Development of the EIRSAT-1 CubeSat through Functional Verification of the Engineering Qualification Model
Abstract
:1. Introduction
2. Assembly, Integration, and Verification of EIRSAT-1
- the FlatSat assembly and test campaign,
- the system level assembly and ambient test campaign, and
- the system level environmental test campaign.
3. EIRSAT-1 Functional Tests
3.1. FlatSat Test Campaign
3.1.1. Test Prerequisites
3.1.2. Test Setup
3.1.3. Test Results
3.2. Full Functional Test Campaign
3.2.1. Test Prerequisites
3.2.2. Test Set-Up
3.2.3. Test Results
4. Discussion
5. Future Work
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADCS | Attitude determination and control system |
ADM | Antenna Deployment Module |
AIP | Assembly and integration procedure |
AIT | Assembly, integration, and test |
AIV | Assembly, integration, and verification |
COTS | Commercial off-the-shelf |
DM | Development model |
EIRSAT-1 | Educational Irish Research Satellite |
EMC | Electromagnetic compatibility |
EMOD | Enbio Module |
EPS | Electrical power supply |
ESA | European Space Agency |
EQM | Engineering qualification model |
FDIR | Fault detection, isolation, and recovery |
FDS | Fly Your Satellite! design specification |
FFT | Full functional test |
FM | Flight model |
FMEA | Failure mode and effects analysis |
FMECA | Failure mode, effects, and criticality analysis |
FTA | Fault tree analysis |
FYS! | Fly Your Satellite! |
GMOD | Gamma-ray Module |
GRB | Gamma-ray burst |
GSE | Ground support equipment |
LEO | Low Earth orbit |
MDV | Mass and dimensions verification |
OBC | On-board computer |
PCB | Printed circuit board |
PDM | Power distribution module |
PFM | Protoflight model |
RFT | Reduced functional test |
RRM | Risk response matrix |
QM | Qualification model |
TCA | Thermal coupon assembly |
TSpe | Test specification |
TPro | Test procedure |
TVAC | Thermal vacuum |
V&V | Verification and validation |
VP | Verification plan |
VRFT | Very reduced functional test |
WBC | Wave-Based Control |
References
- Heidt, H.; Puig-Suari, J.; Moore, A.; Nakasuka, S.; Twiggs, R. CubeSat: A New Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation. In Proceedings of the 14th Annual AIAA/USU Small Satellite Conference, Logan, UT, USA, 21–24 August 2000. [Google Scholar]
- The CubeSat Program. CubeSat Design Specification Rev. 14; Technical Report CP-CDS-R14; California Polytechnic State University (Cal Poly): San Luis Obispo, CA, USA, 2020. [Google Scholar]
- Twiggs, R. Origin of CubeSat. In Small Satellite: Past, Present and Future; Helvajian, H., Janson, S.W., Eds.; The Aerospace Press: El Segundo, CA, USA, 2008; Chapter 5; pp. 151–173. [Google Scholar]
- Deepak, R.A.; Twiggs, R.J. Thinking Outside the Box: Space Science Beyond the CubeSat. J. Small Satell. 2012, 1, 3–6. [Google Scholar]
- Suhadis, N.M. Statistical Overview of CubeSat Mission. In Proceedings of the International Conference of Aerospace and Mechanical Engineering 2019, Penang, Malaysia, 20–21 November 2019; Rajendran, P., Mazlan, N.M., Rahman, A.A.A., Suhadis, N.M., Razak, N.A., Abidin, M.S.Z., Eds.; Springer: Singapore, 2020; pp. 563–573. [Google Scholar]
- Mero, B.; Quillien, K.; McRobb, M.; Chesi, S.; Marshall, R.; Gow, A.; Clark, C.; Anciaux, M.; Cardoen, P.; Keyser, J.D.; et al. PICASSO: A State of the Art CubeSat. In Proceedings of the 29th Annual AIAA/USU Small Satellite Conference, Logan, UT, USA, 8–13 August 2015. [Google Scholar]
- Evans, D. OPS-SAT: Operational Concept for ESA’S First Mission Dedicated to Operational Technology. In SpaceOps Conference 2016 Proceedings; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2016. [Google Scholar]
- Klesh, A.; Krajewski, J. MarCO: CubeSats to Mars in 2016. In Proceedings of the 29th Annual AIAA/USU Small Satellite Conference, Logan, UT, USA, 8–13 August 2015. [Google Scholar]
- Funase, R.; Ikari, S.; Miyoshi, K.; Kawabata, Y.; Nakajima, S.; Nomura, S.; Funabiki, N.; Ishikawa, A.; Kakihara, K.; Matsushita, S.; et al. Mission to Earth–Moon Lagrange Point by a 6U CubeSat: EQUULEUS. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 30–44. [Google Scholar] [CrossRef]
- Straub, J.; Villela, T.; Costa, C.A.; Brandão, A.M.; Bueno, F.T.; Leonardi, R. Towards the Thousandth CubeSat: A Statistical Overview. Int. J. Aerosp. Eng. 2019, 2019, 5063145. [Google Scholar] [CrossRef]
- Swartwout, M. CubeSat Database. Available online: https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database (accessed on 24 February 2021).
- Kulu, E. Nanosatellite and CubeSat Database. Available online: https://www.nanosats.eu/database (accessed on 24 February 2021).
- Alanazi, A.; Straub, J. Statistical Analysis of CubeSat Mission Failure. In Proceedings of the 32nd Annual AIAA/USU Small Satellite Conference, Logan, UT, USA, 4–9 August 2018. [Google Scholar]
- Swartwout, M. Reliving 24 Years in the next 12 Minutes: A Statistical and Personal History of University-Class Satellites. In Proceedings of the 32nd Annual AIAA/USU Small Satellite Conference, Logan, UT, USA, 4–9 August 2018. [Google Scholar]
- ECSS Secretariat. Space Engineering: System Engineering General Requirements; ECSS Standard ECSS-E-ST-10; European Cooperation For Space Standardisation: Noordwijk, The Netherlands, 2009. [Google Scholar]
- ECSS Secretariat. Space Engineering: Testing; ECSS Standard ECSS-E-ST-10-03C; European Cooperation For Space Standardisation: Noordwijk, The Netherlands, 2012. [Google Scholar]
- ECSS Secretariat. Tailored ECSS Engineering Standards for In-Orbit Demonstration CubeSat Projects; Ecss Standard; European Cooperation for Space Standardisation: Noordwijk, The Netherlands, 2016. [Google Scholar]
- Leandro Gomes Batista, C.; Corsetti, A.; Mattiello-Francisco, F. Using Fault Injection on the Nanosatellite Subsystems Integration Testing. arXiv 2021, arXiv:2102.11776. [Google Scholar]
- Cheong, J.W.; Southwell, B.J.; Andrew, W.; Aboutanios, E.; Lam, C.; Croston, T.; Li, L.; Green, S.; Kroh, A.; Glennon, E.P.; et al. A Robust Framework for Low-Cost Cubesat Scientific Missions. Space Sci. Rev. 2020, 216, 8. [Google Scholar] [CrossRef]
- Corpino, S.; Stesina, F. Verification of a CubeSat via hardware-in-the-loop simulation. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2807–2818. [Google Scholar] [CrossRef]
- Kiesbye, J.; Messmann, D.; Preisinger, M.; Reina, G.; Nagy, D.; Schummer, F.; Mostad, M.; Kale, T.; Langer, M. Hardware-In-The-Loop and Software-In-The-Loop Testing of the MOVE-II CubeSat. Aerospace 2019, 6, 130. [Google Scholar] [CrossRef] [Green Version]
- Viquerat, A.; Schenk, M.; Lappas, V.; Sanders, B. Functional and Qualification Testing of the InflateSail Technology Demonstrator. In Proceedings of the 2nd AIAA Spacecraft Structures Conference (AIAA SciTech), Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, J.P.; Rocha, R.M.; Silva, A.; Afonso, R.; Ramos, N. Integration and Verification Approach of ISTSat-1 CubeSat. Aerospace 2019, 6, 131. [Google Scholar] [CrossRef] [Green Version]
- Praks, J.; Rizwan Mughal, M.; Vainio, R.; Janhunen, P.; Envall, J.; Oleynik, P.; Näsilä, A.; Leppinen, H.; Niemelä, P.; Slavinskis, A.; et al. Aalto-1, multi-payload CubeSat: Design, integration and launch. arXiv 2021, arXiv:2101.10691. [Google Scholar]
- Murphy, D.; Flanagan, J.; Thompson, J.; Doyle, M.; Erkal, J.; Gloster, A.; O’Toole, C.; Salmon, L.; Sherwin, D.; Walsh, S.; et al. EIRSAT-1—The Educational Irish Research Satellite. In Proceedings of the 2nd Symposium on Space Educational Activities, Budapest, Hungary, 11–13 April 2018; pp. 201–205. [Google Scholar]
- Vanreusel, J. Fly Your Satellite! The ESA Academy CubeSats Programme. In Proceedings of the ITU Symposium & Workshop on Small Satellite Regulation and Communication Systems, Santiago de Chile, Chile, 7–9 November 2016. [Google Scholar]
- Duvaux-Béchon, I. ESA Education Office. In Proceedings of the Teach Space 2001: International Space Station Education Conference, Noordwijk, The Netherlands, 26–28 October 2001; pp. 12–14. [Google Scholar]
- Marée, H.; Galeone, P.; Kinnaird, A.; Callens, N. The ESA Education Programme and its ESA Academy. In Proceedings of the 3rd Symposium on Space Educational Activities, Leicester, UK, 16–18 September 2019; pp. 251–257. [Google Scholar]
- Murphy, D. A compact instrument for gamma-ray burst detection on a Cubesat platform I: Design drivers and expected performance. Exp. Astron. 2021, in press. [Google Scholar] [CrossRef]
- Murphy, D. A compact instrument for gamma-ray burst detection on a Cubesat platform II: Detailed design, assembly and validation. Exp. Astron. 2021, submitted. [Google Scholar]
- Sherwin, D.; Thompson, J.; McKeown, D.; O’Connor, W.; Sosa, V.U. Wave-based attitude control of EIRSAT-1, 2U cubesat. In Proceedings of the 2nd Symposium on Space Educational Activities, Budapest, Hungary, 11–13 April 2018; pp. 273–277. [Google Scholar]
- Thompson, J.; Murphy, D.; Erkal, J.; Flanagan, J.; Doyle, M.; Gloster, A.; O’Toole, C.; Salmon, L.; Sherwin, D.; Walsh, S.; et al. Double dipole antenna deployment system for EIRSAT-1, 2U CubeSat. In Proceedings of the 2nd Symposium on Space Educational Activities, Budapest, Hungary, 11–13 April 2018; pp. 221–225. [Google Scholar]
- Doyle, M.; Gloster, A.; O’Toole, C.; Mangan, J.; Murphy, D.; Dunwoody, R.; Emam, M.; Erkal, J.; Flanagan, J.; Fontanesi, G.; et al. Flight software development for the EIRSAT-1 mission. In Proceedings of the 3rd Symposium on Space Educational Activities, Leicester, UK, 16–18 September 2019. [Google Scholar]
- Willingale, R.; Mészáros, P. Gamma-Ray Bursts and Fast Transients. Multi-wavelength Observations and Multi-messenger Signals. Space Sci. Rev. 2017, 207, 63–86. [Google Scholar] [CrossRef]
- Doherty, K.; Twomey, B.; McGlynn, S.; MacAuliffe, N.; Norman, A.; Bras, B.; Olivier, P.; McCaul, T.; Stanton, K. High-Temperature Solar Reflector Coating for the Solar Orbiter. J. Spacecr. Rocket. 2016, 53, 1–8. [Google Scholar] [CrossRef]
- Doherty, K.A.; Carton, J.G.; Norman, A.; McCaul, T.; Twomey, B.; Stanton, K.T. A thermal control surface for the Solar Orbiter. Acta Astronaut. 2015, 117, 430–439. [Google Scholar] [CrossRef]
- O’Connor, W.; de la Flor, F.R.; McKeown, D.; Feliu, V. Wave-based control of non-linear flexible mechanical systems. Nonlinear Dyn. 2008, 57, 113–123. [Google Scholar] [CrossRef]
- Müller, D.; St. Cyr, O.C.; Zouganelis, I.; Gilbert, H.R.; Marsden, R.; Nieves-Chinchilla, T.; Antonucci, E.; Auchère, F.; Berghmans, D.; Horbury, T.S.; et al. The Solar Orbiter mission. Science overview. Astron. Astrophys. 2020, 642, A1. [Google Scholar] [CrossRef]
- Cho, M.; Hirokazu, M.; Graziani, F. Introduction to lean satellite and ISO standard for lean satellite. In Proceedings of the 2015 7th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, 16–19 June 2015; pp. 789–792. [Google Scholar] [CrossRef]
- Cho, M.; Graziani, F. Lean Satellite Concept. In Proceedings of the 30th Annual AIAA/USU Small Satellite Conference, Logan, UT, USA, 6–11 August 2016. [Google Scholar]
- ECSS Secretariat. Space Engineering: Verification; ECSS Standard ECSS-E-ST-10-02C; European Cooperation for Space Standardisation: Noordwijk, The Netherlands, 2009. [Google Scholar]
- Menchinelli, A.; Ingiosi, F.; Pamphili, L.; Marzioli, P.; Patriarca, R.; Costantino, F.; Piergentili, F. A Reliability Engineering Approach for Managing Risks in CubeSats. Aerospace 2018, 5, 121. [Google Scholar] [CrossRef] [Green Version]
- Latachi, I.; Rachidi, T.; Karim, M.; Hanafi, A. Reusable and Reliable Flight-Control Software for a Fail-Safe and Cost-Efficient Cubesat Mission: Design and Implementation. Aerospace 2020, 7, 146. [Google Scholar] [CrossRef]
- Gamble, K.; Lightsey, G. Application of Risk Management to University CubeSat Missions. J. Small Satell. 2013, 2, 147–160. [Google Scholar]
- Doyle, M.; Dunwoody, R.; Finneran, G.; Murphy, D.; Reilly, J.; Thompson, J.; Walsh, S.; Erkal, J.; Fontanesi, G.; Mangan, J.; et al. Mission testing for improved reliability of CubeSats. In Proceedings of the International Conference on Space Optics—ICSO 2020, Virtual, 30 March–2 April 2021; Cugny, B., Sodnik, Z., Karafolas, N., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2021; Volume 11852, pp. 2717–2736. [Google Scholar]
- ECSS Secretariat. Space Engineering: Verification Guidelines; ECSS Standard ECSS-E-HB-10-02A; European Cooperation For Space Standardisation: Noordwijk, The Netherlands, 2010. [Google Scholar]
- Walsh, S.; Murphy, D.; Doyle, M.; Thompson, J.; Dunwoody, R.; Emam, M.; Erkal, J.; Flanagan, J.; Fontanesi, G.; Gloster, A.; et al. Assembly, integration, and verification activities for a 2U CubeSat, EIRSAT-1. In Proceedings of the 3rd Symposium on Space Educational Activities, Leicester, UK, 16–18 September 2019. [Google Scholar]
- Busch, S.; Bangert, P.; Dombrovski, S.; Schilling, K. UWE-3, in-orbit performance and lessons learned of a modular and flexible satellite bus for future pico-satellite formations. Acta Astronaut. 2015, 117, 73–89. [Google Scholar] [CrossRef]
- Santoni, F.; Gugliermetti, L.; Piras, G.; De Pascale, S.; Pannico, A.; Piergentili, F.; Marzioli, P.; Frezza, L.; Amadio, D.; Gianfermo, A.; et al. GreenCube: Microgreens cultivation and growth monitoring on-board a 3U CubeSat. In Proceedings of the 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Pisa, Italy, 22–24 June 2020; pp. 130–135. [Google Scholar] [CrossRef]
- Mangan, J.; Murphy, D.; Dunwoody, R.; Ulyanov, A.; Thompson, J.; Javaid, U.; O’Toole, C.; Doyle, M.; Emam, M.; Erkal, J.; et al. The environmental test campaign of GMOD: A novel gamma-ray detector. In Proceedings of the International Conference on Space Optics—ICSO 2020, Virtual, 30 March–2 April 2021; Cugny, B., Sodnik, Z., Karafolas, N., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2021; Volume 11852, pp. 489–509. [Google Scholar]
- Gebara, C.; Spencer, D. Verification and Validation Methods for the Prox-1 Mission. In Proceedings of the 30th Annual AIAA/USU Small Satellite Conference, Logan, UT, USA, 6–11 August 2016. [Google Scholar]
- Dunwoody, R.; Doyle, M.; Murphy, D.; Finneran, G.; O’Callaghan, D.; Marshall, F.; McBreen, S. Development and validation of the operations procedures and manual for a 2U CubeSat EIRSAT-1, with three novel payloads. In Proceedings of the 16th International Conference of Space Operations 2021, Cape Town, South Africa, 3–5 May 2021; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar]
SS | Test Activity | VRFT | RFT | FlatSat | FFT |
---|---|---|---|---|---|
ADCS | Bus voltage and current health check | ✗ | ✓ | ✓ | ✓ |
Send GPS state vectors to ADCS MB | ✗ | ✗ | ✓ | ✓ | |
Excite sun sensors (5 CSS, 1 FSS) | ✗ | ✓ | ✓ | ✓ | |
MTQs duty cycle drives to 25, 50, 75, 100% | ✓ | ✓ | ✓ | ✓ | |
Excite MTMs and gyroscopes | ✗ | ✓ | ✓ | ✓ | |
ADCS controller state and output | ✗ | ✗ | ✓ | ✓ | |
ADCS sun vector production | ✗ | ✗ | ✓ | ✓ | |
EPS/Battery | Charge via PSU and/or solar cells | ✓ | ✓ | ✓ | ✓ |
Over-current protection limit trip | ✗ | ✗ | ✓ | ✗ | |
Under-voltage protection function activation | ✗ | ✗ | ✓ | ✓ * | |
RBF power ON/OFF and timer resets | ✗ | ✓ | ✓ | ✓ | |
Inhibit power ON/OFF and timer resets | ✗ | ✓ | ✓ | ✓ | |
Essential loads operating at S/C power ON | ✓ | ✓ | ✓ | ✓ | |
Voltage measurements of PDMs | ✗ | ✗ | ✓ * | ✗ | |
Comms | OBC reset upon receipt of DTMF tone | ✗ | ✓ | ✓ | ✓ |
Uplink packets over VHF at 1200 bps | ✓ | ✓ | ✓ | ✓ | |
Downlink packets over UHF at 9600 bps | ✓ | ✓ | ✓ | ✓ | |
Receive beacon transmission every 90 s | ✗ | ✓ | ✓ | ✓ | |
Cease/restart beacon and RF transmissions | ✗ | ✓ | ✓ | ✓ | |
OBC | Oldest data overwritten when storage is full | ✗ | ✗ | ✓ | ✓ |
Execute operational mode transitions | ✓ | ✗ | ✓ | ✓ | |
Spacecraft power cycle via OBC reset | ✗ | ✓ | ✓ | ✓ | |
Read all internal PCB temperature sensors | ✓ | ✓ | ✓ | ✓ | |
Read and write spacecraft database parameters | ✗ | ✗ | ✓ | ✓ | |
Invoke spacecraft database actions | ✗ | ✗ | ✓ | ✓ | |
ADM | Antenna deployment via primary resistors | ✓ | ✓ | ✗ | ✓ |
Antenna deployment via secondary resistors | ✓ | ✓ | ✗ | ✓ | |
Status of release detection switches on doors | ✓ | ✓ | ✗ | ✓ | |
Configure resistor burn times | ✗ | ✗ | ✓ | ✓ | |
Low battery voltage deployment | ✗ | ✗ | ✗ | ✓ | |
EMOD | Read all RTD temperatures | ✓ | ✓ | ✗ | ✓ |
Configure RTD sampling rate | ✗ | ✗ | ✗ | ✓ | |
Poll different combinations of RTDs | ✗ | ✗ | ✗ | ✓ | |
Upload and rewrite new motherboard firmware | ✗ | ✗ | ✓ | ✓ | |
Payload power cycle | ✓ | ✓ | ✓ | ✓ | |
GMOD | Initiate data collection with radioactive source | ✓ | ✓ | ✓ | ✓ |
Configure bias offset value of SiPMs | ✗ | ✓ | ✓ | ✓ | |
Perform configuration check | ✗ | ✓ | ✓ | ✓ | |
Upload and rewrite new motherboard firmware | ✗ | ✗ | ✓ | ✓ | |
Payload power cycle | ✓ | ✓ | ✓ | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walsh, S.; Murphy, D.; Doyle, M.; Reilly, J.; Thompson, J.; Dunwoody, R.; Erkal, J.; Finneran, G.; Fontanesi, G.; Mangan, J.; et al. Development of the EIRSAT-1 CubeSat through Functional Verification of the Engineering Qualification Model. Aerospace 2021, 8, 254. https://doi.org/10.3390/aerospace8090254
Walsh S, Murphy D, Doyle M, Reilly J, Thompson J, Dunwoody R, Erkal J, Finneran G, Fontanesi G, Mangan J, et al. Development of the EIRSAT-1 CubeSat through Functional Verification of the Engineering Qualification Model. Aerospace. 2021; 8(9):254. https://doi.org/10.3390/aerospace8090254
Chicago/Turabian StyleWalsh, Sarah, David Murphy, Maeve Doyle, Jack Reilly, Joseph Thompson, Rachel Dunwoody, Jessica Erkal, Gabriel Finneran, Gianluca Fontanesi, Joseph Mangan, and et al. 2021. "Development of the EIRSAT-1 CubeSat through Functional Verification of the Engineering Qualification Model" Aerospace 8, no. 9: 254. https://doi.org/10.3390/aerospace8090254
APA StyleWalsh, S., Murphy, D., Doyle, M., Reilly, J., Thompson, J., Dunwoody, R., Erkal, J., Finneran, G., Fontanesi, G., Mangan, J., Marshall, F., Salmon, L., de Faoite, D., Hanlon, L., Martin-Carrillo, A., McKeown, D., O’Connor, W., Uliyanov, A., Wall, R., & McBreen, S. (2021). Development of the EIRSAT-1 CubeSat through Functional Verification of the Engineering Qualification Model. Aerospace, 8(9), 254. https://doi.org/10.3390/aerospace8090254