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Abstract: This work demonstrates the use of Latin Hypercube Sampling and Proper Orthogonal
Decomposition in combination with a Radial Basis Function model to perform on vehicle prediction
coupled fluid–thermal–structure. We regarded the Mach number, flight altitude and angle of attack as
input parameters and established a rapid prediction model. The basic process of numerical simulation
of the hypersonic vehicle coupled fluid–thermal–structure was studied to obtain the database of
pressure coefficient, heat flux, structural temperature and structural stress as the sample data to
train this prediction method. The prediction error was analyzed. The prediction results showed
that the data-driven method proposed in this paper based on proper orthogonal decomposition
and radial basis function could be used for predicting vehicle coupled fluid–thermal–structure with
good efficiency.

Keywords: hypersonic vehicle; proper orthogonal decomposition; RBF model; data-driven; prediction

1. Introduction

A hypersonic vehicle is a challenging research area. This is due to the fact that
researchers need to deal with a large flight envelope, rapidly changing aerodynamic coeffi-
cients, as well as coupling between the structure and the aerodynamics of the vehicle [1].
Design of structures [2] and thermal protection systems [3] for hypersonic vehicles depend
on accurate predictions of the aerothermal loads, structural temperatures, and structural
stresses [4–6]. Traditionally, a rigid isothermal body is assumed to analyze the surface
pressures and heating rates [7]. These aerodynamic heating rates are used to analyze the
structural temperature. The temperature and aerodynamic pressures are used to analyze
the structural deformations and stresses [8,9]. The traditional independent approaches
are inefficient because several iterations are required between the different analyses [10].
Aerodynamic heat is generated during the process of flight, which is transferred to the
structure [11]. Thermal deformation of the structure is generated due to aerodynamic heat,
which in turn affects the flow field. The problem should be simulated by the method of
coupling fluid–thermal–structure. Pramote Dechaumphai et al. [12] carried out a study of
a numerical simulation on leading edges coupled fluid–thermal–structure, and compared
this with the experiment result. Many researchers such as Hirschel [2], Anderson [3], and
so on had gone into studies on the aerodynamic heat of hypersonic vehicles. Apart from
coupling, there is a large flight envelope. It is impossible to simulate the results of all
flight conditions in the stage of engineering design [13,14], which will cost a lot of time.
Therefore, it is necessary to develop a prediction method that is equivalent to CFD accuracy
on vehicle coupled fluid–thermal–structure.

The Proper Orthogonal Decomposition (POD), also known as Principle Components
Analysis (PCA), has been widely used for a broad range of applications. POD analysis
yields a set of empirical modes, which describes the dominant behavior or dynamics
of a given problem. This technique can be used for a variety of applications, including
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derivation of reduced-order dynamical models, steady analysis and design of inviscid
airfoils, image processing, and pattern recognition. Sirovich [15] introduced the method of
snapshots as a way to efficiently determine the POD modes for large problems. In particular,
the method of snapshots has been widely applied to computational fluid-dynamic (CFD)
formulations to obtain reduced-order models for unsteady aerodynamic applications. A
set of instantaneous flow solutions, or “snapshots” is obtained from a simulation of the
CFD method. The POD process then computes a set of modes from these snapshots, which
is optimal in the sense that, for any given basis size, the error between the original and
reconstructed data is minimized. Reduced-order models can be derived by projecting the
CFD model onto the reduced space spanned by the POD modes. Duan et al. [16] solved
the inverse design problem of two-dimensional airfoil based on this method. Adding
disturbance to the reference airfoil and performing CFD calculations to obtain sampling
solutions. The airfoil inverse design can be performed based on the method of fitting the
POD coefficients of the data, the airfoil shape corresponding to target pressure distribution
can be achieved. Bui Thanh Tan [17] proposed to interpolate the POD coefficient under
the condition of the known incoming flow state (such as Mach number, angle of attack)
corresponding to the pressure coefficient distribution. This method can quickly obtain
the approximate pressure coefficient distribution of the unknown flow field and greatly
improves the calculation efficiency. The research object of these articles is very nearly
flow field, and there are very few studies on the prediction of physical quantities coupled
fluid–thermal–structure.

In this paper, we demonstrate the use of Latin Hypercube Sampling (LHS) and Proper
Orthogonal Decomposition (POD) in combination with a Radial Basis Function (RBF)
model to perform a prediction of the physical quantities coupled fluid–thermal–structure.

2. Rapid Data-Driven Prediction Method

In this section, we briefly review the theory of the POD and RBF Interpolation, fol-
lowed by the rapid data-driven prediction method of a vehicle coupled fluid–thermal–
structure, which are employed throughout this paper.

2.1. Proper Orthogonal Decomposition

The basic POD procedure is summarized briefly here. POD is based on the factor-
ization of a spatial–temporal data matrix obtained from simulations or experiments [18].
The method is based on singular value decomposition (SVD) and attempts to find a linear
lower-dimensional subspace than the original data. Through SVD, it is possible to obtain
computed POD modes which are ranked in an energetic sense according to their residual
variance [19].

Let Y = [y1, y2, . . . , yn] ∈ Rp×n be the response matrix, which is obtained through
experiments or simulations. In general, for numerical simulations, p represents the number
of model nodes, n represents the number of snapshots. The purpose of POD is to find the
optimal basis vector. The optimal POD basis vectors u are chosen to maximize the cost: max 1

n

n
∑

i=1
|(Y, u)|2

(u, u) = 1
(1)

where (Y, u) is the inner product of the basis vector u with the field Y. Equation (1) can be
solved by the Lagrange multiplier method:

J(u) =
n

∑
i=1

(
(Yi, u)2 − λ

(
‖u‖2 − 1

))
(2)

where λ is the Lagrange multiplier, then take the derivative of u:

d
du

J(u) = 2YYTu− 2λu (3)
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If we let C = YYT , C is a symmetric positive definite matrix. In general, for numerical
simulations that generate big data problems, the snapshot POD method is more appropriate
since it builds the covariance matrix with the Y transposed data matrix. This leads to a
covariance matrix that has a reduced size, but with the same eigenvalues and eigenvectors.
Hence, the basis vectors are found by the eigen-decomposition problem:

Cu = λu (4)

where the eigenvalues λ are positive and the eigenvectors u form an orthonormal basis.
Consider energy, the larger the eigenvalue, the more energy it represents, and in terms

of containing information, the larger the eigenvalue, the more information it has. The
relative “energy” captured by the ith basis vector is given by:

I(r) =
∑r

i=1 λi

∑n
i=1 λi

(5)

where I(r) is energy ratio, the approximate prediction of the field Y is then given by a linear
combination of the eigenfunctions.

The basic POD procedure (just outlined) considers time-varying flows by taking a
series of flow solutions at different instants in time [20]. In this paper, the procedure is
applied in parameter space, that is, obtaining snapshots while allowing a parameter to
vary. The parameter of interest could, for example, be the Mach number, angle of attack,
and altitude.

2.2. Radial Basis Function Interpolation

Let f̂(x) be the original function to be modeled, and f(xi) be the values at N discrete
points xi, i = 1, 2, . . . , n, where xi is the vector of inputs at the ith sample point. The set of
data points X = {x1, x2, . . . , xn} is confined to a domain Ω in n-dimensional space, which
is normalized to the unit hypercube [0, 1]n for interpolation [21].

The RBF model is a linear combination of basis functions, whose argument is the
Euclidean distance between the point x at which the interpolation is made and all the
other points in the known dataset [22]. In other words, the interpolation at an untried
site is a sum of contributions from all the known function values, the influence of which
is controlled by a basis function that depends on the distance they are from the new
site [23]. It provides a comprehensive and flexible interpolation method. Due to its good
approximation, robustness and ease of implementation, the RBF model is used in many
fields such as statistics, engineering optimization, and so on [24].

If ϕ(x) is the chosen basis function and ‖·‖ is used to denote the Euclidean norm, the
interpolation model has the form:

f̂(x) =
n

∑
i=1

ωi·ϕ(‖x− xi‖) (6)

where ωi, i = 1, 2, . . . , n is the weight coefficient. The coefficients are found by requiring
exact recovery of the original data f̂(x) = f(x) for all points in the training dataset X.

When there are no repeated sample points, the radial function ϕ(x) is positive The
interpolation coefficients λ1, λ1, . . . , λn can be found by solving the linear system problem:

ϕ(‖x1 − x1‖) ϕ(‖x1 − x2‖) . . . ϕ(‖x1 − xn‖)
ϕ(‖x2 − x1‖) ϕ(‖x2 − x2‖) . . . ϕ(‖x2 − xn‖)

...
ϕ(‖xn − x1‖)

...
ϕ(‖xn − x2‖)

. . .
. . .

...
ϕ(‖xn − xn‖)


︸ ︷︷ ︸

A


ω1
ω2
...

ωn

 =


f(x1)
f(x2)

...
f(xn)

 (7)

where A is the interpolation matrix. The obtained RBF interpolant f̂(x) can be used to
approximate the given function f(x).
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2.3. Rapid Prediction Method Based on Data-Driven

In our work, we made predictions on the hypersonic vehicle coupled fluid–thermal–
structure, which concerned heat flux of flow field, pressure coefficient of the flow field,
structural temperature and structural stress. POD provides a method of processing the
dataset [25–28]. Thereby the specific process of the prediction method [29–32] is introduced
in detail next, and the corresponding flow chart is shown in Figure 1.
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Firstly, the state variables and their range is selected according to the flight status.
Latin Hypercube Sampling is used to obtain sample points X in the design space as shown
in Figure 2. The state variables and their range is shown in Table 1.
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Table 1. State variables and bounds of variables.

Mach Number (Ma) Altitude (H/km) Angle of Attack (α/◦)

3 ≤ Ma ≤ 8 20 ≤ H ≤ 40 −8 ≤ α ≤ 8

Secondly, numerical simulation is adopted to obtain the response matrix of all sample
points Y. The response matrix Y can be expressed as the superposition of the average value
Y and the pulsation value Y′, that is Y = Y + Y′. The pulsation value Y′ is used to construct
matrix M:

M =


Y′(1)1

Y′(1)2

Y′(2)1

Y′(2)2

. . . Y′(n)1

. . . Y′(n)2
...

... ...
Y′(1)p Y′(2)p . . . Y′(n)p

 (8)

where n is the number of sampling points; p is the number of model nodes; Y′ is pulsation
response value of model nodes, which could be heat flux, pressure coefficient, structural
temperature and structural stress in this paper.

Thirdly, pulsation response matrix M is used to construct the correlation matrix C. Then,
we decompose the eigenvalue of C, C = MTM, CA = λA, u0 = 1/

√
λMA, where λ and A

respectively correspond to eigenvalue and eigenvector, u0 is the orthogonal basis vector.
Fourthly, eigenvalues are sorted from large to small, and the larger the eigenvalue,

the more energy it represents. POD basis vector u, which is m dimensional (m� n), is
selected according to λ.

Fifthly, the POD basis vector is obtained in the fourth step. From the approximate

relationship Y′(i) ≈
m
∑

j=1
a(i)j u(j), the coefficients a of the POD basis vector under all sample

points can be calculated by the least square method. Due to the relationship between
sample points X and coefficients a, RBF is used to establish their approximate fitting
relationship [33–38].

Sixthly, the argument of RBF is the Euclidean distance between the point x at which
the interpolation is made and all the other points in the known dataset. Given a test sample
point X(e) in the design space, the corresponding coefficient a(e) can be obtained, followed
by response value of physical quantities can be obtained according to

Y(e) = Y(i)
+

m
∑

j=1
a(e)j u(j).
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3. Numerical Simulation

The numerical simulation coupled fluid–thermal–structure was studied to obtain the
response value of sampling points to establish a database set. The simulation should be
verified to ensure that the database we build can accurately contain the information of the
flow field and structure.

The equations for unsteady compressible flow are described by the conservation
of mass, momentum, and energy equations [12]. These equations can be written in the
conservation form as:

∂

∂t
{QF}+

∂

∂x

{
EI

F + EV
F

}
+

∂

∂y

{
GI

F + GV
F

}
= 0 (9)

where {QF} is the vector of the conservation variables;
{

EI
F
}

and
{

GI
F
}

are vectors of the
inviscid flux components in the x and y directions;

{
EV

F
}

and
{

GV
F
}

are vectors of the
viscous flux components in the x and y directions.

For transient heat conduction without an internal heat source, the thermal response of
the structure is described by the energy equation that can be written in conservation form as:

∂

∂t
(QT) +

∂

∂x
(ET) +

∂

∂y
(FT) = 0 (10)

where QT is the conservation variable, ET and FT are the component of flux.
The structural response is described by the quasistatic equilibrium equations that can

be written in conservation form as:

∂

∂t
(Qs) +

∂

∂x
(Es) +

∂

∂y
(Fs) = 0 (11)

where Qs is the displacement vector; Es and Fs are vectors of the stress components.
An experiment was performed in the NASA Langley 8-ft High-Temperature Tunnel

in 1987. The NASA Langley Research Center 8-ft High-Temperature Tunnel (8-ft HTT) is
a hypersonic blowdown tunnel in which a high energy level for simulating hypersonic
flight is obtained by burning methane and air in a high-pressure combustor. A 3-inch
diameter and 0.5-inch thick, stainless-steel cylinder was mounted on the panel holder and
subjected to a uniform high-enthalpy Mach 6.47 flow. The solution to Mach 6.47 flow over
a cylinder is used to demonstrate the integrated fluid–thermal–structure analysis approach.
The schematic diagram of this 8-ft HTT can be found in Figures 8 and 9 of [10]. And more
details of the experimental configurations, the tunnel flow conditions, and the experimental
results can be found in [10].

Because of symmetry, the model is reduced to two dimensions. Only one-half of the
incoming flow domain and cylinder is modeled. In this paper, the finite-element model
representing the flow domain and the cylinder is shown in Figure 3. The number of grids
of fluid is 150 × 400. The number of grids of structure is 100 × 13. The grid near the wall
of fluid is encrypted, and the minimum height is 10−6 m. In order to better capture the
characteristics of the flow field, the grid at the location of the shock wave is encrypted.

The hypersonic aerodynamic heat is calculated by FLUENT and the structural heat
transfer is calculated by ABAQUS. The pressure far field boundary condition is used in the
flow domain and the SST k−ω turbulence model is used in the whole flow computational
domain. A no-slip condition is specified at the surface of the wall. The analysis step of
coupling temperature-displacement is used in the cylinder and the initial temperature
of the cylinder is 294.4 K. The code is used to realize data exchange in the process of
simulation through the surface of the wall between ABAQUS and FLUENT. The incoming
condition is shown in Table A1. The material property is shown in Table A2.
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The result of the numerical simulation is shown in Figure 4 and Table 2. Density
contours are compared in Figure 4 with an experiment result [10]. The comparison of
the shock shape and position indicates the global flow field is reasonably well obtained.
We also compared the result of the maximum temperature of structure, maximum heat
flux and the maximum pressure of flow field between the numerical simulation in this
paper and experiment, which is shown in Table 2. We could conclude that the numerical
simulation used in this paper could obtain the information of flow field and structure for
establishing a database. For the experimental results and how they were obtained please
refer to [10].
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Table 2. Comparison of numerical simulation in this paper with the experiment.

Method Maximum Temperature of
Structure/K Maximum Heat Flux/(kW/m2)

Maximum Pressure of
Flow Field/Pa

Numerical Simulation in this paper 436 663 35,386
Experiment [10] 465 670 37,815

4. Result of Prediction

Five test conditions were selected according to the Latin Hypercube Sampling method.
We take the arithmetic average of these predicted results. The error analysis is performed
on an arithmetic average. The test conditions are shown in Table 3.

Table 3. Test sampling point.

Test Condition Altitude (H/km) Mach Number (Ma) Angle of Attack (α/◦)

1 38 4.2 −3.2
2 26 5 −6.4
3 30 3.4 3.2
4 34 6.6 0
5 22 5.8 6.4

Heat flux and pressure coefficient of the wall of the fluid domain are usually of interest
to researchers. By comparing the actual value with predicted value, the accuracy of the
prediction method could be judged. The wall consists of 355 nodes, the actual pressure
coefficient and predicted pressure coefficient of these nodes are shown in Figure 5. The
actual heat flux and predicted heat flux of these nodes are shown in Figure 6. It could be
seen that the predicted value is almost consistent with the actual value regardless of the
pressure coefficient or the heat flux.
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The contours of actual and predicted results, including temperature and stress, are
shown in Figures 7 and 8. Through comparing actual and predicted results, it could be seen
that the actual result is similar to the predicted result in terms of value and distribution.
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In order to make the results more intuitive, the relative error of the structural tempera-
ture and stress are shown in Figure 9.
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Figure 9. Relative error contour of the structural temperature and stress: (a) temperature; (b) stress.

It could be seen that the maximum relative error of structural temperature is only 2%,
which is practically located at the front of the structure. The maximum relative error of
structural stress is only 3.8%, which appears in very few nodes. However, the test sets of
data were simply to verify the prediction effect of the method. There might have been a
few errors between the different sets of data that could be reduced by obtaining more sets
of verification data. The prediction error can be reduced by increasing the sample data.

The comparison of efficiency between the predicted method and numerical simulation
is shown in Table 4. The computer is configured as AMD Ryzen 7 4800 H, 2.9 GHz,
16.0 GB RAM. The calculation with the software took nearly 12 h. It is difficult to obtain the
information of flow field and structure quickly. However, it only took 0.14 s to complete
the calculation by using the prediction method proposed in this paper.

Table 4. Comparision of efficiency with prediction method and numerical simulation.

Method Number of Snapshots CPU Time for One Snapshot/h CPU Time for Predicting one Test
Condition/s

Prediction method 5 ≈12 0.14
Numerical simulation 60 ≈12 −

5. Conclusions

In this paper, the prediction accuracy of the data-driven method on vehicle coupled
fluid–thermal–structure was investigated for pressure coefficient, heat flux, structural
temperature and structural stress by use of the POD and RBF models. According to
the analysis of Section 4, it could be seen that the data-driven method proposed in this
paper could be used for predicting the physical quantity of a hypersonic vehicle coupled
fluid–thermal–structure with good efficiency. Compared with the numerical simulation
method, the data-driven prediction method had the advantages of low cost and high
speed. If sufficient data can be provided, the calculation result will be consistent with the
actual values.

In future work, in order to improve the accuracy of the prediction method, we will
study the relationship between the accuracy of the prediction result and the size of the
database. The combination of proper orthogonal decomposition with other machine
learning models will be studied, and we hope to improve the generalization ability of the
prediction methods.
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Appendix A

The incoming flow conditions and material properties of the stainless-steel cylinder
are given in the following table:

Table A1. The incoming flow conditions.

P∞(Pa) T∞(K) Ma Re∞

648.1 241.5 6.47 1.31× 106

Table A2. The material property of the stainless-steel cylinder.

Elastic Modulus
(GPa)

Poisson’s
Ratio

Density
(Kg/m3)

Coefficient of Linear
Expansion
×10−6(K−1)

Thermal
Conductivity

(W/(m·K))

Specific Heat
Capacity
(J/(kg·K))

206 0.3 8030 17.5 16.27 502.48
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