The Impact of Steady Blowing from the Leading Edge of an Open Cavity Flow
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. Jet Behaviour under Quiescent Conditions
3.2. Time-Averaged Flow Field
3.2.1. Jet Impact on the Cavity Flow Topology
3.2.2. Jet Impact on the Cavity Separated Shear Layer
3.2.3. Jet Impact on the Return Flow
3.3. Jet Impact on the Oscillations of the Cavity Separated Shear Layer
3.4. Further Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
b | Local jet half width [m] |
Jet’s momentum coefficient [%] | |
D | Cavity depth [m] |
f | Repetition rate of the particle image velocimetry [Hz] |
h | Characteristic slot width [m] |
J | Jet’s momentum flux per unit width [kg/m·s] |
L | Cavity length [m] |
Cavity leading edge | |
M | Mach number |
Reynolds number based on the bulk velocity of the jet | |
Reynolds number based on the cavity depth | |
Reynolds number based on the model diameter | |
Reynolds number based on the boundary layer momentum thickness | |
Non-dimensional frequency | |
t | Time [s] |
Cavity trailing edge | |
<> | Time-averaged streamwise velocity fluctuation [m/s] |
U | The streamwise velocity [m/s] |
Jet exit velocity [m/s] | |
The free stream velocity [m/s] | |
<> | Time-averaged normal-to-wall velocity fluctuation [m/s] |
V | Normal-to-wall velocity [m/s] |
W | Cavity width [m] |
x | The streamwise distance from the reference point [m] |
y | The vertical distance from the reference point [m] |
z | The spanwise distance from the reference point [m] |
The vorticity thickness [m] |
References
- Srinivasan, G.R. Acoustics and unsteady flow of telescope cavity in an airplane. J. Aircr. 2000, 37, 274–281. [Google Scholar] [CrossRef]
- Vakili, A.D.; Gauthier, C. Control of cavity flow by upstream mass-injection. J. Aircr. 1994, 31, 169–174. [Google Scholar] [CrossRef]
- Gai, S.L.; Soper, T.J.; Milthorpe, J.F. Shallow Rectangular Cavities at Low Speeds Including Effects of Yaw. J. Aircr. 2008, 45, 2145–2150. [Google Scholar] [CrossRef]
- Ziada, S.; Lafon, P. Flow-excited acoustic resonance excitation mechanism, design guidelines, and counter measures. Appl. Mech. Rev. 2014, 66. [Google Scholar] [CrossRef]
- He, B.; Xiao, X.; Zhou, Q.; Li, Z.-H.; Jin, X.-S. Investigation into external noise of a high-speed train at different speeds. J. Zhejiang Univ. Sci. A 2014, 15, 1019–1033. [Google Scholar] [CrossRef] [Green Version]
- Ukeiley, L.; Murray, N. Velocity and surface pressure measurements in an open cavity. Exp. Fluids 2005, 38, 656–671. [Google Scholar] [CrossRef]
- Tuna, B.A.; Tinar, E.; Rockwell, D. Shallow flow past a cavity: Globally coupled oscillations as a function of depth. Exp. Fluids 2013, 54, 1586. [Google Scholar] [CrossRef]
- Rockwell, D.; Knisely, C. The organized nature of flow impingement upon a corner. J. Fluid Mech. 1979, 93, 413. [Google Scholar] [CrossRef]
- Lin, J.C.; Rockwell, D. Organized Oscillations of Initially Turbulent Flow past a Cavity. AIAA J. 2001, 39, 1139–1151. [Google Scholar] [CrossRef] [Green Version]
- Yan, P.; Debiasi, M.; Yuan, X.; Little, J.; Ozbay, H.; Samimy, M. Experimental Study of Linear Closed-Loop Control of Subsonic Cavity Flow. AIAA J. 2006, 44, 929–938. [Google Scholar] [CrossRef] [Green Version]
- Ashcroft, G.; Zhang, X. Vortical structures over rectangular cavities at low speed. Phys. Fluids 2005, 17, 015104. [Google Scholar] [CrossRef]
- Rockwell, D.; Naudascher, E. Self-Sustained Oscillations of Impinging Free Shear Layers. Annu. Rev. Fluid Mech. 1979, 11, 67–94. [Google Scholar] [CrossRef]
- Rossiter, J.E. Wind Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds; Ministry of Aviation, Royal Aircraft Establishment, RAE Farnborough: Farnborough, UK, 1964. [Google Scholar]
- Patricia, J.; Block, W.; Heller, H. Measurements of Farfield Sound Generation from a Flow-Excited Cavity; NASA: Washington, DC, USA, 1975. [Google Scholar]
- Rockwell, D.; Naudascher, E. Review—Self-sustaining oscillations of flow past cavities. Trans. ASME J. Fluids Engng 1978, 100, 152–165. [Google Scholar] [CrossRef]
- Sarno, R.L.; Franke, M.E. Suppression of flow-induced pressure oscillations in cavities. J. Aircr. 1994, 31, 90–96. [Google Scholar] [CrossRef]
- Sarohia, V.; Massier, P.F. Control of cavity noise. J. Aircr. 1976, 14, 833–837. [Google Scholar] [CrossRef]
- Cattafesta, L.N.; Song, Q.; Williams, D.R.; Rowley, C.W.; Alvi, F.S. Active control of flow-induced cavity oscillations. Prog. Aerosp. Sci. 2008, 44, 479–502. [Google Scholar] [CrossRef]
- Franke, M.; Carr, D. Effect of geometry on open cavity flow-induced pressure oscillations. In Proceedings of the 2nd Aeroacoustics Conference, Hampton, VA, USA, 24–26 March 1975. [Google Scholar] [CrossRef]
- Ethembabaoglu, S. On the Fluctuating Flow Characteristics in the Vicinity of Gate Slots. Ph.D. Thesis, University of Trondheim, Trondheim, Norway, 1973. [Google Scholar]
- Cattafesta, L.N., III; Williams, D.R.; Rowley, C.W.; Alvi, F.S. Review of Active Control of Flow-Induced Cavity Resonance. In Proceedings of the 33rd AIAA Fluid Dynamics Conference, Orlando, FL, USA, 23–26 June 2003. [Google Scholar] [CrossRef]
- Debiasi, M.; Samimy, M. Logic-Based Active Control of Subsonic Cavity Flow Resonance. AIAA J. 2004, 42, 1901–1909. [Google Scholar] [CrossRef] [Green Version]
- Little, J.; Debiasi, M.; Caraballo, E.; Samimy, M. Effects of open-loop and closed-loop control on subsonic cavity flows. Phys. Fluids 2007, 19, 065104. [Google Scholar] [CrossRef]
- Rowley, C.W.; Williams, D.R. Dynamics and Control of High-Reynolds-Number Flow Over Open Cavities. Annu. Rev. Fluid Mech. 2006, 38, 251–276. [Google Scholar] [CrossRef]
- Suponitsky, V.; Avital, E.; Gaster, M. On three-dimensionality and control of incompressible cavity flow. Phys. Fluids 2005, 17, 104103. [Google Scholar] [CrossRef]
- Jørgensen, F.E. How to Measure Turbulence with Hot-Wire Anemometers—A Practical Guide; Technical Report; Dantec Dynamics: Skovlunde, Denmark, 2002. [Google Scholar]
- Raffel, M.; Willert, C.E.; Wereley, S.; Kompenhans, J. Particle Image Velocity A Practical Guide. J. Vis. Exp. JoVE 2012. [Google Scholar] [CrossRef] [Green Version]
- Lazar, E.; DeBlauw, B.; Glumac, N.; Dutton, C.; Elliott, G. A Practical Approach to PIV Uncertainty Analysis. In Proceedings of the 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Chicago, IL, USA, 28 June–1 July 2010. [Google Scholar]
- Welch, P. The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short, modifed periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Schmid, H. How to Use the FFT and Matlab’s Pwelch Function for Signal and Noise Simulations and Measurements; Technical Report August; Institute of Microelectronics, University of Applied Sciences NW Switzerland: Windisch, Switzerland, 2012. [Google Scholar]
- Morton, B.R.; Taylor, G.; Turner, J.S. Turbulent Gravitational Convection from Maintained and Instantaneous Sources. Proc. R. Soc. A Math. Phys. Eng. Sci. 1956, 234, 1–23. [Google Scholar] [CrossRef]
- Wang, H. Interaction in a Still or Co-Flowing Environment Jet. Ph.D. Thesis, Hong Kong University of Science and Technology, Hong Kong, China, 2012. [Google Scholar]
- Ayech, S.B.H.; Habli, S.; Saïd, N.M.; Bournot, P.; Le Palec, G. A numerical study of a plane turbulent wall jet in a coflow stream. J. Hydro-Environ. Res. 2016, 12, 16–30. [Google Scholar] [CrossRef]
- Kalifa, R.B.; Habli, S.; Saïd, N.M.; Bournot, H.; Palec, G.L. The effect of coflows on a turbulent jet impacting on a plate. Appl. Math. Model. 2016, 40, 5942–5963. [Google Scholar] [CrossRef]
- Ziada, S.; Ng, H.; Blake, C.E. Flow excited resonance of a confined shallow cavity in low Mach number flow and its control. J. Fluids Struct. 2003, 18, 79–92. [Google Scholar] [CrossRef]
- Chan, S.; Zhang, X.; Gabriel, S. Attenuation of Low-Speed Flow-Induced Cavity Tones Using Plasma Actuators. AIAA J. 2007, 45, 1525–1538. [Google Scholar] [CrossRef]
- Sarohia, V. Experimental and Analytical Investigation of Oscillatoins in Flows over Cavities. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 1975. [Google Scholar]
- Gharib, M.; Roshko, A. The effect of flow oscillations on cavity drag. J. Fluid Mech. 1987, 177, 501–530. [Google Scholar] [CrossRef] [Green Version]
- Friedlander, S.; Lipton-Lifschitz, A. Localized instabilities in fluids. In Handbook of Mathematical Fluid Dynamics; Elsevier: Amsterdam, The Netherlands, 2003; pp. 289–354. [Google Scholar]
- Smith, B.L.; Glezer, A. Jet vectoring using synthetic jets. J. Fluid Mech. 2002, 458, 1–34. [Google Scholar] [CrossRef]
- Hnaien, N.; Khairallah, S.M.; Aissia, H.B.; Jay, J. Numerical Study of Interaction of Two Plane Parallel Jets. Int. J. Eng. 2016, 29, 1421–1430. [Google Scholar]
J(kg/m·s) | (%) | |
---|---|---|
290 | 0.11 | 0.57 |
465 | 0.44 | 2.31 |
965 | 0.96 | 5.04 |
J(kg/m·s) | No Jet | |||
---|---|---|---|---|
0.180 | 0.183 | 0.229 | 0.256 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddabi, N.A.; Kontis, K.; Zare-Behtash, H. The Impact of Steady Blowing from the Leading Edge of an Open Cavity Flow. Aerospace 2021, 8, 255. https://doi.org/10.3390/aerospace8090255
Haddabi NA, Kontis K, Zare-Behtash H. The Impact of Steady Blowing from the Leading Edge of an Open Cavity Flow. Aerospace. 2021; 8(9):255. https://doi.org/10.3390/aerospace8090255
Chicago/Turabian StyleHaddabi, Naser Al, Konstantinos Kontis, and Hossein Zare-Behtash. 2021. "The Impact of Steady Blowing from the Leading Edge of an Open Cavity Flow" Aerospace 8, no. 9: 255. https://doi.org/10.3390/aerospace8090255
APA StyleHaddabi, N. A., Kontis, K., & Zare-Behtash, H. (2021). The Impact of Steady Blowing from the Leading Edge of an Open Cavity Flow. Aerospace, 8(9), 255. https://doi.org/10.3390/aerospace8090255