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Abstract: In the process of aircraft maintenance and support, a large amount of fault description
text data is recorded. However, most of the existing fault diagnosis models are based on structured
data, which means they are not suitable for unstructured data such as text. Therefore, a text-driven
aircraft fault diagnosis model is proposed in this paper based on Word to Vector (Word2vec) and
prior-knowledge Convolutional Neural Network (CNN). The fault text first enters Word2vec to
perform text feature extraction, and the extracted text feature vectors are then input into the proposed
prior-knowledge CNN to train the fault classifier. The prior-knowledge CNN introduces expert fault
knowledge through Cloud Similarity Measurement (CSM) to improve the performance of the fault
classifier. Validation experiments on five-year maintenance log data of a civil aircraft were carried
out to successfully verify the effectiveness of the proposed model.

Keywords: text-driven; aircraft fault diagnosis; text feature extraction; convolutional neural network;
priori knowledge

1. Introduction

As an extremely complex system, faults often occur on aircraft due to human error,
material defects, manufacturing errors, operating environment fluctuations, etc. [1]. When
these aircraft faults occur, maintainers usually will first subjectively judge the fault type
through experience and then decide what kind of maintenance strategy to adopt. However,
the aircraft system is too complex to judge the fault type accurately based on subjective
experience, especially for young and inexperienced maintainers. Therefore, scholars have
always been actively exploring how to objectively judge the fault type at the data level.

Especially with the development of machine learning and sensor technology, data-
driven fault diagnosis has been developing [2,3]. Data-driven fault diagnosis models are
increasingly proposed. Nguyen et al. [4,5] proposed a magnitude order balance method
to diagnosis quadcopters actuator faults based on sensor data and developed an attitude
fault-tolerant control based on a nonsingular fast terminal sliding mode and a neural
network to compensate the actuator fault. Gao et al. [6] proposed a novel artificial neural
network model by fusing a Deep Belief Network (DBN) and a Quantum Inspired Neural
Network (QINN) and injected four fault modes to structure an aircraft fuel system fault
diagnosis model based on oil pressure data. Shen et al. [7] developed a novel hybrid multi-
mode machine learning framework by exploiting inherent embedded health information
contained in Input or Output (I/O) sensor data to monitor aircraft gas turbine engine
health status, which effectively improved the accuracy of fault diagnosis.
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Although these data-driven aircraft fault diagnosis models have shown good effects,
they are mostly based on structured data. As unstructured data cannot be directly rec-
ognized by computers, aircraft fault diagnosis driven by unstructured data represented
by text and image has not been widely studied. However, in real life, most data tend
to be unstructured or semi-structured [8]. Especially in the life cycle of aircraft, ample
maintenance and support textual data are recorded in every aircraft fault maintenance
activity. These aircraft fault texts usually record the abnormal working state, the fault
phenomenon, and other aircraft fault knowledge, which can be used to judge the fault type.
However, with no effective processing technology, such aircraft fault description text is not
utilized effectively, which results in great waste.

Based on the above problems, we establish the research objective of this paper, which
is to develop an effective aircraft fault diagnosis model based on text data to make full use
of aircraft fault-description text data and improve the level of aircraft fault diagnosis. To
achieve the above research objective, Word2vec as a text feature extraction algorithm is
used to solve the problem that the computer cannot recognize the text data directly. A novel
prior-knowledge CNN is proposed to construct a classifier for improving fault diagnosis
accuracy. We carried out verification experiments on the five-year maintenance log data of
a civil aircraft to verify the effectiveness of the proposed text-driven aircraft fault diagnosis
model. Based on the research objective and plan, the main contributions of this work are to
structure a novel text-driven aircraft fault diagnosis model and propose a prior-knowledge
CNN classifier, which introduces an expert fault knowledge base composed of historical
fault text data judged by experts as prior knowledge.

The merits of our model are:

(1) as a data-driven model, the proposed aircraft fault diagnosis model can automatically
and quickly judge which failure type the failure described in the text belongs to once
a failure-description text is entered from an objective point;

(2) Word2vec as a more efficient method is used to do text feature extraction instead of
the traditional Term Frequency & Inverse Document Frequency (TF-IDF) and Latent
Dirichlet Allocation (LDA);

(3) a novel prior-knowledge CNN is proposed by introducing the expert fault knowledge
to improve the accuracy of fault diagnosis.

The remainder of this paper is organized as follows:

1. Section 2 presents a literature review of text feature extraction and CNNs.
2. In Section 3, the proposed text-driven aircraft fault diagnosis model is first discussed

and the three core parts of the model, including text data preprocessing, Word2vec
text feature extraction, and the prior-knowledge CNN, are then explained in detail.

3. Section 4 describes the experiment and discusses the experimental results.
4. Section 5 provides conclusions.

2. Literature Review
2.1. Text Feature Extraction

Text feature extraction is used to transform text data into a structured format to solve
the problem that computers cannot directly recognize unstructured data such as text [9].
At present, the vector space models are widely used for the structured processing of text
data [10]. TF-IDF [11] and LDA [12] are two typical vector space models. They are also
widely used in text-driven fault diagnosis models. Rodrigues et al. [13] used TF-IDF
and Multilayer Perceptron (MLP) to perform aircraft interior failure pattern recognition.
Wang et al. [14] used LDA and a Support Vector Machine (SVM) to develop a fault diagnosis
model for railway systems. TF-IDF and LDA are easy to operate and run efficiently.
However, TF-IDF generates a word vector without considering the context and easily leads
to dimension explosion [15]. Although LDA considers the context, as an unsupervised
algorithm, there is blindness in the process of word vector generation [16]. To solve the
shortcomings of TF-IDF and LDA, Zhou et al. [14] proposed a fusion feature extraction
model called TI-LDA, based on TF-IDF and LDA, and applied it to text-driven aircraft fault
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diagnosis. TI-LDA not only considers context and word order, but also avoids ambiguity.
However, TI-LDA still has the problem of dimension explosion. To solve the above
problems, Mikolov et al. [17] proposed the Word2vec text feature extraction algorithm.
Word2vec adopts a three-layer neural network trained by inputting the context words to
predict the current word or inputting the current word to predict the context words to
map words into a low dimensional vector space, which means Word2vec does not cause
dimension explosion while considering context and word order [18]. Therefore, Word2vec
is widely used in the field of fault diagnosis and has made good progress. Chang et al. [19]
applied the Word2vec moving distance model to obtain a failure occurrence sequence,
which effectively improves the accuracy of fault diagnosis. Bai et al. [20] used Word2vec to
extract the power grid system alarm text feature, which was put into an ensemble classifier
to perform power grid system fault diagnosis, and their experimental result shows the
proposed model has a good identification effect.

2.2. CNN

The CNN is a well-known deep learning framework inspired by the natural visual
perception mechanism of living creatures [21]. Since LeCun et al. [22] published the sem-
inal paper establishing the modern framework of the CNN in 1990, it has been used in
image recognition [23], real-time object detection [24], time series prediction [25], etc. Since
deep learning theories have reformed the traditional fault diagnosis in the 2010s [26,27],
the CNN, as a deep learning algorithm, is also widely used in the field of fault diagno-
sis. Eren et al. [28] developed a generic real-time bearing fault diagnosis approach from
raw time series sensor data based on a one-dimensional CNN classifier. In the study of
Zhong et al. [29], a transfer learning method was investigated based on a CNN and an SVM
for gas turbine fault diagnosis under a small fault sample condition. Zhao et al. [30] pro-
posed a normalized CNN for the rolling bearing diagnosis of different fault severities and
orientations under scenarios of data imbalance and variable working conditions. Although
these single CNN models have achieved certain results, the prior-knowledge CNN has been
shown to be more effective. Ma et al. [31] encoded expert prior knowledge into Regional
Convolutional Neural Networks (R-CNN), which effectively improved the accuracy of
facial action unit recognition. In Wei’s work [32], an end-to-end weak scratch model is built
by embedding prior knowledge into an encoder-decoder CNN to significantly improve the
accuracy of the weak scratch inspection of optical components. These studies show that
the prior-knowledge CNN is more effective than a single CNN.

3. Methodology

To make full use of aircraft fault text, a novel text-driven aircraft fault diagnosis model is
proposed based on the Word2vec text feature extraction algorithm and a prior-knowledge
CNN classification algorithm. The construction process of the proposed aircraft fault diagnosis
model is shown in Figure 1. Firstly, text data preprocessing is carried out for the input aircraft
fault text data, and this includes eliminating the repeated data, eliminating the missing data,
performing word segmentation, and removing stop words. Secondly, the preprocessed text
data is mapped to the word vector space by Word2vec to obtain the aircraft fault text vector
data. Finally, the aircraft fault text vector data enters the prior-knowledge CNN model to
train the classifier. The trained prior-knowledge CNN classifier can automatically give the
corresponding fault type, on the premise of inputting an aircraft fault description text, to
realize the intelligent aircraft fault diagnosis. The three parts of the text-driven aircraft fault
diagnosis model, including text data preprocessing, Word2vec text feature extraction, and the
prior-knowledge CNN, will be described in the following.
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3.1. Text Data Preprocessing

Text data preprocessing is quite different from structured data preprocessing. Text
data not only needs to perform normal preprocessing such as eliminating the repeated and
missing data, but also needs to remove stop words. Stop words mainly refers to emotional
particles and punctuation marks in the text, which have no contribution to the semantic
expression. The existence of stop words will not only lead to a virtual high dimension of
text feature vectors, but also interfere with the training of the classifier. Therefore, the stop
word must be removed for text data.

In addition, for special language texts such as the Chinese text data used in this paper,
word segmentation is also needed before removing the stop words. There is no clear sepa-
ration mark between words in Chinese text, but a continuous string of Chinese characters.
Word segmentation is the first step in Chinese text processing, which refers to the segmen-
tation of sentences in the text into words through certain rules and methods. Common
word segmentation methods mainly include dictionary-based word segmentation methods,
statistics-based word segmentation methods, and rule-based statistical methods [33]. At
present, the application effect is better, and the most widely used process is the word
segmentation method based on dictionaries such as Jieba. The Jieba word segmentation
tool is based on the Trie tree structure [34] and uses dynamic programming to find the
maximum probability path to obtain the word segmentation results. It uses the Hidden
Markov Model (HMM) [35] and the Viterbi [36] algorithm to identify unregistered words
and can improve the disambiguation and unambiguousness in a custom way. Liu et al. [37]
proposed a new approach to process unknown words in financial public opinions with
Jieba. Yu et al. [38] proposed to explicitly display the central words of a movie through a
combination of Jieba lexicon. For the problem of log Chinese text word recognition, Jieba is
currently the most effective tool.

3.2. Text Feature Extraction Based on Word2vec

Since TF-IDF easily leads to dimension explosion and LDA tends to be ambiguous,
Word2vec is used in this paper to perform text feature extraction. Word2vec is a neural
network probabilistic language model proposed by Mikolov et al. [17] and is mainly used
to realize the transformation of text information from an unstructured form to a vectorized
form [39]. Compared with the traditional high-dimensional TF-IDF word vector, the
dimension of the Word2vec word vector is usually 100–300. A low word vector dimension
can greatly reduce computational complexity and the risk of dimension explosion. In
addition, the Word2vec word vector is calculated according to the context and word order,
which fully captures the semantic information of the text. As a result, Word2Vec has been
widely used and studied since its release. Based on the different ways of training word
vectors, Word2vec can be divided into two models, the Skip-Gram-Continuous Model
(Skip-gram) and the Continuous Bag-of-Words Model (CBOW). Skip-Gram inputs the
current word to predict the surrounding words, while CBOW inputs the surrounding
words to predict the current word. In comparison, the CBOW model is more effective in
processing small corpora, while the Skip-Gram model is more suitable for processing large
corpora. The aircraft maintenance text log used in this paper is a typical small corpus, so
CBOW is more suitable for text feature extraction in our study.
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The core idea of the CBOW model is to input the set of surrounding 2c words
Context(w) = {Context(w)1, Context(w)2, . . . , Context(w)2c} to predict the current word
w. 2c means to take c words forward and c words backward with w as the center. As shown
in Figure 2, CBOW is a three-layer neural network, including the input layer, projection
layer, and output layer.
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Input Layer: One-hot encoding vectors of 2c words in Context(w), namely v(Context(w))
= {v(Context(w)1), v(Context(w)2, . . . , v(Context(w)2c)}.

Projection Layer: 2c vectors are added to the input layer to obtain Xw, namely Xw =
2c
∑
1

v(Context(w)i).

Output Layer: The output layer corresponds to a binary tree, with the words appearing
in the corpus as leaf nodes, and the times of each word appearing in the corpus as weight
to construct a Huffman tree. In the Huffman tree, there are n leaf nodes (n = |D|),
corresponding to the words in dictionary D, and n− 1 none-leaf nodes.

For the corpus C, the objective function of CBOW is usually the logarithmic likelihood
function shown in Equation (1), which means the probability that the current word is w
when Context(w) is known is maximized.

c = ∑
w∈c

log p(w|Context(w) ) (1)

For any word w in the dictionary D, there must be a unique path Pw from the root node
to the w node in the Huffman tree. There are |Pw| − 1 branches on path Pw. If each branch
is regarded as a binary classification, then each classification will produce a probability.
Multiplying these probabilities is the required p(w|Context(w)) . The stochastic gradient
ascent algorithm is then used to maximize the objective function. Finally, the vector on the
leaf nodes of the Huffman tree in the output layer is the final word vector of w.

3.3. Prior-Knowledge CNN Based on Cloud Similarity Measurement (CSM)

A prior-knowledge CNN model is used to construct the classifier in this paper. Differ-
ent from the traditional CNN model, the expert prior knowledge, which mainly refers to
the expert fault knowledge base, is encoded into the prior-knowledge CNN model. Mean-
while, a similarity measure algorithm named Cloud Similarity Measurement (CSM) [40,41]
is introduced to quantify the similarity between the text to be classified and the historical
fault text in the expert fault knowledge base.
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3.3.1. CNN Algorithm

This paper uses maintenance log data with tags. The supervised learning algorithm
is more suitable for the application scenarios and data characteristics of this paper. Com-
mon supervised learning algorithms include the Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM), and the Support
Vector Machine (SVM). The CNN refers to those neural networks that use convolution
operations in at least one layer of the network to replace general matrix multiplication
operations. Its goal is to learn local neighborhood matching through nonlinear mapping
to achieve data dimensionality reduction. In this way, the number of parameters to be
learned will be greatly reduced due to the shared convolutional layer filter weight. The
CNN is more suitable for the high-dimensional characteristics of unstructured data. As a
deep learning algorithm, the CNN has been successfully applied in fields such as natural
language processing, image processing, and video processing. Jin et al. [42] used a deep
convolutional neural network to solve inverse problems in imaging. Acharya et al. [43]
proposed an algorithm for the automated detection and diagnosis of seizure using Elec-
troencephalogram (EEG)signals with a convolutional neural network. Poria [44] presented
the first deep learning approach to aspect extraction in opinion mining with a CNN.

The CNN is a feed-forward neural network, which is mainly based on three basic
concepts: a local receptive field, weight sharing, and pooling. The local receptive field reduces
the weight parameters that need to be trained by mapping each neuron to a local feature.
Weight sharing ensures that all neurons in the same convolution kernel have the same weight,
thereby greatly reducing the number of training parameters in the network. Pooling can
reduce the scale of features and ensure the invariance of features. Therefore, a CNN can
guarantee the robustness of input features in displacement, tilt, scaling, or other deformations.

A CNN consists of input layer, convolutional layer, pooling layer, fully connected
layer, and output layer. From the point of view of data processing, the overall structure of a
CNN can be divided into two parts: one is responsible for feature extraction, including the
input layer, the convolutional layer, and the pooling layer; the other is responsible for data
classification, including the fully connected layer and the output layer. The convolutional
layer and the pooling layer are feature extractors in CNN. They will extract potential
features from the original data, and the fully connected layer is the CNN classifier, which
uses the features obtained from the last pooling layer as input for classification. The CNN
structure is shown in Figure 3.
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Generally speaking, multiple convolutional layers can be included in the CNN struc-
ture. These convolutional layers perform local feature detection on the data of the previous
layer (not necessarily the input layer) and store the detection results as a feature map. A
convolutional layer usually has multiple different convolution functions (i.e., convolution
kernels) to try to find different potential features in the input data.
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Assuming that the input data of the convolution layer is a two-dimensional matrix,
the output result of the convolution kernel can be obtained by Equation (2):

yij = σ(
F

∑
r=1

F

∑
c=1

wrcx(r+i×S)(c+j×S) + b), (0 ≤ i ≤ H − F
S

, 0 ≤ j ≤ W − F
S

) (2)

where yij is the value of an output point in the feature map; H and W are the vertical and
horizontal dimensions of the input data; F represents the length and width of the convolu-
tion kernel; S represents the step size of the convolution kernel to move once; x(r+i×S)(c+j×S)
represents the value of the input data at the coordinate (r + i× S)(c + j× S); b and wrc
represent the offset and the weight at coordinates (r, c), respectively; σ represents any
nonlinear activation function used for feature extraction.

The pooling layer is usually located behind the convolutional layer. The pooling layer
takes the output of the convolutional layer as its input and reduces the dimensionality
of the feature data by performing regional aggregation on the feature map output by the
convolutional layer. Maximum pooling is simply to select the maximum value in the area
through a filter of size. Mean pooling is to calculate the average of all feature values in the
current area.

LP(x) = ( ∑
x(i,j)∈x

x(i, j)P)
1/P

(3)

where P represents the pooling parameter, P = 1 represents the mean pooling, and P = ∞
represents the maximum pooling. In fact, the pooling layer extracts the feature data twice, which
reduces the complexity of the model while still retaining a large amount of original information.

The fully connected layer is similar to the multilayer perceptron, and the neurons
between adjacent layers are interconnected in pairs. The fully connected layer integrates
the local feature information extracted by the convolutional layer and the pooling layer
and then generates classification features that can be processed by the output layer.

yl = f (wl × yl−1 + bl) (4)

where f (·) represents the activation function of the fully connected layer; yl represents the
output value of the lth layer; yl−1 represents both the input of lth layer and the output value
of (l − 1)th layer; wl and bl , respectively, represent the weight and offset of the lth layer.

3.3.2. Text Similarity Measurement Based on CSM

This paper introduces the CSM to quantify the degree of similarity between the text to
be classified and the historical fault text. The CSM algorithm comes from the cloud model
and is used to describe the differences between different clouds. In data mining, the CSM
algorithm can overcome the shortcomings of Euclidean distance, Dynamic Time Warping
(DTW) distance, and classical method mode distance in the similarity measurement of two
time series, so as to achieve better measurement accuracy. CSM is composed of a reverse
cloud generation algorithm including two parts: the cloud characteristic vector and the
angle cosine.

For the input fault text description data Aj = (a1, a2, · · · , aN) and fault text description
data Bk = (b1, b2, · · · , bM), where N and M are the data lengths of Aj and Bk, the calculation
process of the CSM algorithm is as follows:

(1) Calculate the expected value of Aj:

−
A =

1
n

n

∑
j=1

Aj (5)

First-order center distance:
.
A =

1
n

n

∑
j=1

∣∣∣∣Aj −
−
A
∣∣∣∣ (6)



Aerospace 2021, 8, 112 8 of 15

Sample variance:

S2 =
1

n− 1

n

∑
j=1

∣∣∣∣Aj −
−
A
∣∣∣∣2 (7)

(2) Calculate the expected value EA of the cloud model:

EA =
−
A (8)

(3) Calculate the characteristic entropy of Aj:

En =

√
π

2
· 1

n

n

∑
j=1

∣∣Aj − EA
∣∣ (9)

(4) Calculate the super entropy of Aj:

He =
√

S2 − En2 (10)

where EA, En, and He are used to describe the overall characteristics of Aj. The cloud

vector of Aj is then
→
υj = (EAj , Enj , Eej). Similarly, the cloud vector of another data

set Bk is
→
υk = (EBk , Enk , Eek ). The cosine value of the cosine angle between two cloud

vectors is expressed as the similarity of the two sequences:

simjk = cos(
→
υ j,
→
υ k) =

→
υ j ×

→
υ k

→
υ j
→
υ k

(11)

It can be seen in Equation (11) that simjj = simkk = 1; that is, the similarity between
the cloud vector and itself is 1. At the same time, simjk = simkj; that is, the similarity
satisfies the symmetry.

3.3.3. Construction of Prior-Knowledge CNN

Based on the CNN and CSM, this paper proposes a prior-knowledge CNN model to
construct the classifier. Its core principle is to use expert prior knowledge to modify the
prediction results of the CNN. The principle to judge whether a text is modified is whether
the prediction accuracy of the CNN is lower than the maximum CSM similarity between
the text and the expert knowledge base. Therefore, the realization of the prior-knowledge
CNN generally includes three parts: training the CNN classifier, calculating the CSM text
similarity, and fixing the prediction results. The specific structure of the prior-knowledge
CNN model is shown in Figure 4, which mainly includes the following steps:

(1) Firstly, the text data set D is divided into training set Ds and test set DT according to
a certain proportion.

(2) Second, the training set Ds enters the CNN to train the initial CNN classifier, and the
test set DT enters the initial CNN classifier to test the classification accuracy Acc of
the initial CNN classifier.

(3) Thirdly, for any fault text vector i in the test set DT , it is put into the initial CNN
classifier to obtain the initial predictions fault type FCi. Acc and FCi make up the
tuple (Acc, FCi).

(4) Fourthly, the similarity between the fault text vector in the expert fault knowledge
base E and fault text vector i to be classified is calculated to obtain the similarity set
Si = {Sim1i, Sim2i, . . . , Simmi}(m = |E|). The maximum value of set Si is taken to
obtain Simji = Max(Si) (j ∈ [1, m]). Simji and FSj make up the tuple (Simji, FSj).
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(5) Fifthly, the operation shown in Equation (12) is performed on (Acc, FCi) and (Simji, FSj)
to obtain the final fault type Fi corresponding to the fault text vector i.

Fi =
{

FCi, Acc ≥ Simji
FSj, Acc < Simji

(12)
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Finally, Steps (3), (4), and (5) are performed for each text in the test set to complete the
correction of the initial CNN classifier.

4. Experiments and Result Analysis

To verify the effectiveness of the proposed aircraft fault diagnosis model, verification
experiments were carried out on a real aircraft fault text data set, which is comprised of
five-year maintenance log data of Chinese text from a civil aircraft. After data cleaning,
more than 50,000 aircraft fault texts were obtained, some of which are shown in Table 1.
The second column in the table records the contents of the aircraft fault description text,
and the third column records the fault type corresponding to the aircraft fault description
text. For the aircraft fault text data set used in this study, a total of 10 fault types are
involved. To facilitate the follow-up processing, we coded the 10 fault types as follows:
sensor fault (0), circuit fault (1), equipment ablation (2), resistance fault (3), mechanical
fault (4), equipment aging (5), lamp fault (6), indicator fault (7), computer fault (8), and
switch fault (9). According to the proposed aircraft fault diagnosis model construction
process, the validation experiment mainly includes text data preprocessing, Word2vec text
feature extraction, and construction of the prior-knowledge CNN classifier.

Table 1. Examples of aircraft fault text.

Text Number Content Fault Type

1 Compressor bladed was broken and the rotor was stuck. Mechanical fault (4)
2 The booster switch cannot be closed, resulting in a broken motor shaft. Switch fault (9)
3 Low output voltage due to resistance fault. Resistance fault (3)

4 The vibration meter amplifier of Engine 4 did not indicate, the light did
not work, and there was an internal fault. Indicator fault (7)

5 Oil pipe aging led to oil leakage of Engine 3’s hydraulic oil inlet pipe. Equipment aging (5)
. . . . . . . . .
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1. Text data preprocessing
As the five-year maintenance log data is comprised of Chinese text, word segmentation

needs to be performed, and stop words need to be removed before further processing.
Therefore, we first used Jieba to segment the Chinese fault description text and then
removed the stop words in the fault description text. The text data obtained after the above
preprocessing operation is shown in Table 2. Compared with the original data in Table 1,
the stop words in the Chinese fault description text have been removed, and separators
have been added between words.

Table 2. Examples of aircraft fault text after preprocessing.

Text Number Text Preprocessing Result

1 Compressor/bladed/broken/rotor/stuck
2 booster switch/cannot/closed/resulting in/motor shaft/broken
3 Low output voltage/due to/resistance fault

4 vibration meter/amplifier/Engine 4/did not/indicate, light/did not
work/there was/internal fault

5 Oil pipe/aging/led to/oil/leakage/Engine 3/hydraulic/oil inlet pipe
. . . . . .

2. Word2vec text feature extraction
Since the computer cannot directly process the text, it is necessary to perform text

feature extraction to transform the text data into a structured format after text preprocessing.
Word2vec is used to extract the text features, and the results are shown in Table 3. It can be
seen that the aircraft fault text is mapped to a 100-dimensional vector space.

Table 3. Aircraft fault text feature vector extracted by Word to Vector (Word2vec).

Number
Dimension

1 2 3 4 . . . 98 99 100

1 0.0224 0.1750 0.1249 0.1361 . . . 0.0854 0.0536 0.0307
2 0.0123 0.1364 0.0933 0.1007 . . . 0.0560 0.0345 0.0208
3 0.0166 0.1335 0.0940 0.0993 . . . 0.0601 0.0372 0.0183
4 0.0090 0.1133 0.0750 0.0776 0.0497 0.0262 0.0221
5 0.0080 0.1236 0.0874 0.0948 . . . 0.0505 0.0313 0.0263

. . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Constructing the prior-knowledge CNN classifier
As mentioned above, the construction of the prior-knowledge CNN mainly includes

three parts: training the CNN classifier, calculating the CSM text similarity, and fixing the
prediction results. Therefore, we first put the text vector data extracted by Word2vec into the
CNN for training and tested the trained CNN with the test set to obtain Acc = 0.9623. The
similarity between the fault text vectors in the test set and the expert fault knowledge base
by CSM was then calculated, and the similarity (0–1) value is shown in Table 4. Finally, the
predicted values of the test set were fixed by comparing the size relationship between the
CNN classification accuracy Acc and the maximum similarity Simji. Taking the No.2 text in
the test set as an example, the CSM similarity values between the No.2 text and the 10 fault
types in the expert knowledge base are 0.8154, 0.6126, 0.2278, 0.7386, 0.6260, 0.8790, 0.9900,
0.4981, 0.5860, and 0.6609. The maximum is 0.9900. As 0.9900 is greater than 0.9625, the fault
type of the No.2 text is corrected to lamp fault (6). The above operations were performed on
each text in the test set to complete the training of the prior-knowledge CNN classifier.
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Table 4. CSM similarity between test set and expert fault knowledge base.

Number
Fault Type

0 1 2 3 4 5 6 7 8 9

1 0.9523 0.8645 0.8748 0.9845 0.8412 0.6312 0.7412 0.8936 0.8512 0.9621
2 0.8154 0.6126 0.2278 0.7386 0.6260 0.8790 0.9900 0.4981 0.5860 0.6609
3 0.9889 0.5277 0.9009 0.7298 0.0005 0.4795 0.5747 0.6664 0.8908 0.8654
4 0.8013 0.8452 0.0835 0.9823 0.9283 0.8449 0.6352 0.2819 0.2055 0.0170

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To verify the superiority of the proposed aircraft fault diagnosis model, our aircraft
fault diagnosis model based on Word2vec and the prior-knowledge CNN was compared
with Rodrigues’s [13] aircraft fault diagnosis model based on TF-IDF and MLP and with
Wang’s [14] aircraft fault diagnosis model based on LDA and SVM. Seven control groups
and an experimental group were designed. Common classification indicators including
Accuracy (Acc), F1 Score (F1), and Area Under Curve (AUC) were used to evaluate the
performance of these classifiers. The results are shown in Table 5. We can see clearly that
all the classification indicators of the proposed aircraft fault diagnosis model based on
Word2vec and the prior-knowledge CNN are very high and better than the other five
models, which proves the superiority of the aircraft fault diagnosis model proposed in this
paper. By comparing the experimental results of Groups C, D, and E, it can also be seen
that Word2vec can indeed improve the performance of the classifier compared with TF-IDF
and LDA. It can also be seen that the proposed prior-knowledge CNN is better than MLP,
SVM, and CNN on Acc, F1, and AUC by comparing the experimental results of Groups E,
F, G, and H.

To study the effect of the expert fault knowledge base for different types of fault
diagnosis, this study compares the confusion matrix and ROC curve of the initial CNN
classifier and the prior-knowledge CNN classifier under different fault types, as shown
in Figure 5. As shown in the figure, the diagnosis accuracy of the prior-knowledge CNN
classifier is higher than that of the initial CNN classifier for each fault type, except for
mechanical fault (4). Among them, the prior-knowledge CNN improves the accuracy of
switch fault (9) diagnosis the most. Therefore, the switch fault (9) knowledge of the expert
fault knowledge base is relatively complete, while the mechanical fault (4) knowledge
needs to be supplemented. This means that a high-quality expert fault knowledge base
is the key to further improving the performance of the proposed aircraft fault diagnosis
model based on Word2vec and the prior-knowledge CNN.

Table 5. Comparison table of the classifier evaluation results.

Group ID Method Acc F1 AUC

A TF-IDF + MLP 0.8325 0.8169 0.8187
B LDA + SVM 0.8946 0.8721 0.8825
C TF-IDF + CNN 0.8735 0.8224 0.8465
D LDA + CNN 0.9364 0.9105 0.9476
E Word2vec + CNN 0.9623 0.9647 0.9587
F Word2vec + MLP 0.8568 0.8678 0.8628
G Word2vec + SVM 0.9251 0.9168 0.9176
H Word2vec + Priori-knowledge CNN 0.9742 0.9740 0.9844
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5. Conclusions

The lack of effective technical means leads to the substantial waste of aircraft fault
description text. Therefore, a text-driven fault diagnosis model was developed in this study
based on Word2vec, a CNN, and CSM. Word2vec is used to perform text feature extraction,
while the CNN and CSM are used to build the prior-knowledge CNN classifier. The main
contribution of the proposed prior-knowledge CNN is that it is encoded into the expert
fault knowledge by CSM similarity between the text to be classified and the historical fault
text in the expert fault knowledge base to improve the accuracy of aircraft fault diagnosis.
According to the experimental results on five-year maintenance log data comprised of
Chinese text from a civil aircraft, we can draw the following conclusions:

(1) The proposed aircraft fault diagnosis model based on Word2vec and the prior-
knowledge CNN reached 0.9742, 0.9740, and 0.9844 in Acc, F1, and AUC, respectively.
The accuracy is more than 97%, so the fault type can be accurately judged according
to the fault description text by this model.

(2) For this study, Word2vec is a more effective text feature extraction method compared
with TF-IDF and LDA and it can improve the performance of the classifier.

(3) The CNN classifier is better than the MLP classifier and the SVM classifier for the
performance indicators of Acc, F1, and AUC. Introducing expert fault knowledge to
the CNN by CSM can further improve the accuracy of fault diagnosis.

(4) A high-quality expert fault knowledge base is the key to further improving the
performance of the prior-knowledge CNN classifier.



Aerospace 2021, 8, 112 13 of 15

Compared with similar work [13,14], we innovated in the following aspects:

(1) A new text-driven aircraft fault diagnosis framework based on Word2vec and the
prior-knowledge CNN is proposed in this paper, and it has a higher fault diagnosis
accuracy compared with the previous text-driven aircraft fault frameworks.

(2) To further improve the accuracy of fault diagnosis, a more efficient Word2vec method,
instead of the traditional TF-IDF and LDA methods, is used to extract text features.

(3) A novel prior-knowledge CNN is proposed in this paper by fusing a CNN and CSM,
which improves the performance of the CNN classifier and is much better than the
traditional MLP and SVM classifiers.

(4) The text-driven aircraft fault diagnosis model developed in this paper can process not
only English text but also Chinese text.

In summary, the text-driven fault diagnosis model based on Word2vec and the prior-
knowledge CNN proposed in this paper can exactly judge the fault type according to the
aircraft fault description text to realize the full mining and application of maintenance log
data and provide support for aircraft maintenance. In the future, we can fuse the structured
data and the unstructured data for fault diagnosis, so that we can easily find the cause of the
fault at the data level and explain the specific mechanism of the fault at the mechanism level.
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