [47]. All of these approaches
use some form of feature extraction or segmentation techniques to normalise the input
into a trained CNN and typically achieved a high accuracy of detection. However, the
training examples were of advanced damage that is clearly visible to the human eye. In
reality, a system needs to detect defects at much smaller scales of severity, and this has not
yet been convincingly demonstrated in the literature. Additionally, all these applications
required large quantities of training data. The issue, as identified by Wang using x-ray
inspection and CNN, is that lack of training data for rare defects results in extremely poor
performance of the network when exposed to novel defects [48].

These methods use feature extraction techniques and then classification of the features
in comparison to features trained from both damaged and non-damaged blades. Of the
image-processing algorithms, positive results have been shown for bilateral filtering and
Gaussian blur algorithms [49,50].

However, the range of defects that can be detected is still limited. Typically, neu-
ral networks are used for classification tasks [51]. However, they require significant
amounts of data to accurately perform a classification, especially with increasing number
of classes [52–54]. There exist several commercial AI software for inspection of gas turbine
blades. Some focus on borescope inspection [55,56], while others target the automated
inspection of piece-parts [57–59]. They all use Deep Learning AI, which is perhaps feasible
due to their fortunate commercial situation of being able to collect a large dataset of defec-
tive blade images. Thus, there is a fair chance that Deep Learning AI can be successfully
applied, in the right conditions. However, in cases where images are scarce, the neural
network approach may have inherent limitations due to the variety of defect types and
the rarity of some defects. Consequently, there is value in exploring other approaches,
especially those that are less critically dependent on large datasets.
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2.2. Automated Defect Measurement

Before a decision can be made whether a defect is within or out of limits, the damage
has to be measured. The biggest challenge with measuring the defect size is the variety
of defect shapes and appearances. Different attempts have been made for estimating the
defect size. For example, borescope instruments allow measuring the defect size using
stereo imaging or optical phase shifting. However, this is a manual and time-consuming
task, since the inspector has to acquire an image first and then mark the contour points
(start and end of defect) between which the distance shall be measured. The situation can
be improved by providing a scaled measurement grid [60].

In automatic visual inspection systems, traditional approaches use the bounding box
or the horizontal cross-section of the detected defect to estimate the defect size [61,62]. For
surface defects, this does not represent the actual defect size and thus they recommend
using the largest dimension of all cross-sections of the detected defect [62]. Those authors
developed a software tool to detect and to calculate the defect characteristics, including
the defect size, shape, location and type. However, it is not mentioned which methods are
used to extract the defect information from the image and how the defect size is estimated.
The only information given is that the maximum length across all cross-sections was used.
This however does not apply to engine blade inspection, where the engine manual limits
determine the serviceability based on the depth of the defect independent of its other
dimensions, such as defect height or volume of missing material. The defect depth is not
always the largest dimension, and thus, the width of the bounding box provides a better
estimate of the critical defect size than the maximum length of all cross-sections.

Most surface defects appear in a circular or elliptical shape rather than a rectangle.
Hence, there has been work to approximate the real defect shape [63,64]. Volume-based
measuring methods have been attempted [65], though is less suitable for edge defects,
where material is deformed or missing, and thus, there is no depth to measure.

2.3. Decision-Support Systems for Maintenance and Inspection Applications

In the literature, there are mainly three types of decision support systems: (1) mainte-
nance and inspection decision support systems for selecting the best inspection techniques
and timing for performing a maintenance cycle [66–70], (2) decision support after the
inspection is performed to determine if the findings are critical [71] and (3) a combination
of both with recommendations for the best repair action based on the findings [72]. The
focus of this paper is on the decision support after the inspection is performed and the
relevant literature is reviewed in this section.

The work by Zou et al. [72] proposed a support tool to improve the inspection,
maintenance and repair decision-making, taking into account factors that affect the defect
propagation. The approach was based on risk assessment and life cycle cost analysis. The
decision support tool provided answers to the questions where to inspect, how frequent to
inspect, and what technique to use. Furthermore, it recommended whether, when and how
to repair the defects.

While they used the risk of failure, this is less relevant in aircraft engine maintenance,
Instead the risk is incorporated in the engine maintenance limits of allowed defect sizes
and thus does not need to be included in the decision support tool.

In the medical field, a skin inspection system was developed to search for pigments
that indicate skin cancer [71]. The software utilised image-processing techniques, such as
threshold-based feature segmentation. After the detection of skin anomalies, a machine
learning based decision support tool was introduced to help the classification of those
findings and determine whether the anomaly was benign lesions or melanoma. It took
into account several influence factors that have an effect on the likelihood of melanoma
such as gender, age, skin type, and affected area of the body. The concept that different
body parts have different risk levels can be translated to engine blade inspection, where
the blade has different tolerance areas as well. This tool used machine learning. Due to the
scarce amount of data, machine learning might be less suitable for a decision support tool
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in the MRO domain. Furthermore, the approach by Alcon has only two classes and the
threshold is determined based on the training dataset. In the case of blade inspection, the
threshold is determined by well-defined engine manual limits.

2.4. Gaps in the Body of Knowledge

Although the field has moved towards automated visual inspection in the maintenance
environment, there are limitations. Typically, neural networks are used for defect detection
and classification [73].

It is generally accepted that the performance of a deep learning neural network im-
proves logarithmically with increasing sample size [74–77]. Several sources state that a
dataset of 1000 images per class is required to successfully train a neural network [74,78–80].
A recent example in the medical field for COVID-19 detection used a dataset of 1128 im-
ages [81]. Sun et al. [77] used 300 million images to train a neural network. The number
of images may be reduced by using a pre-trained model (where applicable) and smart
augmentation to artificially create a larger dataset. Good accuracies with reasonable classi-
fication results can be achieved with sample sizes as small as 150–500 images per class [76].
However, “good” and “reasonable” are subjective. It can be summarised that a “small”
dataset for neural networks is at least 150 images, though about a thousand images is the
norm, and “big data” comprises millions of records. In contrast, the minimum number
of images for traditional image processing approaches is much less, of the order of about
10–100 [82,83].

Hence, the neural network method critically depends on relatively larger training and
test datasets compared to image processing methods [52–54]. Furthermore, there are several
sizes, shapes and types of blades (especially compressor versus turbine differentiation),
which further increases the required amount of data. This limitation is also prevalent in
more advanced neural networks, such as CNNs and their variants. Thus, there is a need
to develop defect detection system that would perform well for small datasets and rare
defects. The rare defects are precisely the types that are important to detect.

An alternative to neural networks and their variants comes in the form of classical
image processing techniques that have been used in the field of computer vision for a long
time [84]. There is a lack of recent applications of these techniques to blade inspection. In
fact, the field is somewhat weak and has been dominated by the neural networks and deep
learning approaches instead [9,19,47,85].

Furthermore, most research focuses on defect detection on turbine blades rather than
compressor blades. This encompasses mainly crack detection [9,33,37,38,42], as this is the
most critical type of defect and the main source of failure. Nonetheless, other types of
defects can lead to significant shortage of the part life cycle and propagate towards cracks
leading to the same consequences. For example, in the compressor stage, the blades are
vulnerable to impact damage on their leading edges, in the form of small nicks and dents.
Broken blades propagate through the engine, damaging downstream parts. Thus, detecting
small damages at the front of the engine is particularly important. Hence, there is a need to
find those defects that are poorly represented in the literature, such as nicks and dents in
the compressor blades.

A pervasive problem is that many systems presented in the literature have been
developed on samples with obvious defects that would quickly be detectable by any
trained human operator, and hence do not need support. The smaller defects are harder to
detect and hence a smart inspection system could have benefit. Furthermore, the reviewed
systems have difficulty detecting multiple defect types. Most have focused on detecting
cracks on turbine blades, since these are highly critical. However, other types of defect are
of similar importance or even more critical, e.g., tears or broken-off material. In practice,
it is of utmost importance to detect all defects that are critical and have the potential of
negatively affecting flight operation.

The accurate detection of blade condition early in the maintenance cycle is essential.
False positives can commit the engine to an unnecessary expensive remanufacturing pro-
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cess. False negatives on the other hand may cause a continued operation of the engine in a
defective state with the potential loss of the entire aircraft and passengers. Consequently,
decisions made while the engine is still on wing have a material impact on the organisa-
tional risks and human safety. Detecting a defect is only the first step, while the subsequent
decision whether the defect is acceptable has a bigger impact on the operation. Most
literature on decision support systems in the maintenance domain focused on preventive
and predictive models to forecast and prioritise maintenance activities [70]. However, little
to no attention has been directed to the maintenance actions after the inspection has been
performed. No maintenance decision support tool appears to exist, neither in the aviation
industry nor in the journal literature, which takes into account engine manual limits as a
basis for the decision. The present paper specifically addresses this problem.

3. Methods
3.1. Purpose

The purpose of this research was to develop software with two main functions. The
first one is the automated detection of blade defects in the aero engine domain. This
comprises the detection and location of the defect, and quantitative assessment of the
defect morphology, including the defect size measured in height, depth, and area of
missing material, and the edge deformation measured in change of angle. The scope is
limited to the detection of edge defects, rather than airfoil defects. This was because the
edge defects are more important from a safety perspective, since this is where cracks and
other catastrophic failures originate. In contrast, surface defects lead to efficient losses, but
no further damage or harm. An image perspective comparison was made to determine the
best view with the highest detection accuracy.

The second function is a decision-support tool to assist the inspector by providing
a recommended maintenance action based on a comparison of the defect findings (from
the previous detection software) and the limits extracted from the maintenance manual.
The potential benefit of this is shortened inspection times, while improving the detection
accuracy and thus quality.

3.2. Approach

The overall approach comprised (1) image acquisition, (2) development of a detection
software and (3) development of a decision support tool. Both (2) and (3) use heuristics.
The overall structure of the solution is shown in Figure 4 and will be further discussed in
the following sections.
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3.2.1. Data Acquisition

The research sample for model generation and testing contained a mix of 52 damaged
and 28 non-damaged high-pressure compressor (HPC) blades of stages 6 to 12 from V2500
aircraft engines undergoing maintenance. This dataset is small in comparison to the related
work introduced in the literature review. The blades were in different dirty conditions.
There are two main categories of defects, namely edge defects and surface defects. Edge
defects typically appear as a change in shape of the leading or trailing edge. Surface defects
in turn, appear as a change in gradient. This work focuses on edge defects, as these are
more critical due to their inherent risk of propagating and cause severe engine damage
if they stay undetected. The most common defect types in this category are nicks, dents,
and tears on leading and trailing edges. The defect proportion of the research sample was
42% nicks, 38% dents and 20% tears. Only blades with defects that are visually detectable
were used as the detection software as well as the human eye of the operator performs an
optical analysis.

A standardised image acquisition procedure was developed to ensure repeatability.
This includes eight standardised camera views and a defined camera setup. The setup
comprises a self-built light tent with three ring-lights (Superlux LSY 6W LED) and a
24.1 mega pixel Nikon D5200 DSLR camera with Nikon Macro lenses (AF-S Micro Nikkor
105 mm 1:2.8 G) mounted on a tripod (SLIK U9000). The acquired images were stored in
JPEG format with a resolution of 4928 × 3264 pixels. This setup was chosen, as we wanted
to represent an ideal environment for on-bench piece-part inspection. In total, 80 blade
samples were collected and images thereof acquired, before they were submitted to the
detection software.

Typical levels of defects in blades are shown in Figure 5. The sample blades originated
from an engine with foreign object damage (FOD), and thus, the defects represent an
intermediate level of damage.
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The remaining 47 blades were photographed from perspectives P3 and P7 (perpendicular
to the airfoil) providing a dataset of 94 images. As shown in Figure 6, the different blade
perspectives represent the rotation of the blade in 45-degree increments.

3.2.2. Detection Software

As identified above, the approach taken here eschewed neural networks and rather
focussed on image processing. The detection software was developed in Python version
3.7.6 [86] using the OpenCV library version 4.3.0 [87]. It involves a series of algorithms
applied to generate a ground-truth model of an undamaged blade and subsequently
processed each input image to detect edges. The principle of detection was based on breaks
in line continuity and acts as the implemented heuristic function. The algorithm parameters
were determined using an iterative approach to optimise the performance of the model as
described in more detail in the following sections.
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First, 20 non-defective blades were used to establish the ground truth model with
respect to the heuristic function. Next, JPEG images were imported and processed following
a specific procedure. This included image pre-processing to reduce the noise, converting
the image to greyscale and compressing the image size down to 30% to improve the
performance (computation speed).

Thereafter, regions of interest (ROI) were generated on the input image using the same
heuristic function. The ROIs were then compared region by region to the ground-truth
model and any significant difference between the two was considered as defective area.
This area was marked on top of the input image by the renderer in form of a bounding
box around the detected area. Finally, the descriptor performed an analysis of the detected
regions and calculated their mathematical properties as described in the following sections.
These defect characteristics were then exported together with the marked image as an
output file.

The system architecture is shown in Figure 7. Please note that the surface defect
heuristic highlighted in red was not implemented; however, it acts as an example of adding
additional heuristics for characterisation of different defect types.
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Image Processing

The image processing operation is as follows. The input image is stored in a matrix of
the size (H, W, C), whereby H represents the height and W the width of the input image.
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C stores the colour channels Red, Green and Blue of the image. This matrix is then scaled
down on the H and W axes, and the C axis is collapsed to 1 as the image is converted to
grayscale. The grey-scaling follows the equation as specified by OpenCV:

Y = 0.299× R + 0.587× G + 0.114× B (1)

with R, G, B representing the colour channels red, green, and blue respectively. The matrix
of size (H, W, 1) is then convolved with a bilateral filter kernel (shift-invariant Gaussian
filter) to produce a de-noised image.

Generation and Analysis of Regions of Interest

All processed blade images are passed to the ROI generator, which applies the heuristic
function that generates points of interest. In this case, the heuristic is based around finding
breaks in line continuity. To do so, the edges of the blade are found using the Canny edge
detector. As all blade images contain one foreground object against a bright and uniform
background, effective background segmentation and edge detection in such images can
be achieved by using adaptive thresholding methods that provide robustness against
illumination variations. Commonly used lower and upper threshold values are certain
percentages (empirically determined) of mean, median or Otsu thresholds [86]. In the
proposed method, the lower and upper thresholds used for the Canny algorithm are 0.66
and 1.33 M, respectively, where M is the median pixel intensity.

The Suzuki algorithm [88] is then applied to the found edges in order to extract
contours and order them in a hierarchical structure. The external contours are placed at
the top of the hierarchy; in this case, these are the contours relating to the outside of the
blade. Internal contours are discarded, as they are not relevant, since they represent the
contours of surfaces on the blade. The points in the external contours are concatenated
forming an array of points representing the contour of the entire outside of the blade. This
point array is iterated through to find the differences in angles ∆θ between two consecutive
line segments along an edge contour using the inverse tangent extension function atan2 as
shown in Equation (2):

∆θ =
∣∣atan2

(
cy − by, cx − bx

)
− atan2

(
by − ay, bx − ax

)∣∣ (2)

where a, b and c are the points in which the angle difference is computed (Figure 8). These
values are reassigned to new points in the point array as it is iterated through. Should the
threshold of π

12 rad be exceeded for ∆θ, the points a, b and c are added to a suspect points
set. The threshold value was selected using an imperative approach such that the impact
of noise at the edge of the blade was minimised whilst retaining high accuracy in detecting
derivations from the continuity of the edge contour. We experimented with various values
ranging from zero to π

6 rad in π
180 increments using a sample blade and determined that

the best result was achieved with π
12 rad. Contour following was used because the defect

types that are being detected exhibit the common characteristic of having non-contiguous
or sharp changes in the direction of the contour on the edge of the blade.
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In order to create regions of interest, the bounding box of the edge contour is found
and subdivided into R× R regions. The proposed method used R = 10 in order to produce
100 regions on the blade. Each point in the suspect point set is then assigned to a region
based on the x, y coordinate of the point being located within the bounds of that region.
Each region is assigned an index Rx,y, which determines the location in relation to the
top-left corner of the bounding box.

Model Generator

The model generator module takes a set of non-damaged blades and performs the
edge defect heuristic method in order to determine the ground truth. This produces a
4D array of size (N, X, Y, P), where N is the number of example images, X and Y are the
indices of the region, and P is the suspect point list. Then the average density of each
region is calculated using the number of points per region to produce a matrix of size
(R, R), where R is the number of axis divisions for each region. This matrix is then stored
as the ground truth model for the edge defect heuristic.

Comparison Module

The comparison module is used to load a built model and compare the ROI analysis
of the input image and the ground truth model. The comparison is threshold based, in
which a region in the input image that has a density that is greater than a certain multiplier
of the model for that region will be marked as defective, per Equation (3):

De f ectx,y =

{
1 Inputx,y > Modelxy ×multiplier
0 otherwise

(3)

De f ectx,y is a True/False value of the defectiveness for the region with index (x, y). Modelx,y
is the value in the model for the same region index (x, y) and Inputx,y is the number of
suspect points in the input image. The multiplier was determined by using a 1D-grid
search and selecting a value from the range of 1 to 15 that produced the best F1 score.
The lower bound of 1 was selected as it was expected that a defective blade would have
greater-one number of defects. The upper bound of 15 was arbitrarily chosen, as densities
requiring more than 15-times the number of defects would indicate some issues with the
heuristics. The best results were achieved with a multiplier value of 10.

If there are regions in the input that are labelled as defective, then their suspect
points are clustered with the DBSCAN algorithm [89]. These clusters now more concretely
represent the actual defect and allow for the computation of their characteristics with the
bonus of additional noise being removed. The DBSCAN algorithm used a neighbourhood
radius of 15 and a density threshold of 3.

Renderer and Descriptor

This component takes the input image and a list of clusters found by the comparison
module and computes the bounding box with padding for each cluster. The bounding box
is drawn onto the input image with a unique colour and ID. The mathematical properties
of the cluster are also computed with respect to the non-padded bounding box. Firstly,
the absolute width and height of the defect is calculated as a function of the max and min
values for the x- and y-coordinates of all points in a cluster. Secondly, the area in square
pixels is calculated with respect to the polygon formed by the points. Lastly, the minimum
angle is computed in relation to the interior-most point and exterior-most points with
minimum and maximum y-values. Interior and exterior-most refers to points where their
x-coordinate is closest and farthest to the x-coordinate of the centre of mass of the contours
that make up the blade respectively. Finally, the image with the defects drawn and the list
of the properties of each defect are output.

The method used for each image-processing step introduced in the previous sections
and a visualisation of the results is shown in Figure 9.
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3.2.3. Decision Support Tool

The decision support tool (DST) starts from the output of the detection software
and applies engine maintenance heuristics to determine the serviceability of the blade.
The rule-based approach uses a lookup table to retrieve the data (limits) and compare it
to the findings of the detection software. The look-up table includes the limits for each
different blade stage and zone. These limits are fictional numbers for reasons of commercial
sensitivity. The purpose is to prove the concept rather than develop a commercial, ready-
to-use software. The performance of the decision support tool was measured using the
true and false decision outputs. This was done by comparing the maintenance decisions of
the decision support tool with the ground truth that was determined by a senior inspector
with over 30 years of experience in the field.

In a first step, we developed a reference table to record all the relevant information
and measurements (Figure 10). The table was structured the following way: In the first
column, the blade stages were listed and each of them was further sub-divided in the
second column into the three blade zones A, B and C. These zones describe regions in
which the same inspection limits apply. They are defined by their location on the blade,
expressed by a set of the x/y-coordinates (column 3 to 6). For each zone, three defect size
limits are listed (column 7 to 9). These contain an acceptance-, repair- and reject-threshold.

For ease of processing, the zones are measured in pixels and are determined by a set
of x/y-coordinates that represent the top left and bottom right corner of each zone area.
The origin of the coordinate systems is at the top left corner, with the x-axis pointing to the
right and the y-axis pointing downwards. The coordinate system is shown in Figure 11.

The user interface is divided into three sections: input from the output file of the detec-
tion software, manual input required by the operator, and the decision result (Figure 12).

The output file of the detection software contains the defect location, dimensions and
shape descriptors (defect characteristics). However, not all of this information is needed
for the DST and only the required data is extracted. This includes the defect location and
the depth of the damage.
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The x- and y-coordinates of the defect location are used to determine in which blade
zone the defect is located. This is important as each zone has different limits in terms of
allowed damage size. The detection software delivers a set of two x/y-coordinates that
define the bounding box of the detected defects. We took a risk adverse approach and
therefore used the x/y-coordinates of the bottom right corner of the bounding box rather
than the centre point coordinates, as former are closer to the root and thus more critical.



Aerospace 2021, 8, 30 14 of 27

Aerospace 2021, 8, x FOR PEER REVIEW 14 of 29 
 

 

 
Figure 11. Image coordinate system with origin at top left corner. 

The user interface is divided into three sections: input from the output file of the 
detection software, manual input required by the operator, and the decision result (Figure 
12).  

 
Figure 12. User interface of decision support tool (DST). 

The output file of the detection software contains the defect location, dimensions and 
shape descriptors (defect characteristics). However, not all of this information is needed 
for the DST and only the required data is extracted. This includes the defect location and 
the depth of the damage.  

The x- and y- coordinates of the defect location are used to determine in which blade 
zone the defect is located. This is important as each zone has different limits in terms of 
allowed damage size. The detection software delivers a set of two x/y-coordinates that 

Figure 12. User interface of decision support tool (DST).

Since the different blade stages vary in size, the dimensions of the blade zones vary
as well. Therefore, the stage number is a required input size to determine which set of
limits to use. This number cannot be retrieved from the input image, as the information
was not stored in the image, e.g., in the file name. Thus, it has to be manually entered by
the operator.

The software then returns the identified blade zone in which the defect was detected,
i.e., zone A, B or C. This interim result was needed to evaluate if the zone classification was
done correctly. The classification results were compared to the senior inspector, who was
given the actual part and a scale to determine the blade zone.

Next, the defect size (depth) computed by the detection software was compared to the
allowed limits of the relevant zone and stage listed in the reference table. The data were
interpreted as follows:

1. If the defect size is smaller or equal to the acceptable defect size, then the defect is
acceptable and the blade airworthy.

2. If the defect is bigger than the acceptable defect size but smaller or equal to the reject
threshold, then the defect is repairable and the blade serviceable once the airworthy
condition has been retrieved.

3. If the defect size is above the reject threshold, then the defect is not repairable anymore,
and the blade must be scrapped.

Depending on the comparison result, the tool then returns one of the following three
decision outputs: The detected defect has to be (1) accepted, (2) repaired or (3) rejected.

4. Results
4.1. Defect Detection Software (DDS)

We performed two experiments. The first one analysed the effect of the blade per-
spective on the detection performance of the software. Eight models were trained with
images of the according perspectives, and the best viewing angles were determined based
on the true positive and false positive rate. The second experiment used the best two
viewing angles and tested the model with optimal parameters to determine the accuracy of
the software. These parameters were determined using an imperative approach in which
the parameters that produced the best F1 metric on a small subset of the research sample
was selected. A grid-search method was used to find the best parameters by running
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exhaustive trials on both, the thresholding values for finding angle derivations and density
threshold, as well as on the radius parameter for the DBSCAN algorithm. This produced
the parameters with values as discussed in Section 3.2.2 and summarised in Figure 16.

4.1.1. Evaluation Metrics

The performance of the proposed software was measured based on the detection
rates from the confusion matrix, which is a commonly used evaluation method for defect
detection applications [90]. The ground truth was determined by an inspection expert and
formed the basis of comparison between the computed and actual detections. Evaluation
criteria included the probability of defect detection, namely recall rate (also called true
positive rate (TPR) or sensitivity), the precision of the detection (also referred to as positive
predictive value (PPV)), and the accuracy of detection based on the F1-score. The latter
takes into account both the precision and recall rate. The three measures are defined as:

Recall = TP
TP+FN × 100%

Precision = TP
TP+FP × 100%

F1− score = 2×Precsion×Recall
Precision+Recall = TP

TP+ 1
2 (FP+FN)

(4)

where TP represents the correct detection of a present defect in the input image; FP refers
to the false detection of a defect that is not present on the picture, and FN describes the
missed detection of a present defect.

4.1.2. Experiment 1

Since the introduced system applies a grid-based approach, the algorithm would cut
the blade image (particularly in the edge views) into very thin slices, which may result in
defects being in multiple regions. In the case where the density of suspect points is lower
than the threshold, it would cause more false positives. Thus, it is important to determine
the best viewing angles in order to maximize the detection rates and minimize the false
positive rates when used with a larger dataset of unseen images.

First, eight different ground truth models (one for each perspective) were created
by the model generator. The dataset for the model generation included 160 images of
20 non-damaged blades taken from eight different perspectives.

Subsequently, a test dataset of 104 images of eight defective and five non-defective
blades from eight different perspectives each was processed. For each perspective, the
performance of the model is shown in Figures 13 and 14. The viewing perspectives with
the lowest incorrect detections (false positives) are one, three, seven and eight.
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Additionally, as shown in Figure 14, the increase in false positives directly correlates
with the decrease in true positives and an increase in false negatives. This experiment
showed that the best viewing perspectives to use for model training are three, four, seven
and eight, which are the perspectives most perpendicular to the airfoil.

4.1.3. Experiment 2

The second experiment tested the optimal algorithm parameters and showed the de-
tection power of the heuristic method. The sample size for this experiment was 44 defective
and 3 non-defective blades, adding up to 47 blades in total. For each of those blades, two
images—one front perspective (P3) and one back perspective (P7)—were processed. As
seen in Figure 12, the optimal model performs well across different sizes of blades (stages
6 to 9) from both, the front and back perspectives. This is due to the gridding feature
of the detector making the models more resilient to physical size changes of the blades
themselves. Overall, a TP (recall) rate of 83%, FN rate of 17% and precision of 54% were
achieved across a testing dataset of 94 images. This indicates that most of the defects are
being found; however, many false positives show that the increased sensitivity to defects
also increased the false positives. An overall F1-score of 59% was achieved. An F1-Score
of 100% means perfect accuracy and precision, whereas an F1-Score of 0% indicates that
no correct detections were made. The detection performance was consistent among the
different defect types. It is to be noted that detections occurring in the roots of the blades
were not counted as they are excluded by the decision support tool.

The decision support tool was developed as a supplement to further improve the
automated detection system by reducing the number of false positives and improving the
accuracy of the results. The reduced FP rates and F1 scores are presented in Figure 15
(stacked diagrams) and further discussed in Section 4.2.2.

The algorithm parameters used for the detection software are further described in
Figure 16.

4.2. Decision Support Tool
4.2.1. Evaluation Metrics

Both location and size of defect are input variables of the decision support tool, and
thus, their accuracy directly affects its performance. For instance, if the computed defect
location deviates from the true location, it could consequently be allocated to a different
tolerance zone, and hence, incorrect inspection limits would be applied. Likewise, if the
depth were computed incorrectly, the defect might be classified as less or more critical than
it actually is. This would lead to release of an unairworthy part to service, or unnecessary
repair or scrapping of the blade respectively.
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Therefore, it was important to understand the accuracy of the defect characteristics.
Evaluation metrics for defect size estimation and defect location were developed. The
discrepancy in defect size was defined as the absolute error ε between the computed
defect depth dc or height hc and the actual defect depth da or height ha, respectively. The
percentage error δd and δh normalises the error based on the actual defect size, which
represents the error more accurately, in particular when the defect sizes varied quite
significantly. The metrics are defined as
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εd = |dc − da|

εh = |hc − ha|

δd =
∣∣∣ dc−da

da

∣∣∣× 100%

δh =
∣∣∣ hc−ha

ha

∣∣∣× 100%

(5)

Equally, the accuracy of the defect location is determined by comparison of the com-
puted and the actual location. The resulting discrepancy is the absolute error in x-direction
εx and y-direction εy respectively. This can also be expressed as relative location error in in
x-direction δx and y-direction δy. A radial discrepancy measure was introduced, which
takes both, the displacement of the defect location in x- and y-direction into account. The
radial error δr is calculated using the relative Euclidean distance. Equation (6) describes
the metrics further:

εx = |xa − xc|

εy = |ya − yc|

δx =
∣∣ xa−xc

w

∣∣× 100%

δy =
∣∣∣ ya−yc

h

∣∣∣× 100%

δr =
√

δx2 + δy2

(6)

where xa and ya are the actual x- and y-coordinates, and xc and yc are the computed
coordinates of the defect location, respectively. The error in x-direction was calculated
based on the blade width w and based on the blade height h for the discrepancy in y-
direction.

4.2.2. Decision Output and Recommended Maintenance Action

The decision support tool relies on the output (morphology) of the detection software.
The mean deviation of the computed defect location compared to the actual one was 3 pixel
or 0.9% in x-direction and 8 pixel or 1.3% in y-direction. This translates into a mean error
of 9 pixels or 1.6% in radial direction. The defect size had a computation error of 9 pixels or
6.3% for the depth and 35 pixels or 22.4% for the height. Therefore, the defect location was
determined with 98.4% accuracy, while the defect depth estimation was 93.7% accurate.
This performance of the location determination was uniform across all defect positions on
both, leading and trailing blade edges. However, the percentage error tends to be bigger
for shallow defects than for deeper ones. This can be explained by reviewing Equation
(5). If a defect is two pixels in depth, but the software determined it to be three pixels (or
vice versa), then the error rate is 50%. Whereas a large defect of 20 pixels with a one-pixel
discrepancy results in a percentage error of only 5%.

The DST was only able to process positive detections made by the DDS, i.e., true
positives and false positives. Figure 17 lists the computed defect characteristics with their
true values and the discrepancy listed next to it. The DST then processes that information
following the procedure described in Section 3.2.3 and provides a maintenance recom-
mendation. The two right-hand columns compare the maintenance decision made by the
decision support tool with the decision of the human operator. The basis for the evaluation
is the ground truth that was determined by inspection experts. In doing so, they considered
whether the observed condition is an acceptable or repairable defect or if the blade has to
be scrapped. The engine maintenance manual provides details for this determination. The
results show that the DST has recommended the correct maintenance action in most cases.

There is a small but important difference in terminology for different roles: to an
inspector working in MRO, a “condition” on the blade (such as a small nick on the edge)
will only be a “defect” when it exceeds a given size in a given location. In contrast, from
the perspective of the detection software, any geometric anomaly on the edge is considered
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a “defect”. The decision-support tool encapsulates these heuristics and helps determine
whether the condition is acceptable or if the defect has to be repaired or rejected.

Furthermore, the decision support tool was able to reduce the false positives by 16%
by differentiating between the (true) detections that are actual edge defects and (false)
detections on the root caused by the distinctive curved dovetail shape (results in Figure 15).
This is done by taking the location of the computed defect and comparing it against the
upper limit of zone C, which is the one closest to the root (refer to Figure 11 for image
coordinate system). If the detection is located above zone C, then the finding is determined
to be at the root and thus excluded from further processing.
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The detection software had particular difficulties with long smooth edge defects (such
long dents), where the deformation expressed in change in angle is below the threshold
and thus was not detected. A common challenge in inspecting blades for both, neural
networks and image processing is the detection of large material separations (breakage)
typically found at the corners (refer to Figure 5D). Software tends to struggle with those
defects as the algorithm cannot detect continuation of the line [55]. The proposed system
was able to detect correctly all teared-off corners. However, the computed bounding box
was significantly smaller than the actual defect, which resulted in large discrepancies of
the defect size and location in those few cases.

In some cases, a small (absolute) error has no impact on the decision if (a) the predicted
defect location is still in the same zone and (b) the computed defect size is still below the
next higher threshold. Thus, the accuracy of the decision is higher than the accuracy of
the defect location and size as the DST is to some extent error-resistant. When looking
at the results, it was noticeable that the defect height had a much bigger error with a
mean discrepancy of 29%. However, since the defect depth is the decisive measure, an
incorrect estimated defect height has no impact on the decision accuracy. Finally, if both the
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computed and actual defect depth are above the upper tolerance threshold, a discrepancy
has no impact on the decision, since in both cases the blade is to be rejected.

5. Discussion
5.1. Comments on the Defect Detection Software

The introduced defect detection software and decision support tool both have the
potential to reduce the time spent for visual inspection of aero engine components, while
improving the inspection accuracy and decision consistency across inspectors. The inspec-
tion time of the detection software was 186–219 ms per blade. In comparison, the human
operator requires on average 85 s for inspecting a blade during piece-part inspection and
about 3 s for borescope [91]. However, to enable the use of such software, the workflow
of the MRO operations has to be adjusted. The acquisition of images is yet not part of the
inspection process. If in the future blades were also photographed at the point of inspection,
then hypothetically those images could be fed into a system like the proposed one and
used as an independent secondary check.

The inspection of engine blades is a time-consuming and tedious process with over a
thousand blades and vanes to inspect per engine. Thus, another benefit of the detection
software is that it will never get tired or have performance fluctuations related to vigilance.
Humans in contrast are prone to error and human factors, including but not limited to
vigilance problems, fatigue, distraction and most importantly complacency. This creates
the risk of missing critical defects. The proposed system provides a way to reduce this risk.

The software was able to detect “rare” defects. Rare can be defined in two ways:
(a) defect types that are rare on compressor blades, e.g., cracks, which are more common
on blades in the hot section, since heat aggravated the fatigue process. Corrosion is another
uncommon type of defect on compressor blades, but since it is a less critical surface defect,
a different detection approach is required. (b) Small defects can be rare since most blades
with nicks and dents originate FOD engines and are quite severe. Small defects were
included in the experiment. However, since the blade sample provided was relatively
small, there was no rare defect type (crack) present and thus could not be tested.

The shape of the blades is an important factor, which resulted in separate models for
each different perspective being trained. This is because of the non-symmetrical nature
of the blades. This caused increased false positives around the roots of the blades. Due
to the nature of borescope inspections, it is not always guaranteed that the front/back
orientation and the stage number would be easy to discern without significant additional
input from the engineer using the software. Therefore, it is required in the future to
add additional filtering and logic to normalise the orientations and back/front views to
appropriate models.

The main drawback of the proposed solution is the model comparison module, where
only the point densities of each region are being compared. The point densities do not carry
representation of the shape of the points that have been considered suspect. Therefore, the
shape properties and other comparison between them cannot be done. Therein also lies
an issue in which defects that are present near the edges of the regions may not be picked
up as the number of suspect points would be distributed across different grid cells, thus
reducing the number of points per region. This can lead to the problem of those regions
having their suspect point densities falling below the required threshold and therefore
contributing to a false-negative detection.

A potential solution to this issue is to perform DBSCAN clustering before generating
a model and determining the average shape of a defect with the centroid of the cluster
being codified in the grid cells. This would remove the issue of defects being cut off
because some points are not in the correct region. In order to determine average shape, a
similarity-based approach could be used. This has been done in other studies to a high
level of success [92–94]. Furthermore, when comparing a defect cluster to the modelled
cluster a Procrustes analysis [95] might be used to measure shape similarity between the
two clusters. The dissimilarity measure can then be used to determine if an input image
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contains a detected defect that has not been generalised by the model, and label it as such.
This method was not fully implemented by the time the project ended, and as such, an
evaluation on the performance was not possible.

In terms of the overall software solution, the use of open-source libraries and Python
means that the software itself can be implemented without licensing issues in a real-world
solution. Furthermore, the software solution is proof of a positive response. Should appro-
priate optimisation techniques be applied for the parameters, perhaps using experimental
metrics as a loss function, then the performance of the software might be improved.

Future work could include evaluating the accuracy of the bounding boxes the sur-
round a defect, as well as comparing the software performance with the human perfor-
mance for the same data sets. A significant improvement would be the ability to accept
video streams and perform real time processing on borescope videos. Addition of different
defect profile types would allow for an increased scope on the ability to perform defect
detection, as well as performing execution optimisation that would allow multiple profiles
to be used in real time.

While edge defects mainly focus on the continuity of the edges of the blades, sur-
face defects, such as corrosion, airfoil dents and scratches would require computation of
surface meshes and derivations in the geometric representations of the surface as shown
by Barber et al. [96]. Thus, additional image processing modules would be required to
develop the current system into a workable system.

5.2. Comments on the Decision Support Tool

The decision support tool avoids subjectivity in the decision process and incorrect
decision-making when it comes to the serviceability determination of a blade. Generally, in-
spectors are rather risk adverse (low risk appetite) as they know the consequences a missed
defect could have. However, this can lead to costly teardowns and unnecessary scrapping
of airworthy parts, which introduces a high cost to the MRO provider. Thus, the proposed
method supports optimisation of the maintenance processes and operation efficiency.

The proposed method might be transferable to other levels of inspection (refer to
Figure 1) such as module inspection, where the blades are still mounted on the shaft, and
theoretically, an automated image acquisition tool could obtain photographs and forward
them to an automated inspection system for evaluation. This would allow identifying any
blades that are unserviceable (scrap) before the detailed piece-part inspection, and this may
reduce the workload for the operators.

In borescope inspection, the acquisition of images or rather videos is already a well-
established process. The challenge with automating this form of inspection is the incon-
sistent camera position and orientation, in combination with the challenging environ-
ment [8,9]. However, if the image acquisition task could be standardised, the detection
system and decision support tool would have a fair chance to be applied successfully.

The DST counteracts subjective judgement of the human operator and supports
moving away from a “best guess” approach towards a quantifiable and justifiable deci-
sion making process. Ultimately, this could reduce the amount of airworthy parts being
scrapped, while avoiding critical defects being missed.

One limitation of the proposed decision support tool is that it treats all detected defects
as dents and nicks in terms of their inspection limits. It can yet not process tears that always
have to be rejected, independent of the defect size. The reason for this restriction is that
the defect classification was not realised and is future work. Previous research showed
that a rule-based framework could be used to classify defect types [62]. The descriptor
that provides mathematical morphology introduce in Section 3.2.2 is also capable to extract
additional characteristics, including information about the amount of missing material
and edge deformation. This has the potential to be used for such a defect classification
framework based on the characteristic appearance of the defect. Although this has not
been part of this research, therein might lie the advantage that such a classification is
possible even with small datasets, whereas a neural network has to be trained on hundreds



Aerospace 2021, 8, 30 22 of 27

of images. Once the classification has been achieved, the decision support tool can be
advanced by adding different inspection limits for each defect type. For said reasons, the
detection software with its defect characteristics extraction capabilities was kept separately
from the decision support tool to provide more flexibility to use the morphology for other
purposes such as defect classification.

Additional contextual factors could be added to the decision support tool, based
on available data on, e.g., the operational environment, engine history and previous
engine shop visits and repairs. Therein lies the potential of advancing the introduced
decision support tool from an appearance-based diagnosis towards a contextual-based
diagnosis system.

When implementing the decision support tool in the maintenance operations environ-
ment, some considerations towards the total number of allowed defects, per blade, stage
and engine have to be made. This feature was not included in the decision tool.

The defect detection software and decision support tool could be transferred to other
turbo machinery and power generation applications, such as steam turbines. The blades are
quite similar in shape and materials. The decision support tool could also be applied, e.g.,
to wind turbine blade inspection and broader inspection tasks within the manufacturing
industry or to other industries such as medical examination [71].

5.3. Performance Comparison

The recall rate of the proposed detection software in combination with the DST was
82.7%, and the precision was 54.1%. The detection rate is comparable with the performance
of neural networks in the reviewed literature [21,35,42,48], which ranged from 64.4% to
85%. Their performance was highly depended on the chosen deep learning approach and
the specific requirements, i.e., what blades are being inspected, what defect types and
sizes shall be detected and whether it was piece-part, module or borescope inspection.
The detection rates of borescope applications were generally higher than the ones of
piece-part inspection, since videos were being analysed, and a defect was present on, e.g.,
50 individual frames (images). If the defect was detected in at least one frame, it was
classified as TP, and thus, detection rates of 100% could be achieved [43].

Note that there is a lack of consistency when it comes to reporting the performance of
inspection systems. Some researchers only reported the TP rate [35,42] or the FP and FN
rates [20], while others reported the error rate [48], detection rate [21,43] or accuracy [43],
and still, others made it dependent of the defect size and used a probability of detection
curve [33]. For some neural networks, the performance was measured in pixel accuracy,
which describes the quality of the classification rather than the detection [9,47]. This makes
comparison somewhat difficult.

The detection results are also comparable to the human inspector, who has a commonly
quoted error rate of 20% to 30%, or rather a detection rate of 70% to 80% [97,98]. In
aircraft visual inspection in particular, the defect detection rate was stated to be 68% to
74% [42,99]. There is no inspection performance reported in the literature specifically for
blade inspection. Future work could assess the detectability rates of a variety of inspectors
with different experience levels by showing them the same images and make a direct
comparison between the human and software performance.

When it comes to the quality of the defect size estimation, our results were comparable
with other research results. An error rate of less than 13% was achieved. In comparison,
Tang et al. used a Markov algorithm to predict the depth and diameter of defects of similar
size (1–2.5 mm) with a percentage error of 10% [100]. There has been no work found that
specifies the exact location of the detected defect. The results of Kim et al. [43] are presented
in a coordinate system, so that the inspector can read of the values, but this is a manual
process and has not been automated yet.

The proposed system is a first proof of concept, and the accuracy, recall rates and
sensitivity can be further improved. The results indicate that image-processing techniques
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can be used for small dataset and a comparable detection performance to both, neural
networks and human inspectors can be achieved.

6. Conclusions

The objective of this project was to apply image-processing methods to underlay a
decision support tool used in aircraft engine maintenance. Both are heuristic approaches,
as opposed to neural networks, and both showed a promising degree of performance.
As it currently stands, the software solution can use image processing and computer
vision techniques to detect defects on the leading and trailing edges of compressor blades.
The approach has the distinct advantage of requiring a relatively small dataset, while
achieving a detection performance comparable to the human inspector and neural networks.
Furthermore, there are multiple avenues for improvement: optimisation of the algorithm
parameters, implementing a solution to the grid-based analysis issue and incorporating
better defect profiles. Hence, we propose that image-processing approaches may yet prove
to be a viable method for detecting defects.

The work also identifies which viewing perspectives are more favourable for auto-
mated perspectives, namely, those that are perpendicular to the blade surface. While this is
somewhat intuitive, it is useful to have quantified the effect.

A decision support tool was proposed that provides the inspector with a recom-
mended maintenance action for the inspected blade. The rule-based approach was proven
reliable, and any inaccuracies in the decision were caused by discrepancies in the defect
size and location computed by the detections software. Future work could include: incor-
porating different defect types and their corresponding tolerances, enhancing the decision
algorithm by taking into account the findings of several blades and their dependencies,
and integrating the decision support tool into the defect detection software. The proposed
automated systems have the potential to improve the speed, repeatability and accuracy,
while reducing the risk of human errors in the inspection and decision process.
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Appendix A

Figure A1 shows more results of the defect detection software compared to the actual
defect characteristics and the recommended maintenance action of the decision support
tool compared to the decision made by the human operator.
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