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Abstract: Combustion instability is the biggest threat to the reliability of liquid rocket engines, whose
prediction and suppression are of great significance for engineering applications. To predict the
stability of a combustion chamber with a hypergolic propellant, this work used the method of
decoupling unsteady combustion and acoustic system. The turbulence is described by the Reynolds-
averaged Navier–Stokes technique, and the interaction of turbulence and chemistry interaction is
described by the eddy-dissipation model. By extracting the flame transfer function of the combustion
field, the eigenvalues of each acoustic mode were obtained by solving the Helmholtz equation, thereby
predicting the combustion stability for the combustion chamber. By predictions of the combustion
chamber instability with different flow rate distributions, it was found that the increasing of inlet
flow rate amplitude will improve the stability or instability of combustion. The combustion stability
of the chamber was optimized when the flow rate distribution for the oxidant was set more uniform
in the radial direction. The heterogeneity of the flow rate distribution in the circumferential direction
is not recommended, considering that a homogeneous flow rate distribution in the circumferential
direction is beneficial to the combustion stability of the chamber.

Keywords: liquid rocket engine; flow rate distribution; thermoacoustic decoupling; combustion instability

1. Introduction

Liquid rocket engines (LRE) have been widely used in spacecraft launch and recovery
due to their following advantages: high specific impulse, high thrust, the ability to start
repeatedly, variable operating time, adjustable thrust, and repeated usage [1]. Combustion
instability is widely found in rocket engines, aero engines, large air heaters and so on, which
will lead to uncontrollable, huge pressure pulsation in the combustors. This pulsation can
cause backfire, flameout, and overheating of the combustor wall, which may lead to a
series of problems, such as shortening the engine life and even destroying the engine [2].
Predicting and suppressing the combustion instability of the combustor in LRE is of great
significance to the development of aerospace industry.

In order to reduce the occurrence of combustion instability in experiments, theoretical
and numerical simulation methods are generally used to predict the combustion instability.
Prediction methods of combustion instability are divided into two categories [3].

The first kind is directly solving the coupled combustion instability system by com-
putational fluid mechanics and compressible solver, which can obtain the frequency of
combustion instability. Leonardi et al. [4] implemented a specific module based on the dou-
ble time lag model and the coupling of the combustion chamber, and feed line oscillations
were investigated by using a complete set of nonlinear equations. This method generally
uses large-eddy simulation (LES) to obtain the information of the coupled combustion
instability system. Chen et al. [5] studied self-exciting combustion instability in twin scroll
GTMC (gas turbine model combustors) and its interaction with air-fuel mixing by the LES
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technique. The detached eddy simulation (DES) method was developed in recent years
and has been used to the prediction of combustion instability because its advantages in the
computational efficiency of Reynolds-averaged Navier–Stokes (RANS) and high accuracy
of LES. Yuan et al. [6] captured self-exciting high-frequency combustion instability in a
rocket engine combustion chamber by the two-dimensional DES technique and verified the
existence of self-exciting high-frequency combustion instability.

The second kind decouples the combustion system and acoustic system and calcu-
lates the flame response and acoustic response with the incoming flow rate disturbance,
respectively. Generally, the acoustic response is calculated by a low-order acoustic model,
and the flame response is represented as the transfer relationship between the combustion
heat release rate and incoming flow rate disturbance, such as the flame transfer function.
Urbano et al. [7] simulated a full-scale combustor by the LES technique and studied the
combustion instability of BKD with the acoustic modal identification method. The study
showed that the instability of first-order tangential and first-order longitudinal plays an
important role in the combustion instability of the chamber. Li et al. [8] used the LES
technique to simulate the combustor and substituted the transfer function into OSCILOS,
which is a combustion instability prediction and simulation program, and finally obtained
accurate prediction values of thermoacoustic oscillation frequency and amplitude.

Influence factors of combustion instability were studied by experimental and numer-
ical simulation methods to suppress the occurrence of combustion instability. There are
many factors that affect combustion instability, such as Reynolds number (Re), combus-
tion chamber geometry [9], mixing ratio, type of fuel, degree of premix and turbulence
intensity [10]. By affecting the heat release rate and its coupling with acoustic waves, these
factors cause different combustion instability phenomena in combustors.

Experimental research studies on combustion instability can be traced back to the
1950s. A lot of research has been carried out on the combustion instability of LRE. The
F-1 rocket engine used in the Apollo moon landing program has undergone abundant
experiments so as to solve the combustion instability problem. By costing billions of dollars
and testing thousands of combustion chamber geometries, the program accumulated plenty
of experience in combustion instability research [11]. Bazarov et al. [12] found the injector
structure influence on combustion instability. The dynamic characteristics of injectors were
analyzed theoretically and experimentally. At present, experimental methods are mainly
based on two types of advanced optical testing methods: the particle image velocimetry
(PIV) and planar laser-induced Fluorescence (PLIF), which can measure the process data
and then research on combustion instability. Soller et al. in Germany [13,14] studied the
oxygen/kerosene coaxial swirl combustor. They observed the longitudinal high-frequency
combustion instability phenomenon during the experiment and concluded that the in-
jector structure is the key factor on combustion dynamics. Wang et al. [15] conducted
experimental studies on a single-injector engine. The length of injector recess influenced
combustion instability, but the influence of the combustion chamber length on the longitu-
dinal high-frequency combustion instability was more obvious. Xue et al. [16] carried out
experiments on a single-injector rectangular combustion chamber, which showed that there
is a relatively optimal recess ratio to make the combustion more stable under supercritical
conditions. Bai et al. [17] conducted an experimental study on a combustor with liquid-
centered coaxial swirling injectors, and their research showed that when the self-exciting
oscillation frequency of the injectors coupled with the natural acoustic frequency of first
order longitudinal mode (1L) of the combustor, the combustor pressure would oscillate at
the same frequency. This phenomenon suggested that self-exciting oscillation may be a key
factor in the combustion instability of LRE. Armbruster et al. [18] conducted experiments
on combustion instability on the BKD combustion chamber. The research showed that
the self-exciting oscillation of injectors makes the combustion chamber transform from
the first-order tangential mode, with a larger amplitude, to the first-order longitudinal
mode, which is lower frequency and couples with the self-exciting oscillation frequency.
Stefan et al. [19] conducted an in-depth study on the coupling of self-exciting oscillation
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and combustion instability, which showed that the flow oscillation of injectors has a greater
impact on the heat release rate change than sound pressure. Laera et al. [20] proposed an
experimental device that can detect combustion stability and combined the self-exciting
oscillation experiment with numerical simulation to study the effect of a single-injector com-
bustion chamber length on the longitudinal combustion instability [21,22]. Hardi et al. [23]
took the BKH combustion chamber as an example to study the interaction between the
sound field and combustion field, experimentally. The study showed that the oscillation of
the sound velocity seriously affects jet breakup when it gets close to the jet velocity.

In numerical simulation, Fureby [24] simulated combustion instability by the LES
technique, and the simulation results showed that vortex shedding is an important factor
causing unsteady heat release. Nie [25], Cheng [26] and Feng [27] conducted a lot of
simulation research on the injector structure parameters and physical parameters of hy-
pergolic propellant engines, hydrogen oxygen engines and hydrocarbon engines, and con-
cluded that structures such as baffles can suppress high-frequency combustion instability.
Qin et al. [28] found that, compared with the short and thick combustion chamber, the
elongated chamber is beneficial to suppress tangential mode combustion instability which
is the most harmful factor to the engine. Fang et al. [29] conducted a series of studies
on combustion chamber with liquid oxygen/methane injectors and studied the influence
of injector structure parameters on the atomization angle and combustion performance
experimentally and numerically. Kraus et al. [30,31] predicted combustion instability con-
sidering wall heat transfer by the LES technique. The results showed that the heat transfer
of wall has a certain impact on combustion field simulation. Wu et al. [32] simulated the
engine with UDMH/N2O4 and compared with the experimental results of the hydrogen
oxygen engine. The results showed that the two engines have similar variation trends
of temperature and Mach number, but the tail flame core temperature of UDMH/N2O4
engine is relatively low.

In this paper, the decoupling thermoacoustic system method is adopted. The flame
transfer function is obtained by computational fluid dynamics, while the acoustic mode is
solved by Helmholtz equation, and the combustion instability of a combustion chamber
is predicted. The influence of the flow rate amplitude and flow rate distribution on
combustion instability is explored by studying different conditions.

2. Combustion Instability Prediction Method

This chapter introduces the combustion instability prediction method used in this paper.
The combustion field and the acoustic system were decoupled, and the combustion response
caused by acoustic perturbations is characterized as the flame transfer function. The transfer
function can be obtained experimentally or numerically. In this paper, it is difficult to obtain
the flame transfer function by experimental means, so the numerical method is adopted. The
prediction of combustion instabilities is accomplished by substituting the resulting flame
transfer function into the Helmholtz equation. The two key steps are obtaining the flame
transfer function by simulating the combustion field and solving acoustic modes by the
Helmholtz equation, which are described in Sections 2.1 and 2.2, respectively.

2.1. Combustion Field Numerical Model

This section describes the methods used to obtain the flame transfer function. The
combustion field distribution is obtained by computational fluid dynamics methods, mainly
using the eddy-dissipation model, k−ω SST turbulence model and Redlich–Kwong equa-
tion of state. The flame transfer function is extracted from the combustion field and
described by the n− τ model.

2.1.1. Governing Equations

(1) Continuity Equations
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When solving mixed flows containing different substances, the percentage of each
substance in the mixture can be obtained by solving the convection–diffusion equation of
each substance. This conservation equation follows the following form:

∂

∂t
(ρYi) +∇ · (ρ

⇀
v Yi) = −∇ · (

→
Ji ) + Ri (1)

where Y is the mass fraction of the component, and R is the rate of the component produced
by the chemical reaction. In a multicomponent flow with N components, N-1 equations in
Equation (1) need to be solved. Usually, to minimize numerical errors, the transport equa-
tion corresponding to the other components is solved instead of solving for the component

with the largest share in the mixture.
→
Ji is the diffusion flux of the i-th component, resulting

from the concentration and temperature gradient of the component. For laminar flow, the
diffusive flux is defined as follows:

→
Ji = −ρDi,m∇Yi − DT,i

∇T
T

(2)

where Di,m is the mass diffusion coefficient of the i-th component in the mixture, and DT,i is
the corresponding temperature diffusion coefficient. For turbulent flow, the diffusive flux
is defined as

→
Ji = −(ρDi,m∇Yi +

µt

Sct
)− DT,i

∇T
T

(3)

where Sc is the Schmidt number and µ is turbulent viscosity.

(2) Momentum Equation

The momentum conservation equation in the inertial reference frame is as follows:

∂

∂t
(ρ

⇀
v ) +∇ · (ρ⇀v ⇀

v ) = −∇ · p +∇ · (=τ) + ρ
⇀
g +

⇀
F (4)

where p is the static pressure, τ is the pressure tensor, and ρg and F are the gravitational
field and the external force field, respectively. The pressure tensor τ is given by

=
τ = µ[(∇⇀

v +∇⇀
v

T
)− 2

3
∇ ·⇀v ] (5)

(3) Energy Equation

∂

∂t
(ρE) +∇ · (⇀v (ρE + p)) = −∇ · (∑

j
hj Ji) (6)

(4) Equation of State

Under the pressure and temperature conditions of the combustion chamber, the pro-
pellant is in a transcritical or supercritical state. At supercritical pressure, since the fluid
properties change continuously from the jet to the surrounding environment, using tradi-
tional methods to deal with the material properties will introduce particularly large errors.
The errors become particularly huge especially as the fluid approaches the critical point.
Therefore, to characterize the physical properties of supercritical fluids more accurately,
it is necessary to develop a physical property evaluation mechanism that is applicable to
the entire thermodynamic state region, especially the combustion chamber studied in this
paper, which is in the supercritical state.

The Redlich–Kwong (R-K) equation is an effective method for this system. It fits better
in the supercritical state and has smaller errors than the Soave–Redlich–Kwong (SRK)
and Peng–Robinson (PR) equations and is simpler than the other correction equations.
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Therefore, the R-K equation is used to describe the physical parameters in this simulation.
Its expression is as follows [33]:

p =
RgT
v− b

− a
T0.5v(v + b)

(7)

where p is the pressure, T is the temperature, and Rg is the universal gas constant. a, b are
the parameters of the equation, which can be specifically expressed as [33]:

a = 0.4278Rg
2T2.5

c /pc (8)

b = 0.0867RgTc/pc (9)

where pc is the critical pressure of the substance and Tc is the corresponding critical
temperature.

2.1.2. Turbulence Model

The k−ω SST turbulence model is used in this paper, which is developed from the
k−ω model but has higher accuracy and confidence in a wide range of flow domains, and
it is best suited for the simulation of the combustor. The transport equation for k−ω model
is as follows:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj
[Γk

∂k
∂xj

] + Gk −YK (10)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj
[Γω

∂ω

∂xj
] + Gω −Yω (11)

where
ΓK = µ + µt

σK
;

Γω = µ + µt
σω

;

µt = α∗ ρk
ω ;

µt = ρCµ
k2

ε ;

(12)

In Equations (10)–(12), Gk represents the turbulent kinetic energy generated by the
average velocity gradient; Gω represents the amount of ω produced; and ΓK and Γω are the
effective diffusivities of k and ω, respectively. YK and Yω are the dissipation rates of k and
ω due to turbulence, respectively.

Compared with the k−ω model, the improvement of k−ω SST is that the effect of the
turbulent shear stress is taken into account when defining the turbulent viscosity term. This
makes it more accurate and reliable in simulating the separation of airflow from smooth
surfaces as well as cases with wall-restricted flow.

The turbulent viscosity expression for the above-mentioned model is as follows:

µt =
ρk
ω

1
max

[
1

α∗ , SF2
a1ω

]
F2 =

(
Φ2

2)
Φ2 = max

[
2
√

k
0.09ωy , 500µ

ρy2ω

] (13)

2.1.3. The Eddy-Dissipation Model (EDM)

In certain operating conditions, the fuel burns rapidly, and the overall reaction rate
is dominated by turbulent mixing. For example, in a high-temperature non-premixed
flame, the turbulence causes the fuel and oxidant to mix slowly in the reaction zone and
burn quickly. In this case, the following assumption is made: combustion is controlled by
fuel mixing, ignoring the complex chemical reaction rates, and assuming that the rate of
combustion is much greater than the mixing rate (complete combustion once mixed).

Based on the assumption of “combustion occurs once mixing” proposed by Magnussen
and Hjertager [34], ANSYS Fluent has a built-in reaction model based on turbulence control
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called the eddy-dissipation model. In this model, the generation rate of a substance is
defined as follows:

Ri,r =
v′i,r Mw,i Aρ

τ ( Y<
v′<,r Mw,<

)

Ri,r =
v′i,r Mw,i ABρ

τ (
∑
P

YP

N
∑
j

v′′j,r Mw,j

)
(14)

The meanings of each term in the above formula are as follows: Yp is the mass fraction
of the product; Y< is the mass fraction of the reactant; and A and B are the empirical
coefficients, which are set as 4.0 and 0.5, respectively.

In Equation (14), the chemical reaction rate is controlled by the time scale of large
eddy mixing, defined as τ. As long as τ > 0 is established, the reaction will proceed,
with no ignition source required to start the combustion reaction. Xu et al. [35] used the
eddy-dissipation model to simulate the combustion of hypergolic propellants, MMH/NTO,
and it is feasible to use this model to simulate the combustion of hypergolic propellants,
which makes us choose the eddy-dissipation model.

The combustion chamber calculated in this paper is a rich fuel environment: the total
mixing ratio of the combustion chamber (0.2051), and the maximum mixing ratio of the
two-component injector (0.6488), are lower than the stoichiometric ratio of the complete
reaction of UDMH/N2O4 (3.0616, can be calculated by Equation (15)). Therefore, the total
package reaction model with a mixing ratio of 1.53078 is chosen in this paper, as expressed
in Equation (16).

C2H8N2 + 2N2O4 = 2CO2 + 3N2 + 4H2O (15)

C2H8N2 + N2O4 = CO2 + 2N2 + H2O + CO + 3H2 (16)

2.1.4. Flame Transfer Function

The flame transfer function used in this paper is defined as

Fj(t) =
q′ j
ur ′

(17)

where q′ j is the combustion heat release rate pulsation, and u′r is the velocity pulsation of the
reference point. Since the prediction is performed in the frequency domain, Equation (17)
is Fourier transformed and becomes the following expressions:

F̂j( f ) = nje
iϕj

nj =
q̂j

ûr
(18)

where q̂j is the perturbation amplitude of q′ j at frequency f , and ϕj is the phase difference
between q′ j and u′r. Since u′r is also a disturbance parameter that needs to be calculated, this
section only considers the treatment of the heat release rate. The function expression was
first proposed by Crocco [36]. The flame transfer function relates the relationship between
the unsteady heat release rate and the incoming flow rate disturbance, thus avoiding the
complex description of the relationship between flow, acoustics and combustion. Hence the
transfer function between inlet mass flow rate perturbation and combustion heat release
rate is introduced:

Hj(t) =
q′ j

.
m′/

.
m

=
q′ j

α sin(2π f t)
(19)

2.2. Thermo-Acoustic Decoupling Method

The theoretical rough estimation method and Helmholtz equation are used to solve
the decoupled sound field. Xiang [37] used the method introduced in this section to predict
combustion instability in long flame combustor. By comparing with the results of the direct
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coupling solution under the same conditions, it shows the feasibility of the decoupling
method used in this paper. Section 2.2.1 introduces the application conditions of decoupling
and the theoretical rough estimation method. Section 2.2.2 introduces the principle of the
Helmholtz equation to solve the decoupled sound field.

2.2.1. Preliminary Estimation of Acoustic Modes

There are two methods for the rough estimation of the acoustic modes: (1) theoretical
prediction; and (2) solving the Helmholtz equation of the steady field without the according
source term. For the former, the value of the thermodynamic parameters is an average
value, regardless of the complex combustion chamber structure, while the latter method is
more accurate. In this paper, the steady field is used first to predict the frequency, and then
the initial value is substituted into the Helmholtz equation to solve.

The geometry of this combustion chamber is relatively simple, with no variation in the
cross-sectional area of the combustion chamber section, which is cylindrical in shape, but
with a constricted segment nozzle downstream. Due to the large flow velocity in the nozzle,
the Mach number is generally greater than 0.1, so it cannot be considered a non-mean
flow. Since the sum of the injector area is quite different from the cross-sectional area of
the combustion chamber, and the temperature difference between the injectors and the
combustion chamber is relatively large, the acoustic system upstream of the injectors could
be decoupled from that in the combustion chamber [2]. The general decoupling criteria

is as follows: S2
S1

√
T2
T1

> 10, where subscript 2 represents the combustion chamber, and
subscript 1 represents the injectors. The main body of this model is the combustion chamber
with nozzle shown in Figure 1. The nozzle is treated as an acoustic impedance boundary
condition using the corresponding boundary condition. In the simulation, only the front
part is considered, shown in Figure 2, whose acoustic modes need to be calculated. When
preliminarily estimating the frequency of the acoustic modes in the combustion chamber,
the injector inlet can be regarded as an acoustic closed condition, and the outlet can also be
regarded as a closed condition.
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The frequencies of each acoustic modes (symbolized as fnmj) can be roughly estimated
according to the classical formula:

fnmj =
cc

2π

√
kr2 + kr,n2 =

cc

2π

√
4
(

αmj

Dc

)2
+ k2x,n (20)

where n, m, j− 1, Cc, kr, kx,n, αmj and Dc are the longitudinal mode number, the tangential
mode number, the radial mode number, the sound velocity of the combustion chamber,
the radial wave number, the longitudinal wave number, the wave number perpendicular
to the longitudinal direction, and the diameter of the combustion chamber, respectively,
where

kx,n =
nπ

lc
(21)

For a cylindrical shape, αmj is generally the root of the Bessel function
dJm(αmj)

dr = 0,
which can be calculated by looking up the Table 1 as follows.

Table 1. The value of αmj corresponding to each mode.

αmj/2π m = 0 m = 1 m = 2 m = 3

j = 1 0 0.2930 0.4861 0.6686
j = 2 0.6098 0.8485 1.0673 1.2757
j = 3 1.1166 1.3586 1.5867 1.8058
j = 4 1.6192 1.8631 2.0961 2.3214

2.2.2. Helmholtz Equation

The Mach number basically does not exceed 0.1 in the combustion chamber in this case,
so the average flow is ignored in the acoustic calculation of this combustion chamber, and
only the pressure disturbance is considered. The Helmholtz equation can be established
for the entire combustor, with the flame transfer function regraded as part of the source
term. By coupling the Helmholtz equation and the flame transfer function, using the
aforementioned acoustic boundary conditions of the nozzle, and reasonably setting the
acoustic boundary conditions at the inlet, the acoustic modes of the entire system can
be obtained.

For a region with a heat source, the fluid density ρ varies with pressure p and entropy s.
By the derivation rules for compound function,

Dρ

Dt
=

1
c2

Dp
Dt

+
∂ρ

∂s
|p

Ds
Dt

(22)

Combining the linearized mass and momentum conservation equations, the equation
of the combustion chamber can be written as

1
c2

∂2 p′

∂t2 − ρ∇ · (1
ρ
∇p′) =

(γ− 1)
c2

∂q′

∂t
(23)

This inhomogeneous equation is the wave equation used to describe the pressure
perturbation q′(x, t) caused by the unstable heat input, which is the core formulation when
using COMSOL. In fact, the wave equation used in COMSOL is the Helmholtz equation,
which is expressed as

∇ · (− 1
ρ0

(∇p− q))− ω2

ρ0c2 p = QCM (24)
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This formula is slightly different from Formula (23). Based on the above two equations,
the unipolar domain source can be solved simultaneously:

QCM =
iω(γ− 1)

ρc2 q′ (25)

With the equation q′ = Q′/V, where V is the volume of the heat source, Equation (26)
can be obtained by substituting it into Equation (25):

QCM =
iω(γ− 1)

ρc2
Fu′r

V
(26)

Based on the momentum conservation equation ∂u’/∂t + ∇p′/ρ = 0 and
f (t) = Re[ fmaxexp(iωt)], it can be derived that

u′r = −
∇p′r
iωρ

(27)

Substitute into the previous formula to obtain

QCM = −γ− 1
ρ2c2

F
V
∇p′r (28)

According to the FLUENT simulation calculation results, several assumptions are
set: the flame length is defined by the highest temperature point at the central axis of the
injector; the gradient of the heat release along the flame axis is ignored; the flame is regarded
as a compact one. Based on these assumptions, n and ϕ were calculated corresponding to
different injectors, substituted into COMSOL for simulation calculation.

3. Physical Model and Boundary Conditions
3.1. Physical Model

The combustion chamber structure studied in this paper is shown in Figure 1, which
mainly includes a cylindrical combustion chamber and a nozzle. The injection panel
consists of 13 coaxial swirling injectors and 18 single-component fuel swirling injectors.
The locations of the coaxial swirling injectors are as follows: 7 large flow rate injectors in
the central zone and 6 small flow rate injectors in the outer ring.

Since the injectors distribution is centrosymmetric, the combustion field can be sim-
plified by periodic boundaries. In this work, for different flow rate distribution schemes,
part of the combustion chamber is used for combustion simulation, according to the
symmetry characteristic. As shown in Figure 2, the structure and the corresponding un-
structured grid of 1/6 combustion chamber are used for the simulation. The number
of grids was 1.7 million. The 1/3 combustion chamber is also used in some flow rate
distribution schemes.

3.2. Boundary Conditions

There are several considerations before making assumptions: (a) it is difficult to realize
the coupling method, which considers the continuous cold state phase in the injectors
and the high temperature combustion field at the same time; (b) for the application of
the discrete phase method and the volume of fluid method, the model establishment
of droplet evaporation under high pressure environment has not formed an industry-
recognized standard, and computation amount increases greatly as well; (c) for the pressure
and temperature in the combustion chamber, the propellants are in a supercritical state.
Therefore, the assumptions for the inlet state are as follows: UDMH and N2O4 are treated
as continuous phase; these physical parameters (such as density) are fitted by the R-K
equation, while the transport parameters are solved by the method corresponding to the
state. Continuous phase assumption is effective for solution while maintaining correctness.
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Based on this assumption, the general schemes for simulation are as follows: the combustion
chamber inlet is set from 0.5 mm upstream of each injector recess; the axial and tangential
velocity of the two propellants at the injector recess are obtained according to the theoretical
calculation of Zhang [38]; and the boundary condition for inlet is set as the velocity inlet,
while the outlet is set as pressure outlet. The specific velocity is given in Section 3.3.

When simulating the steady combustion field, the inlet velocity is a constant value ob-
tained by the above method. To obtain the flame transfer function, a sinusoidal disturbance
of a certain frequency is applied to the axial velocity of the inlet so as to achieve an effect
similar to the sinusoidal disturbance of the inlet mass flow rate. The form of the inlet mass
flow rate is shown in Equation (29).

.
m =

.
m +

.
m′ =

.
m · (1 + α sin (2π f t)) (29)

The frequency in Equation (29) is given according to the rough estimation of the
acoustic modes in Section 2.2.1.

3.3. Scheme Settings

To explore the influence of the mass flow rate amplitude and flow rate distribution
on the combustion instability of the hypergolic propellant combustion chamber, all the
schemes are obtained by making minor adjustments to the basic scheme of the combustion
chamber in this section. For the basic scheme, the entire combustion chamber is composed
of 31 injectors, characterized into three types: (a) 18 single-component fuel injectors in the
outermost ring; (b) 6 coaxial swirling injectors with a small oxidant flow rate whose mixing
ratio is 0.302, located in the middle ring; and (c) 7 coaxial swirling injectors with a large
oxidant flow rate whose mixing ratio is 0.649, located in the center. The schematic diagram
is shown in Figure 3.
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3.3.1. Inlet Flow Rate Oscillation Schemes

In order to obtain the flame transfer function, this section sets a case to verify which
propellant the oscillation should be applied to and the amplitude in Equation (29). For
the question of whether the oscillation should be applied to the oxidant circuit or the fuel
circuit, two types of oscillation schemes are used in the basic case. The oscillation is set in
the oxidant circuit in Scheme 1, and the oscillation of the fuel circuit is set in Scheme 2. As
for the amplitude, 10%, 20%, and 30% oscillations are respectively applied to the oxidant
circuit in the basic scheme, corresponding to Schemes 1, 3, and 4. The schemes introduced
in this section are shown in Table 2.
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Table 2. Settings for Schemes 1 to 4.

Flow Rate
Distribution

Oscillation
Amplitude

Oscillation
Circuit Research Question

Scheme 1
Basic flow

rate
distribution

scheme

10% oxidant Location of
oscillationScheme 2 10% fuel

Scheme 3 20% oxidant Effect of amplitude

Scheme 4 30% fuel

3.3.2. Flow Rate Distribution Schemes

To explore the influence of flow rate distribution on combustion instability, various
flow rate distribution schemes are set in this section. All of them are obtained by modifying
the basic flow rate distribution scheme, which are described in Section 3.3. The flow rate
distribution schemes in this section keep the total flow rate and mixing ratio in the entire
combustion chamber unchanged, with only the local flow rate distribution varied.

In order to explore the influence of the radial propellant flow rate distribution, the
flow rate scheme is set according to the following rules: the total flow rate and mixing
ratio of the injectors in each circle are kept the same as the basic flow rate distribution,
but the flow rate of each injector in each circle is changed; the flow rate of two adjacent
injectors increases and decreases, respectively, and the amplitude of all injectors’ flow rate
changes is equal. A sketch map of the flow rate change is shown in Figure 4. The basic
flow rate distribution of the basic injector structure, the 5% circumferentially variable flow
rate distribution, and the 10% circumferentially variable flow rate distribution scheme are
respectively explored, which are set as Schemes 5 and 6, respectively. The scheme settings
and flow rate of typical injectors are shown in Table 3.

In order to explore the influence of the oxidant radial flow rate gradient, the flow rate
scheme is set according to the following rules: the fuel flow rate of all injectors is fixed,
and in each circle, the flow rate of each injector is kept the same; and the oxidant flow rate
of the central 7 bi-component injectors and the oxidant flow rate of the six bi-component
injectors in the outer ring are changed, as shown in Figure 5. According to Table 4, three
different flow rate distributions are used, and the table also shows the flow rate of the
typical injectors.
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Table 3. Settings for Schemes 5 and 6.

Scheme 1 Scheme 5 Scheme 6

Large Flow Small Flow Large Flow Small Flow

Inner ring oxidant injector
flow rate (kg/s) 0.228 0.24 0.216 0.25 0.206

Outer ring oxidant injector
flow rate (kg/s) 0.106 0.112 0.1 0.116 0.096

Fuel injector flow rate (kg/s) 0.352 0.368 0.3336 0.386 0.316
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Table 4. Setting for Schemes 7 and 8.

Scheme 1 Scheme 7 Scheme 8

Inner ring oxidant injector flow rate (kg/s) 0.228 0.226 0.23

Outer ring oxidant injector flow rate (kg/s) 0.106 0.108 0.104

Inner ring oxidant total flow rate (kg/s) 1.594 1.584 1.604

Outer ring oxidant total flow rate (kg/s) 0.638 0.646 0.628

Oxidant flow rate ratio of inner and outer rings 2.50 2.45 2.55

4. Results and Analysis
4.1. Influence of Inlet Flow Rate Oscillation on Combustion Instability

According to the rough estimation method of the combustion chamber acoustic mode
introduced in Section 2.2.1, the steady state frequency of each scheme is roughly estimated
by using the steady field. The steady fields of the four examples in this section are the same.
The average total temperature of the combustion chamber is 1500 K, the average sound
velocity is 600 m/s, the diameter of the combustion chamber is 150 mm, and the length is
about 400 mm. Putting the above parameters into Equation (20), the theoretically predicted
eigenfrequency of each acoustic mode can be obtained as shown in Table 5.

According to the hot test, the dangerous mode is first-order longitudinal, zero-order
tangential and zero-order radial mode, so the theoretical predicted frequency of this mode
(869 Hz) is set as the initial iterative value for solving the Helmholtz equation without the
source term. The temperature, sound velocity and density distribution of the steady field
are interpolated and imported into the equations, and the actual characteristic frequency of
the combustion chamber under the steady state field is 1280.6 Hz. To calculate the flame
transfer function, the oscillation frequencies for Schemes 1 to 4 are chosen close to their
characteristic frequency, that is, 1000 Hz, 1300 Hz, and 1600 Hz. Add oscillation at the same
time, extract the heat release rate distribution of each injector within 2 ms, and calculate
the flame transfer function. Based on these, the instability prediction of combustion can be
obtained by solving the Helmholtz equation.
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Table 5. Rough estimation of each modal frequency of the combustion chamber.

Zero-Order
Tangential,

Zero-Order Radial

First-Order
Tangential,

Zero-Order Radial

Second-Order
Tangential,

Zero-Order Radial

Zero-Order
Tangential,

First-Order Radial

Zero-order longitudinal 0 3191 5294 6641
First-order longitudinal 869 3307 5364 6697

Second-order longitudinal 1738 3633 5572 6864
Third-order longitudinal 2607 4120 5901 7134

4.1.1. Influence of Oscillation Circuit on Combustion Instability

There are two feedback mechanisms in the processes of inducing combustion instability.
The first is to apply the flow rate disturbance to the injector inlet, which causes oscillation
inside the injector, inducing combustion instability in the combustion chamber. Disturbance
of the oxidant circuit or fuel circuit causes combustion instability, which is obviously a
positive feedback process. The second one is disturbance feedback from the combustion
chamber to the injectors, and the feedback process is represented by the velocity pulsation
value. Which circuit oscillation has a greater impact depends on the second feedback
mechanism, that is, the feedback brought by from combustion oscillation to the interior of
the two types of injectors. The strength of this feedback can be characterized by the velocity
pulsation value.

It can be seen from Figure 6 that, for Schemes 1 and 2, no matter where the flow
rate disturbance is applied, the feedback from the combustion process to the inside of
injectors is always that the velocity pulsation value of the oxidant circuit is larger. When
the disturbance is added to the oxidant circuit for simulation, the reference velocity taken
by the heat source in the acoustic simulation is correspondingly larger, which gives a larger
heat source, and it is more likely to cause the oscillation of the heat release rate in the
combustion chamber, further stimulating combustion instability. While the disturbance
is applied to the fuel circuit, on the contrary, it is given a smaller heat source, and when
the stability of the acoustic mode is further calculated and predicted, even if the result is
stable, combustion instability may occur. Therefore, adding the flow rate disturbance to the
oxidant circuit can ensure the correctness of the results to the greatest extent.
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4.1.2. Influence of Disturbance Amplitude on Combustion Stability

Schemes 1, 3, and 4 applied flow rate oscillations with amplitudes of 10%, 20%, and
30% to the oxidant circuit, and the flow rate distributions were the same, respectively.
Figure 7 shows the heat release rate distribution of Scheme 1. It can be observed that the
heat release rate is concentrated in the head region of the combustion chamber, with a
certain continuation along the longitudinal direction.
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Figure 7. The distribution of combustion heat release rate in x-y plane.

The heat release rate distribution of each injector within 2 ms is extracted, and then
the effective parameters are obtained according to the flame transfer function introduced in
Section 2.1.2. This duration is chosen to cover at least one full cycle of the three frequency
simulations. Figure 8a,b are, respectively, the amplitude–frequency characteristic curve
and the phase–frequency characteristic curve of flame transfer function, taking the central
injector as an example.
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Figure 8. Central injector flame transfer function. (a) Amplitude–frequency curve. (b) Phase–
frequency curve.

In order to solve the sound field, the simplified geometry of combustion chamber,
injectors and the geometric model with compact flame are assembled as shown in Figure 9a.
The geometric model is divided by unstructured mesh. After meshing, the mesh of the
model consists of 538,367 tetrahedrons. The acoustic solution of the entire combustion
chamber is shown in Figure 9b.
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Since the natural frequency of the combustion chamber mainly depends on the com-
bustion chamber structure and the thermodynamic parameters of medium inside, the flame
disturbance (or the pulsation of heat release rate) has little effect on the frequency of the
acoustic mode, and mainly affects the stability of the acoustic mode. The preliminary
calculation of the simplified mode in Section 4.1.1 shows that the first-order longitudinal
mode of the combustion chamber is basically around 1280.1 Hz. In this work, the frequency
mentioned above is used as the initial frequency of the iteration for the acoustic mode
frequency domain simulation so as to shorten the calculation time and improve efficiency.

Schemes 1, 3 and 4 are respectively processed as above, and then the solutions of
the Helmholtz equation are obtained, as shown in Table 6. It can be found that with the
increase in the amplitude, the eigenfrequency of the first-order longitudinal mode remains
basically unchanged, while the growth rates, indicating the stability and the strength of the
stability, are all less than zero. With the increase in the amplitude, the absolute value of the
growth rate keeps increasing. These phenomena indicate that the increase in the oxidant
inlet flow rate oscillation amplitude has an enhanced effect on the combustion instability in
this combustion chamber.

Table 6. Frequency and stability of first-order longitudinal, zero-order tangential, zero-order radial
modes with different disturbance amplitudes.

α Eigenvalue Modal
Frequency

Modal Growth
Rate

Stability
Characteristic

0.1 1281.8 − 6.6328i 1281.8 −6.6328 unstable

0.2 1274.2 − 14.547i 1274.2 −14.547 unstable

0.3 1266.9 − 20.363i 1266.9 −20.363 unstable

In order to verify the flow rate amplitude influence on the combustion stability of
the stable combustion chamber, a variety of amplitude predictions are also carried out for
the known stable schemes. The results show that the absolute value of the growth rate
also increase gradually with the increase in the amplitude, and the stability characteristics
remain unchanged. These phenomena show that the increase in the disturbance amplitude
will increase the absolute value of the modal growth rate, that is, the stable combustion con-
dition is more stable, while the combustion unstable condition is more unstable. Therefore,
in the following combustion instability prediction, 10% amplitude is used for combustion
instability prediction.

4.2. Influence of Circumferential Flow Rate Distribution on Combustion Instability

In order to explore the influence of the oxidant circumferential flow rate gradient on
the combustion instability, three schemes of different circumferential flow rate distribution
are proposed in Section 3.3.2 (Schemes 1, 5 and 6). Scheme 5 increases the propellant one of
the two adjacent injectors flow rate by 5% and reduces the other by 5% (Scheme 6 is 10%)



Aerospace 2022, 9, 543 16 of 20

to obtain the circumferential unevenness of flow rate so as to explore the effect of oxidant
circumferential flow rate gradient on combustion instability.

Due to the circumferential unevenness of the flow rate distribution, it maintains the
center symmetry, but the minimum simulation unit is 1/3 of the combustion chamber.
This section uses 1/3 combustion chamber geometry model for simulation with a grid
of 4 million. The combustion field steady simulation of Schemes 5 and 6 are carried out
to obtain various thermodynamic parameters, and the steady state frequency is roughly
estimated according to Equation (20). Since the flow rate distribution does not change much
and the structure of the combustion chamber is the same, the steady state characteristic fre-
quency is similar to that of Scheme 1. Therefore, according to the steady state characteristic
frequency, the inlet flow rate oscillations of 1000 Hz, 1300 Hz and 1600 Hz frequency are
also selected. Figure 10 takes Scheme 5 as an example to show the relationship between
the sum of heat release rate in the computational domain and the inlet flow rate pulsation
at three frequencies. The processing method described in Section 4.1.2 is used for calcula-
tion, and the characteristic frequency and growth rate of the three schemes are shown in
Table 7. From Scheme 1 to Scheme 5 and Scheme 6, the circumferential flow rate distribution
changes from uniform to uneven, and the combustion of the three schemes are all unstable,
with the absolute value of the growth rate being greater than that of Scheme 1, but the
combustion instability does not increase with the aggravation of unevenness. Therefore, the
circumferential unevenness of the flow rate distribution is unfavorable to the combustion
stability in this combustion chamber, while the influence of the circumferential unevenness
of the flow rate distribution on the stability is not monotonic.

Aerospace 2022, 9, x FOR PEER REVIEW 17 of 21 
 

 

ential flow rate distribution changes from uniform to uneven, and the combustion of the 
three schemes are all unstable, with the absolute value of the growth rate being greater 
than that of Scheme 1, but the combustion instability does not increase with the aggrava-
tion of unevenness. Therefore, the circumferential unevenness of the flow rate distribu-
tion is unfavorable to the combustion stability in this combustion chamber, while the in-
fluence of the circumferential unevenness of the flow rate distribution on the stability is 
not monotonic. 

  
(a) (b) 

 

 

(c)  

Figure 10. The relationship between the sum of heat release rate and inlet flow rate pulsation. (a) 
1000 Hz. (b) 1300 Hz. (c) 1600 Hz. 

Table 7. Frequency and stability of the first-order longitudinal, zero-order tangential, zero-order 
radial modes for Schemes 1, 5, and6. 

 Eigenvalue Modal Frequency Modal Growth Rate Stability Charac-
teristics 

Scheme 1 1281.8 − 6.6328i 1281.8 −6.6328 Unstable 
Scheme 5 1302.6 − 60.52i 1302.6 −60.52 Unstable 
Scheme 6 1266.9 − 20.363i 1266.9 −20.363 Unstable 

4.3. Influence of Oxidant Radial Flow Rate Gradient on Combustion Instability 
In order to explore the influence of the oxidant radial flow rate gradient on the 

combustion instability, three schemes of different radial flow rate gradients are pro-
posed in Section 3.3.2 (Schemes 1, 7 and 8), which determine the different ratios of the 
oxidant flow rate between the inner ring and the outer ring. The radial flow rate gradi-
ent of Scheme 7 is the smallest and that of Scheme 8 is the largest. 

Figure 10. The relationship between the sum of heat release rate and inlet flow rate pulsation.
(a) 1000 Hz. (b) 1300 Hz. (c) 1600 Hz.



Aerospace 2022, 9, 543 17 of 20

Table 7. Frequency and stability of the first-order longitudinal, zero-order tangential, zero-order
radial modes for Schemes 1, 5, and 6.

Eigenvalue Modal
Frequency

Modal
Growth Rate

Stability
Characteristics

Scheme 1 1281.8 − 6.6328i 1281.8 −6.6328 Unstable

Scheme 5 1302.6 − 60.52i 1302.6 −60.52 Unstable

Scheme 6 1266.9 − 20.363i 1266.9 −20.363 Unstable

4.3. Influence of Oxidant Radial Flow Rate Gradient on Combustion Instability

In order to explore the influence of the oxidant radial flow rate gradient on the
combustion instability, three schemes of different radial flow rate gradients are proposed in
Section 3.3.2 (Schemes 1, 7 and 8), which determine the different ratios of the oxidant flow
rate between the inner ring and the outer ring. The radial flow rate gradient of Scheme 7 is
the smallest and that of Scheme 8 is the largest.

Steady-state simulations for Schemes 7 and 8 are carried out, respectively. Various
thermodynamic parameters and the rough estimated frequency based on steady-state
results are obtained according to Equation (20). Similarly, the steady-state eigenfrequencies
are similar to those of Scheme 1, so that the inlet flow rate oscillation frequency is set as
1000 Hz, 1300 Hz, and 1600 Hz. Figure 11 takes the central injector as an example to show
the amplitude–frequency and phase–frequency curves of the flame transfer function of
Schemes 7 and 8, respectively. According to the method described in Section 4.1.2, the
characteristic frequency and growth rate of the three schemes are obtained as shown in
Table 8. According to the data in the table, it can be found that with the increase in flow
rate gradient, Scheme 8 maintains unstable combustion as the basic flow Scheme 1, and its
absolute value of growth rate increases, indicating that, compared with Scheme 1, Scheme 8
is more unstable. However, Scheme 7 undergoes stable combustion by reducing the flow
rate gradient. Therefore, for this combustion chamber structure, within a certain range, the
smaller the flow rate gradient, the more uniform the flow rate of the oxidant circuit, and
the more favorable it is to the stability of the stable combustion.
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Table 8. Frequency and stability of the first-order longitudinal, zero-order tangential, zero-order
radial modes for Schemes 1, 7, and 8.

Eigenvalue Modal
Frequency

Modal
Growth Rate

Stability
Characteristics

Scheme 1 1281.8 − 6.6328i 1281.8 −6.6328 Unstable

Scheme 7 1332.2 + 218.96i 1332.2 +218.96 Stable

Scheme 8 1337.5 − 16.439i 1337.5 −16.439 Unstable

5. Conclusions

In this paper, the combustion instability of 10 different schemes are predicted, and the
following conclusions are drawn:

The increase in the disturbance amplitude will increase the absolute value of the
modal growth rate. The stable combustion will be more stable when increasing the flow
rate amplitude, while the unstable combustion will be more unstable when increasing the
flow rate amplitude.

The circumferential unevenness of the flow rate distribution is unfavorable to the
stability of the combustion, but the influence of the circumferential unevenness of the flow
rate distribution on stability is not monotonic.

For this combustion chamber structure, within a certain range, the smaller the oxidant
radial flow rate gradient is, the more favorable it is to the stability of the combustion.
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