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Abstract: Film cooling effectiveness can be improved significantly by embedding a round hole in
trenches or craters. In this study, film cooling performances of a transverse trench, W-shaped trench
and elliptic trench were compared and analyzed in detail. The CFD models for trench film cooling
were established and validated via the experimental results. Inside the transverse trench, a pair of
recirculating vortices is formed, which promotes the coolant spreading in a lateral direction. The
decrease of trench width and increase of trench depth both improve the film cooling effectiveness of
the transverse trench. For the W-shaped trench, the guide effect of the corner angle further improves
the lateral spreading capability of coolant and generates higher cooling effectiveness than a transverse
trench with the same depth and width. The flow characteristics of the elliptic trench are similar to that
of the round hole, and the kidney vortex pair takes a dominant role in the flow fields downstream of
the coolant exit. Accordingly, the elliptic trench generates the worst cooling performance in these
shaped trenches. The increase of trench depth and decrease of trench width both result in an increase
of the discharge coefficient for trench film cooling. For the W-shaped trench, the increase of the corner
angle causes a decrease of the discharge coefficient. For the elliptic trench, the discharge coefficient
increases with the decrease of the elliptic aspect ratio (major axis/minor axis).

Keywords: film cooling; shaped trench; CFD; adiabatic film cooling effectiveness; discharge coefficient

1. Introduction

To increase output efficiency, gas turbines are usually operated at the temperature
higher than the maximum allowable value for materials. To avoid the thermal damage of
the airfoil, various cooling strategies such as film cooling, impingement cooling and pin fins
are applied. In the external film cooling process, coolant air extracted from the compressor
is ejected through inclined holes and forms a coolant film on the airfoil surface [1]. The
coolant film not only cools the airfoil surface, but also reduces the heat flow from the
mainstream to hot-section surface. However, for a traditional inclined cylindrical hole,
the coolant injection tends to separate from the downstream wall, especially at high jet
momentum, and the spanwise coverage of the coolant is also weak. This causes low
area-averaged film cooling effectiveness [2,3].

To improve the spanwise coverage of coolant, one approach is to change the hole
geometry from round to shaped outlet [4,5]. The transition from cylindrical inlet to shaped
outlet results in a decrease of outlet coolant momentum. Flow deceleration in the hole
diffuser section also promotes the spanwise spreading of coolant, which improves cooling
performance. Accordingly, to get the same cooling effectiveness, the coolant consumption
decreases. Over the past 40+ years, many different outlet shapes for film cooling holes
have been proposed [2,3]. However, because of the limitation of manufacturing conditions,
shaped hole technology has not been widely used in practice.
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A certain configuration by embedding a round hole in a transverse trench generates
similar cooling performance to shaped holes. As trench configuration can be fabricated
via thermal barrier coating (TBC), trench film cooling is more practical compared with
other shaped holes [6]. Moreover, transverse trenches with the compound angle injection
of a round hole or shaped hole can further improve film cooling performance [7,8]. A
trench study on a flat plate was performed by Bunker [9]. He reported that, at high jet
momentum, the coolant can still attach closely to the surface. This result is confirmed by
Harrison and Bogard [10] and Lu et al. [11–13]. The CFD and experimental results from
Lu et al. [11–13] showed that, compared with a round hole, higher film effectiveness and
heat flux reduction can be generated by embedding a round hole in a trench. Moreover,
the heat transfer coefficient does not change obviously after introducing a trench. Trench
film cooling on the vane surface was studied by Waye and Board [14]. As the trench width
decreases, the cooling effectiveness increases. Even at high jet momentum, the mainstream
can suppress the coolant jet ejected from the trench on the vane surface effectively. The
influences of trench geometries on temperature distribution on a TBC coated vane were
investigated by Davidson et al. [15]. Their results showed that, compared with round holes,
trenches and craters can generate much better coolant coverage, however, temperature
at the interface of the vane and TBC only shows a slight decrease. Lee and Kim [16] also
conducted parametric studies on trench film cooling. A trench height of 1 diameter and
trench width of 2 diameter of the round hole generates the highest cooling effectiveness
both at low and high jet momentums. Moreover, reverse injection of coolant can improve
the film cooling performance.

Besides transverse trenches, some other shaped trenches are also proposed and have
been proved to generate higher film cooling effectiveness than traditional round holes [17].
Lu et al. [18] tested film the cooling effectiveness of a round hole embedded in the elliptic
crater. Their experimental results show that, compared with round holes, crater film cooling
generates a higher heat transfer coefficient and cooling effectiveness. Dorrington et al. [19]
also concluded the crater hole generates lower cooling effectiveness than the trench configu-
ration, but higher effectiveness than cylindrical holes. Kross and Pfitzner [20,21] found that
placing a tetrahedral element upstream of the trench can improve the cooling performance
by reducing the coolant-mainstream mixture within the trench and improving lateral
coolant spreading. Wei et al. [22] and Zhang et al. [23] developed double- and sine-wave
trenches, and the influences of wave geometries on cooling effectiveness were studied.

In the present study, a systematic parametric study is performed for trench or crater
film cooling. CFD models for a transverse trench, W-shaped trench and elliptic trench
were established and validated using the experimental results. The flow mechanisms and
cooling performances with different trench shapes were analyzed in detail.

2. Computational Model
2.1. Computational Domain

As illustrated in Figure 1, the computational domain consists of a mainstream channel,
coolant channel, cylindrical hole and shaped trench. The cylindrical hole has an inclination
angle of 30◦ and diameter of 5.0 mm. The total height including the cylindrical section
and shaped trench, ht, is 3d. The width of the mainstream and coolant channel is 3.0d. The
coordinate origin locates at the trench exit center, and the x, y and z axes correspond to
streamwise, spanwise and vertical direction, respectively. Three kinds of shaped trenches,
a transverse trench, W-shaped trench and elliptic trench, were investigated. The geometries
of the trench such as depth (h), width (w), corner angle (α) and axis length (Dx, Dy) are
defined in Figure 1. The changing interval of these parameters are listed in Table 1.
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Figure 1. Computational domain and geometric variables for trench holes in the present study. 
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Figure 1. Computational domain and geometric variables for trench holes in the present study.

Table 1. Changing interval of trench geometries.

Trench Type Symbol Changing Interval

Transverse trench
W 2.5~3.5d
h 0.25~1.8d

W-shaped trench
W 1.2~2.4d
h 0.25~1.8d
α 40~80◦

Elliptic trench
Dx 1.2~3.2d
Dy 1.2~3.2d
h 0.25~1.8d

2.2. Performance Evaluation Parameters for Film Cooling

Adiabatic cooling effectiveness is an important index to evaluate film cooling perfor-
mance, and can be calculated by:

ηad,loc(x, y) =
T∞ − Tad,w

T∞ − Tc
(1)

ηad,lat(x) =
1

∆y

∫ ∆y/2

−∆y/2
ηad, loc(x, y)dy (2)

ηad,av =
1

∆x

∫ x2

x1

ηad, lat(x)dx (3)

where Tad,w is the adiabatic wall temperature, and Tc and T∞ are the temperature of
the coolant and mainstream. The subscripts ‘loc’, ‘lat’ and ‘av’ denote the local, laterally
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averaged and area-averaged value, respectively. In the present study,4y = 3d, x1 = 2d and
x2 = 20d. The discharge coefficient, Cd, is defined as

Cd =
mc

Ac

√
2ρc(P∗c,in− Pc,out

) (4)

where mc is the coolant mass, Ac is the cross section area of the round hole, P*C,in and
Pc,out are the inlet total pressure of secondary flow and the static pressure downstream
of the trench.

2.3. Boundary Condition and Solution Method

At the mainstream inlet, the velocity profile with a 1/7 power law and the boundary
thickness (δ99) of 0.125d were specified. This is the same as that in the experimental
conditions. The mainstream mean velocity is 20 m/s, and the temperature is 353 K. The
turbulent intensity and length scale is 4% and 0.4δ99 respectively. The coolant temperature
is 300 K. The turbulent parameters at the coolant inlet are the same as the mainstream
inlet. Because of a low Mach number (<0.3), incompressible ideal gas is used. The top
surface of the mainstream channel was set as a free boundary. The spanwise surfaces of the
mainstream and coolant channel were set as periodic boundaries. Other surfaces were set
as a non-slip adiabatic wall. In the present study, the density ratio is 1.176, the blowing
ratio (M = ρcuc/ρ∞u∞) is 0.5~3.0 and the momentum ratio (I = ρcuc

2/ρ∞u∞
2) is 0.21~7.65.

ANSYS Fluent is applied for solutions of governing equations. According to Ref. [10],
realizable k-ε equations with enhanced wall treatment are suitable for trench film cooling.
The momentum, energy and turbulent equations were solved using a second-order upwind
scheme. The gradient and pressure interpolation were performed using a least squares
cell-based scheme and second-order scheme, respectively. The convergence criteria include:
(1) the mass balance error is smaller than 10−6, (2) the normalized residuals are smaller
than 10−6, and (3) the variation of local adiabatic effectiveness is smaller than 10−2.

Structural meshes are created with ICEM software. As shown in Figure 2, near the
walls, the grid points are clustered. On the flat plate, the wall-normal size of the first-
layer grid is 4z = 0.003d, which corresponds to z+ ≈ 1. In the wall-normal direction,
the stretching factor is smaller than 1.2 in the near-wall region. Grid independence tests
were carried out to determine the optimal grid number. Taking the transverse trench with
w = 2.2d and h = 0.5d as an example, the grid test result is shown in Figure 3. The calculation
results do not change obviously as the grid number exceeds 1,896,323.
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3. Experimental Validation

Figure 4 shows the experimental system. After being heated to 80 ◦C, the mainstream
from an air compressor passes through a rectifier section and then enters the test sections.
The cross section size of the mainstream channel is 174 mm × 80 mm, and the size of the
coolant channel is 64mm × 40mm. The inlet velocity and temperature are the same as the
CFD model. The boundary layer thickness and turbulent parameters for the mainstream
inlet were measured at x/d = −15 using a hot wire anemometer (StreamLine Pro). The
boundary layer thickness (δ99) is 0.125d. The turbulent intensity and length scale is 4%
and 0.4δ99. The test plate, with a thermal conductivity of 0.3 W/(m·K), is made of rubber
wood. The sizes of the hole and the trench are the same as the computational model.
The hole pitch is 3.0d. The transverse trench (w = 3.2d, h = 1d), the W-shaped trench
(w = 1.7d, h = 1d and α = 60◦) and the elliptic trench (Dx = 2.2d, Dy = 2.8d and h = 1d) are
tested in the present study. Viewing though CaF2-infrared glass, an infrared thermography
system is applied for temperature measurement of the flat plate with black paint coating.
The emissivity of the black paint is about 0.97. The infrared thermography (Mag32HF
model) produced by Magnity Electronics Co. Ltd. (Shanghai, China) has a test range of
−20~300 ◦C and an accuracy of ±1 ◦C. The calibration of the infrared measurement was
performed according to the temperature measured via thermocouples within the plate.
Detail calibration processes are introduced in Ref. [24].
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Figure 4. Experimental system in the present study.

To better compare the CFD and experimental results, the heat conduction effect inside
the film-cooling plate is taken into account, and the thermal conductivity is 0.3W/(m·K).
The top and lower surfaces of the solid plate were coupled with the fluid phase. The span-
wise surfaces of the plate were set as periodic boundaries. Figure 5 shows the distributions
of the overall cooling effectiveness [ηoverall = (T∞ − Tw)/(T∞ − Tc)] on the cooling surface.
Inside the trench, the difference between the CFD and the experimental results is somewhat
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obvious, especially for the transverse trench at a high blowing ratio. It illustrates that the
present CFD model overestimated the spreading capability of coolant inside the trench,
which results in better cooling performance. Figure 6 shows a quantitative comparison
between the experimental and CFD results. The experimental data for the round hole is
from Ref. [25]. At M = 0.5, the mean relative error for the round hole, transverse trench,
W-shaped trench and elliptic trench is about 9.4%, 7.7%, 8.5% and 10.6%. At M = 1.5, the
mean relative error for the round hole, transverse trench, W-shaped trench and elliptic
trench is about 16.4%, 10.2%, 12.2% and 13.9%. Overall, the CFD results agree well with
the experimental results.
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4. CFD Results Analysis
4.1. Transverse Trench

Figure 7 shows the variation of laterally averaged adiabatic cooling effectiveness
(ηad,lat) with the streamwise distance (x/d). For the round hole, ηad,lat shows a continued
decline as x/d increases at a low blowing ratio, but has a slight increase in the far field region
due to the reattachment of a separated coolant jet at a high blowing ratio. For the transverse
trench, ηad,lat decreases constantly with the increase of x/d even at a high blowing ratio.
The optimal blowing ratio for the round hole is about 0.5. However, for trench-film
cooling in the present case, the optimal blowing ratio is between 1.0~1.5. Figure 8a,b
show the streamline distributions for film cooling of the transverse trench and round hole
at M = 1.5, respectively, and the background color represents gas temperature. The most
typical feature for trench film cooling is that a pair of recirculating vortices is formed inside
the trench. The entrainment of recirculating vortices promotes the spreading of coolant
in the lateral direction [16,26]. The existence of the trench also increases the actual jet exit
area, reduces the actual jet velocity and mitigates the jet detachment downstream of the
hole. In the flow fields downstream of the round hole, a pair of kidney vortices (also called
countered rotating vortices) dominate the flow field and promote the mixture between
mainstream and coolant [27]. For trench film cooling, beside kidney vortices, a pair of
anti-kidney vortices can be observed. The anti-kidney vortices with the opposite rotating
direction of kidney vortices mitigate the detachment of coolant jet and improve the film
cooling performance [28]. Overall, compared with a round hole, a trench hole generates
better cooling performance, especially at a high blowing ratio. Moreover, the results from
Lu et al. [11–13] show that the heat transfer coefficient does not change obviously after
introducing the trench.
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(KVP: kidney vortex pair).

Figure 9 shows the variation of local adiabatic cooling effectiveness (ηad,loc) with the
spanwise distance (|y/d|). For the round hole, ηad,loc has the maximum value at y/d = 0,
and then decreases sharply with the increase of |y/d|. ηad,loc in the centerline region
(|y/d| < 1) decreases by increasing the blowing ratio from 0.5 to 2.0. However, the effects
of the blowing ratio on ηad,loc at |y/d| > 1 is unobvious. For the transverse trench, at a low
blowing ratio (M = 0.5), the distribution of ηad,loc in the lateral direction is similar to that for
the round hole. However, at a high blowing ratio, as the lateral distance increases, ηad,loc
increases firstly ((|y/d| < 0.5), then decreases (0.5 < |y/d| < 1.2), and shows a slight increase
finally (|y/d| > 1.2). Figure 10 shows the distributions of flow fields on the exit plane of
holes; the background color represents the vertical velocity, and the arrow represents the
clockwise or anti-clockwise rotation direction of the vortex. Compared with the transverse
trench, the vertical velocity on the exit surface of the round hole distributes more uniformly
and is of higher value. It results in the detachment of coolant jet immediately downstream
of the round hole at a high blowing ratio. For the transverse trench, a pair of vortices is
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formed, and the entrainment of the vortex pair promotes the lateral spreading of coolant
inside the trench. It results in the wavy distribution of vertical velocity in the lateral
direction. The wave crest locates at y/d = 0.0 where ηad,loc has a local minimum value at a
high blowing ratio.
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Figure 11a shows the effects of trench width (W/d) and depth (h/d) on the area-averaged
adiabatic film cooling effectiveness (ηad,av, 2 < x/d < 20). The deep trench gives the highest
ηad,av, and ηad,av decreases with the decrease of trench depth. For a shallow trench, the
coolant trajectory is hardly affected by the trench, and the pronounced flow separation still
takes place downstream of the hole. Inside the deep trench, the recirculating flow reduces
the coolant penetration into the mainstream and improves the coolant uniformity. Accord-
ingly, the coolant ejected from the deep trench exhibits better covering performance on the
cooling surface downstream of the trench. For most cases, the film cooling performance
can be improved effectively by reducing the trench width. For a narrow trench, because of
the effect of recirculating flow, the mainstream cannot enter the trench, which enhances
the film cooling effectiveness. For a wide trench, due to the mainstream intursion, the
recirculation of the coolant inside the trench is mitigated, which results in the decrease
of cooling effectiveness [12,16]. Compared with trench width, the effect of trench depth
on cooling effectiveness is more pronounced. Figure 11b shows the effects of geometric
parameters on the discharge coefficient (Cd). The increase of h/d reduces the mixing loss
between the mainstream and coolant jet, and the decrease of w/d results in the increase of
the actual blowing ratio. Thus, Cd increases with the increase of h/d but the decrease of
w/d. Overall, a narrower and deeper trench generates better film cooling performance.
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Figure 11. Effects of trench depth and width on film cooling performance for transverse trench.

4.2. W-Shaped Trench

Figure 12a shows the variation of laterally averaged adiabatic film cooling effectiveness
with the streamwise distance. As the blowing ratio increases, ηad,lat increases firstly,
and then decreases. The optimal blowing ratio for the W-shaped trench is about 1.5.
Compared with the transverse trench, the cooling performance for the W-shaped trench is
better. Figure 12b shows the variation of local adiabatic film cooling effectiveness with the
spanwise distance. At a low blowing ratio (M = 0.5), as |y/d| increases, ηad,loc decreases
firstly, and then increases. ηad,loc at M = 0.5 has a maximum value at y/d = 0.0 and a
minimum value at |y/d| = 0.75. At a moderate blowing ratio (M = 1.5), ηad,loc decreases
slightly as |y/d| increases from 0.0 to 1.0, and then shows a sharp decrease as |y/d| exceeds
1.0. At a high blowing ratio (M = 3.0), the changing trend of ηad,loc is similar to that at a
moderate blowing ratio. However, ηad,loc at a high blowing ratio has a local minimum value
at y/d = 0.0. Figure 13 shows the streamline distributions for film cooling of the W-shaped
trench, and the background color represents the gas temperature. At a low blowing ratio,
pronounced recirculating flow can be observed inside the trench and promotes the lateral
spreading of coolant. At a high blowing ratio, the coolant jet exhibits slight detachment
in the region of x/d = 2.0, but the coverage performance of coolant is still much better
than the transverse trench and the round hole, especially in the far-field region (x/d > 5.0).
Similar to the transverse trench, the kidney vortex pair and anti-kidney vortex pair exist
simultaneously downstream of the W-shaped trench. The anti-kidney vortices improve
cooling performance, while the kidney vortices degrade cooling performance. However,
compared with the transverse trench, the W-shaped trench exhibits a stronger anti-kidney
vortex pair and weaker kidney vortex pair.
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Figure 12. Distributions of adiabatic film cooling effectiveness in different directions for W-shaped
trench (w = 1.2d, h = 0.75d, α = 60◦).
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Figure 13. Streamline distributions for film cooling of W−shaped trench (w = 1.2d, h = 0.75d, α = 60◦).

Figure 14a shows the effects of trench width and depth on the area-averaged adiabatic
film cooling effectiveness (ηad,av, 2 < x/d < 20). For the narrow trench, because of the
effect of recirculating flow, the mainstream cannot enter the trench, which enhances the
film cooling effectiveness. For the wide trench, due to the mainstream intursion, the
recirculation of the coolant inside the trench is mitigated, which results in the decrease of
cooling effectiveness. Compared with trench width, the influence of h/d on film cooling
performance is much more obvious, especially at a high blowing ratio. At a high blowing
ratio (M = 1.5), ηad,av increases from about 0.15 to 0.5 with the increase of h/d from 0.25 to
1.3. At a low blowing ratio, ηad,av also increases with the increase of trench depth, however,
the variation amplitude is weaker compared to that at a high blowing ratio. Figure 14b
shows the effects of trench width and depth on the discharge coefficient. For a deep trench,
the distribution of coolant velocity at the trench exit is uniform, and the area of the high
speed zone is smaller compared with the shallow trench (shown in Figure 15), which
reduces mixing loss between the mainstream and coolant jet. For the narrow trench, the jet
velocity is higher, which results in the increase of flow loss. Thus, the increase of trench
depth and width both cause the increase of the discharge coefficient.
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Figure 15. Distribution of flow fields on the exit plane of W−shaped trench at M = 1.5 (Unit: m/s).

Figure 16a shows the effect of corner angle on the area-averaged adiabatic film cooling
effectiveness. For a high corner angle, the lateral spreading inside the trench cannot be
affected effectively by the W-structure. In fact, as the corner angle approaches 180◦, the
W-shaped trench turns into a transverse trench, and the guide effect of the corner angle
disappears. Conversely, a small corner angle promotes lateral spreading of coolant and
improves distribution uniformity of the coolant velocity at the trench exit, which results in
high cooling effectiveness. Figure 16b shows the effect of corner angle on the discharge
coefficient. Cd decreases with the increase of the corner angle. It is because that high corner
angle causes the decrease of the trench exit area, which results in high flow loss. However,
because the changing interval of α is small (40~60◦), the effects of the corner angle on the
cooling effectiveness and discharge coefficient are not very obvious in the present study.
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4.3. Elliptical Trench

Figure 17a shows the variation of laterally averaged adiabatic film cooling effectiveness
with the streamwise distance. At a low blowing ratio, ηad,lat shows continued decrease
with the increase of x/d. At a high blowing ratio, as x/d increases, ηad,lat decreases firstly,
and then increases. The rebound of ηad,lat in the far-field region can be attributed to the
reattachment of the coolant jet. Figure 17b shows the variation of local adiabatic film
cooling effectiveness with the lateral distance. ηad,loc decreases with the increase of |y/d|
and has a maximum value at y/d = 0. The changing trend of ηad,loc for the elliptical
trench is similar to that for the round hole, but different from that for the transverse and
W-shaped trench. Figure 18 shows the streamline distributions for film cooling for the
elliptic trench, and the background color represents gas temperature. Compared with the
transverse trench and the W-shaped trench, the secondary flow inside the elliptic trench is
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unobvious, and lateral spreading of coolant is also weak in the elliptic trench. The kidney
vortex pair takes the dominant role on the cross section downstream of the elliptic trench,
while the anti-kidney vortex pair cannot be formed. The entrainment effect of the kidney
vortex pair results in the detachment of coolant downstream of the hole and promotes
the mixture between mainstream and coolant. Thus, the elliptic trench generates lower
cooling effectiveness than the transverse and W-shaped trench. However, the scale of the
kidney vortex pair for the elliptic trench is smaller than that for the round hole, accordingly,
the cooling effectiveness of the elliptic trench is higher than that with the round hole. In
general, the flow characteristics for the elliptical trench are very similar to those for the
round hole, but different from the transverse trench and W-shaped trench.
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Figure 18. Streamline distributions for film cooling of elliptic trench (Dx = 2.4d, Dy = 1.2d, h = 0.75d).

Figure 19a shows the effects of axis length of the elliptical trench (Dx and Dy) on the
area-averaged adiabatic film cooling effectiveness (ηad,av, 2 < x/d < 20). For small Dy,
ηad,av increases with the rise of Dx. However, for large Dy, this changing trend becomes
wholly opposite, and ηad,av decreases with the increase of Dx. It illustrates that there is an
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optimal exit area of the elliptical trench, and a too high and low exit area both deteriorate
the cooling performance. If the exit area is higher than the optimal value, the actual jet
velocity is too low, and the mainstream can penetrate into the trench. If the exit area is
small, the actual jet velocity has high momentum, and shows a detachment effect from
the wall downstream of the hole. Figure 20 shows the streamline distributions on the exit
planes of elliptic trenches. Compared with the W-shaped trench and transverse trench, the
streamlines for the elliptic trench are smoother, and the recirculating vortex pair cannot
be formed inside the trench. Figure 19b shows the effects of axis length on discharge
coefficient. The variation trend of Cd with Dx for large Dy is contrary to that for small Dy.
For Dy = 2.5d, Cd increases with the increases of Dx. However, for Dy = 1.5d, Cd decreases
as Dx increases. In general, as Dx is close to Dy, the flow loss is relatively low.
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Figure 20. Streamline distribution on the exit plane of elliptic trench at M = 0.5 (Unit: m/s).

Figure 21 compares the distribution of adiabatic film cooling effectiveness on the wall
for different trench shapes. At a low blowing ratio, the flow separation of the coolant
downstream of these four kinds of holes is unobvious, and the cooling performance of
the W-shaped trench is the best, while the cooling effectiveness of the round hole is the
lowest. As the blowing ratio increases to 1.5, the coolant from the round hole and elliptic
trench shows detachment from the wall, but the epileptic trench generates better cooling
performance than the round hole. At this blowing ratio, the coverage performance of the
W-shaped trench is the best. At a very high blowing ratio, the coolant from these four
kinds of holes exhibits detachment from the wall, however, the transverse trench and
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W-shaped trench still generate high cooling effectiveness. In general, the W-shaped trench
generates the highest cooling effectiveness, while the cooling performance of the elliptic
trench is the worst.
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5. Conclusions

The film cooling performances of the transverse trench, W-shaped trench and elliptic
trench were investigated using the CFD method. The influences of blowing ratio and
geometric parameters on the discharge coefficient and film cooling effectiveness were
discussed. Some useful conclusions are listed below:

(1) Inside the transverse trench, a pair of recirculating vortices is formed, which promotes
the lateral spreading of coolant. Downstream of the transverse trench, a kidney vortex
pair and anti-vortex pair are formed simultaneously. The increase of trench depth and
the decrease of trench width can both cause increases of film cooling effectiveness.

(2) Inside the W-shaped trench, the existence of a corner angle further promotes the
coolant spreading in the lateral direction and generates higher film cooling effec-
tiveness than the transverse trench. Similar to the transverse trench, the increase
of trench depth and the decrease of trench width both result in the increase of
cooling effectiveness.
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(3) For the elliptic trench, the flow characteristics are very similar to the round hole, and
the kidney vortex pair is the largest-scale vortex structure. There exists an optimal
exit area ratio (the exit area of elliptic trench/the exit area of round hole) for the
elliptic trench, and too large or small an exit area ratio can lead to the degradation
of film cooling effectiveness. The elliptic trench generates higher film cooling effec-
tiveness than the round hole, but lower effectiveness than the transverse trench and
W-shaped trench.

(4) As the blowing ratio increases, the discharge coefficient increases firstly and then
keeps stable. The increase of trench depth and decrease of trench width results in
the increase of the discharge coefficient for the transverse trench. For the W-shaped
trench, the increase of the corner angle causes the decrease of the discharge coefficient.
For the elliptic trench, the discharge coefficient increases with the decrease of the
elliptic aspect ratio (major axis/minor axis).
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Nomenclature

Ac Cross section area of round hole (m2)
Cd Discharge coefficient (-)
d Diameter of round hole (mm)
D Axis Length of elliptic crater (mm)
h Trench depth (mm)
M Blowing ratio (-)
mc Coolant mass flow rate (kg/s)
P*C,in Inlet total pressure of secondary flow (Pa)
PC,out Static pressure downstream of trench (Pa)
T Temperature (K)
w Trench width (mm)
x, y and z Streamwise, spanwise and vertical direction
Greek symbols
α Corner angle of W-shaped trench (◦)
η Cooling effectiveness (-)
ρ Gas density (kg/m3)
δ99 Boundary layer thickness of mainstream inlet (mm)
θ Dimensionless temperature [=(T − Tc)/(T∞ − Tc)]
subscript
w Wall
∞ Mainstream
c Coolant
ad At adiabatic condition
av Area-averaged value
loc Local value
lat Laterally averaged value
overall At the condition considering heat conduction
x, y and z Streamwise, spanwise and vertical component
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