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Abstract: Unmanned aerial vehicle (UAV) cluster combat is a typical example of an intelligent
cluster application, and it is characterized by its large scale, low cost, retrievability, and intra-cluster
autonomous coordination. An unmanned reconnaissance mission for a target group (URMFTG) is
a significant pattern in UAV cluster combat. This paper discusses the collaborative path planning
problem of unmanned aerial vehicle formations (UAVFs) and refueling tankers in a URMFTG with
threat areas and fuel constraints. The purpose of collaborative path planning is to ensure that
the UAVFs (with fuel constraints) can complete the reconnaissance mission for the target group
with the assistance of refueling tankers, which is one of the most important constraints in the
collaborative path planning. In this paper, a collaborative path-planning model is designed to analyze
the relationship between the planning path of the UAVFs and the tankers, and a threat avoidance
strategy is designed considering the threat area. This paper proposes a two-stage solution algorithm.
It creates a UAVFs path-planning algorithm based on the fast search genetic algorithm (FSGA) and
a refueling tanker path-planning algorithm based on the improved non-dominated sorting genetic
algorithm II (NSGA-II). Based on simulation experiments, the solution method proposed in this
paper can provide a better path-planning scheme for a URMFTG. That is, it decreases the rate of the
UAVF’s distance growth from 3.1% to 2.2% for the path planning of UAVFs and provides a better
Pareto solution set for the path planning of refueling tankers.

Keywords: collaborative path planning; threat avoidance; two-stage solution algorithm; unmanned
reconnaissance mission for the target group (URMFTG)

1. Introduction

With more efficient resource sharing and cooperation, cluster combat has become one
of the main features of future warfare [1]. For example, early warning airplanes (EWAs)
usually use the cluster formation during aerial surveillance, and their targets are also
marked as target groups [2]. Formation flying is a flying pattern in which multiple aerial
vehicles form a formation to complete a specific combat mission.

Unmanned aerial vehicle cluster combat suppresses enemy targets with a numerical
advantage and achieves a more robust combat capability at a lower cost [3,4]. Planning
and executing missions in terms of trajectory generation are challenging problems in the
operational phase of the unmanned aerial vehicles (UAVs) lifecycle [5]. In an unmanned
reconnaissance mission for a target group (URMFTG), UAVs with excellent stealth perfor-
mance, low cost, and easy maintenance are sent out in formation with reconnaissance radar
and other equipment, replacing large EWAs to complete the reconnaissance mission [6,7].
In the URMFTG, formation flying represents the flying pattern that multiple UAVs form a
formation to complete the unmanned reconnaissance mission for the specific targets in the
target group. In the process of carrying out the mission, multiple UAVs are regarded as a
whole, starting from the airport at the same time and returning to the airport together at
the end of the mission. Multiple UAV formations work together to complete the URMFTG.
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When performing URMFTG, the unmanned reconnaissance mission for the target
group is one of the most important constraints in the path-planning problem studied in
this paper. On the premise of completing the reconnaissance mission of the target group,
the planning problem of UAVs and refueling tankers is of great significance for improving
combat efficiency and reducing resource consumption.

There are two difficulties in path planning for a URMFTG. The first difficulty is
fuel constraint. The low fuel-carrying capacity of a UAV limits the flying distance of the
unmanned aerial vehicle formations (UAVFs), which can result in the formation being
unable to complete the mission. As a result, during a mission, air tankers are needed
to perform timely aerial refueling of the UAVFs [8–10]. Therefore, the path planning
of a URMFTG is collaborative for both the tankers and the UAVFs, and the purpose of
collaborative path planning is to ensure that the UAVFs can complete the reconnaissance
mission for the target group under the condition of fuel constraints. The key issue of
collaborative path planning is the setting of refueling locations [11,12]. The second difficulty
is the threat posed by the enemy. There are many threat factors for a target group in actual
combat, such as radar and strike weapons. If the UAVFs and the tanker are spotted, the
enemy will take countermeasures, such as missile interception. Thus, the collaborative
path planning of the tankers and the UAVFs should reasonably avoid threat areas to ensure
their safety.

Researchers have favored path planning in both military and civil fields as a critical
technique for ensuring flight safety and improving flight efficiency [13–16]. The collabora-
tive path planning for a URMFTG involves finding the optimal path for the UAVFs and
tankers that meets the specific performance indicators within various constraints [17,18].
Refueling locations can be set along the path of the UAVFs to minimize the route distance
of the UAVFs. The refueling locations must meet the accessibility of the UAVFs, ensuring
the timeliness of the refueling. The conditions above lead to a strong coupling relationship
between the paths of the tankers and the UAVFs, which enhances the complexity of the
problem. In addition, to avoid threat areas, the routes of the UAVFs and the tankers need
to be appropriately adjusted [19–21].

Various studies have been conducted on the fuel constraints in UAV path planning.
In some studies, to overcome a UAV’s range limitation by refueling and charging, path
planning is conducted in the given situation of refueling locations. Khuller et al. [22]
and Kannon et al. [23] have provided a solution for path planning in which a single
fuel-constrained aircraft arrives at the destination after passing through a series of given
refueling locations. Khuller et al. [22] used dynamic programming (DP) to solve this
problem. Based on their work [22], Kannon et al. [23] compare the mixed-integer linear
programming (MILP) and DP algorithms, proving the DP algorithm’s superiority. MILP
models are widely studied among articles considering path planning in this area [24–26].
Coutinho et al. [27] defined the UAV routing and trajectory optimization problem (UAVR-
TOP) and proposed a Mixed-Integer Non-linear Programming (MINLP) formulation to
solve the problem. Chodnicki et al. [28] proposed a UAV path-planning algorithm based
on a model from a group of algorithms of MILP optimization, considering obstacles and
gusts of Wind. Zuo et al. [29] proposed a two-stage MILP model for surveillance coverage
path planning and demonstrated the efficiency and applicability of the proposed method
using two scenarios. Adler et al. [30] studied path planning with limited refueling times.
Several studies have imposed constraints on the margins of the path, such as finite loads
and fuel costs [31,32]. Shao et al. [33] set up maintenance checkpoints and charging stations
(similar to refueling stations) based on the above research. A path-planning model in
which a single UAV arrives at the destination after visiting these two service points was
established, making the remote navigation of the UAV safer and more reliable. Sundar
et al. [34] focused on the fuel-constrained, multi-warehouse, multi-vehicle routing problem
(FCMVRP). They proposed four MILP formulas and conducted experimental analysis and
comparison. The alternative solution algorithms for similar problems have been presented
in previous studies [35,36].
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Other scholars have studied path planning without given refueling points in order
to optimize the refueling locations. Wang et al. [37] analyzed the sensitivity of refueling
locations. Their results revealed that a more extensive vehicle range is essential to reducing
the number of refueling stations and facility location costs. Considering the spatial and
temporal constraints, such as the vehicle mileage and charging time, Tu et al. [38] proposed
a refueling location model to enhance the charging service for electric taxis. Maini et al. [39]
studied the path planning of a fuel-constrained UAV that is refueled by a tanker on the
ground. The joint path between the UAV and the tanker was determined through the
constraints imposed by the road network on the refueling locations. Ramasamy et al. [40]
extended the work of Maini et al. [39] by considering multiple UAVs with fuel constraints.
The road network constraints on refueling locations were canceled, and K-means clustering
was applied to determine the refueling points.

Most previous studies have focused on path planning in civil scenarios based on the
above analysis. Only a few studied path planning with set refueling points, while others
studied collaborative path planning without pre-set refueling locations, neglecting the
threatening factors. Other studies considered the threatening factors while ignoring the
refueling constraints. Therefore, in this study, the collaborative path planning of UAVFs and
refueling tankers was conducted, and the influences of the threat areas on path planning
were considered.

In this study, a collaborative path-planning model was developed to solve the problems
involved in path planning for a URMFTG. A two-stage solving algorithm was designed
by analyzing the relationship between the paths of the UAVFs and the tankers. In the
first stage, the shortest flying distance of the UAVFs was taken as the objective. The path
planning was adjusted based on the threat-avoidance strategy considering the threat area.
The fast search genetic algorithm (FSGA) was applied to obtain the threat-oriented path
of the UAVFs. In the second stage, based on the path obtained in the previous step, with
fuel and path constraints, the shortest refueling time of the UAVFs and the shortest flight
path of the tankers are taken as the objectives. The improved non-dominated sorting
genetic algorithm II (NSGA-II) was used to obtain the planned route of the tanker while
considering the threat area.

The innovations of this study include the following: (1) In this paper, we establish a
collaborative path planning model for URMFTG and design a two-stage solution algorithm
to solve the model. A threat-avoidance strategy is also intended to adjust the paths of the
UAVFs and the tankers considering the threat area in the target group during the solution
process. (2) In the two-stage model-solving algorithm, the FSGA is proposed in the first
stage to improve the convergence rate and calculation results compared with GA. An
improved NSGA-II is proposed in the second stage to solve the Pareto solution of the path
planning of the tanker. The genetic operator and crowding distance calculation formula is
improved, which enhances the accuracy of the calculation results.

The remainder of this paper is arranged as follows. Section 2 presents the problem
analysis of a threat-oriented URMFTG. In Section 3, the collaborative path-planning model
for a URMFTG is constructed. In Section 4, the solving algorithm of the model is described.
In Section 5, several computational experiments are conducted, and the results are analyzed.
Finally, the conclusions and directions of future studies are presented in Section 6.

2. Problem Analysis

This section provides a detailed description of the URMFTG scenario, aerial refueling
process, and threat avoidance strategy.

2.1. URMFTG Scenario

Figure 1 presents a schematic diagram of the URMFTG scenario. The red team needs
to scout a target group. In the target group, the number of target points (red points) is m,
and the number of threat areas (purple points) is q. Multiple UAVF d(d = 1, 2, . . . , l) set out
from different airports a(a = 1, 2, . . . , o) and go to the target points in the target group for
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reconnaissance at cruising speed vd, which requires that all of the target points in the target
group be scouted. Each UAVF will return to the departure airport after reconnaissance. In
the navigation of the UAVFs, due to the fuel constraints, it is necessary to set up a refu-
eling point c(c = 1, 2, . . . , l) on each UAVF’s path. The tanker e(e = 1, 2, . . . , p and p < l)
and UAVF meet at the refueling point (blue points) to refuel. In addition, when plan-
ning the navigation route of the UAVF and tanker, we need to consider the threat area
f ( f = 1, 2, . . . , q) in the target group and adjust the path to prevent it from crossing the
threat area.
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Figure 1. URMFTG scenario.

2.2. Aerial Refueling Process

The specific refueling process of the UAVF is shown in Figure 2. The first pair of
drones enters the waiting position. After the first pair of drones arrives at the refueling
position, they dock with the tanker to begin refueling, and the second pair of drones enters
the waiting position. After refueling, the first pair of drones is separated from the tanker
and enters the exit position, and the second pair of drones enters the refueling position to
refuel. The subsequent refueling process of the UAV is similar to that mentioned above.
After all of the UAVs in the formation have been fueled, the formation quickly returns to
the cruising speed and continues to fly along the scheduled path. The tanker goes to the
next refueling point or returns to the departure airport at its cruising speed. The total time
consumed in the docking and detaching process between the tanker and UAV is a fixed
constant. There is a limit to the number of drones that can refuel simultaneously. While the
tanker refuels the front pair of UAVs in the formation, the rear pair of UAVs is still waiting
for refueling, consuming more fuel during this period. Therefore, the later the UAV starts
refueling, the less fuel is left in the UAV’s tank, the more fuel is required, and the longer
the corresponding refueling time.
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2.3. Threat Avoidance Strategy

In this paper, a threat avoidance strategy, which ensures that the aircraft can effectively
avoid the threat area and reduces the distance growth caused by path adjustment, is
proposed. In the threat avoidance diagram shown in Figure 3, there is only one threat
area in the path. When threat areas overlap with the predetermined path between the two
nodes, the aircraft adjusts its course so that the plane’s path takes the center of the threat
area as the dot and the tangent of the circle with the threat range as the radius. In the threat
avoidance diagram shown in Figure 3, there is only one threat area in the path.
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When the threat area overlaps the predetermined path between the two nodes, the
aircraft adjusts its course so that the path to the threat area is a circular tangent with the
center of the threat area as the dot and the threat range as the radius. The aircraft flies
along the circle followed by an arc, leaving the threat area from the tangent point to node
j. This enables the aircraft to ideally avoid the threat area and minimizes the aircraft’s
path adjustment cost (additional flight distance). The black dotted line in Figure 3 is the
predetermined path that does not consider the threat. The red and yellow lines are the
routes adjusted based on the avoidance strategy. The black dotted line in Figure 3 is the
predetermined path without considering the threat area. There are two situations for the
aircraft to select the cut-in point and the cut-out point: (1) the tangent point chosen is close
to the predetermined path (yellow line in Figure 3); (2) the selected tangent point is far
away from the predetermined direction (red line in Figure 3). Through comparison, it
was found that the cost of the path adjustment is lower for the first case. Therefore, we
should choose the adjustment path where the tangent point is closer to the predetermined
direction. The threat avoidance strategy for when there are multiple threat areas between
two nodes is shown in Figure 4.
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3. Threat-Oriented Collaborative Path Planning Model for URMFTG

The collaborative path planning process developed in this study is shown in Figure 5.
To shorten the residence time of the UAVFs in the target group, the path planning of the
UAVFs is carried out with the shortest path of the UAVFs as the objective. A reasonable
refueling point is set up on the planning path of the UAVF so that the UAVF does not
have to replan the route and increase the flight distance. The refueling points are not
predefined and should be calculated through our algorithm. In addition, the position of the
refueling point will not only affect the navigation distance of the tanker but will also affect



Aerospace 2022, 9, 577 6 of 22

the refueling time of the UAVF. Based on the UAVFs planning path, the path planning of
the tankers is carried out with the objective of the shortest flight distance to the tankers and
the shortest refueling time for the UAVFs.
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3.1. Model Assumptions

To simplify the practical problems, the main assumptions of the model are as follows:

(1) Taking the formation as a whole, the UAVF refuels at the refueling point, scouts
the target group’s mission points, and returns to the departure airport at the end of
the mission. The performance parameters of the UAVs in the same formation can
be regarded as being the same. During the flight, the cruising speed of the UAVF
is constant.

(2) The single-tube oil receiving speed of the refueling tanker and the docking time
between the UAV and the tanker are regarded as constant.

(3) All of the target points in the target group have no difference in reconnaissance
priority, and any UAVF can be responsible for surveillance.

(4) The effects of real factors such as the wind direction, wind speed, aircraft turning
radius, and cruising altitude on the aircraft’s path distance in refueling are ignored.

(5) All of the UAVFs refuel only once during their flight. The refueling point should be
set on the path of each UAVF to ensure that the UAVF can reach the target point to
complete the mission as soon as possible.

(6) To ensure safety, the remaining fuel capacity of the aircraft should be at least 10% of
the fuel tank capacity during flight.

3.2. Symbol Descriptions

For ease of description, Table 1 shows the relevant variables involved in the model.

Table 1. Symbol descriptions.

Variables Variable Definition Description

m m ∈ Z+ Number of target points
o o ∈ Z+ Number of airports
l l ∈ Z+ Number of drones in formation (equal to the number of refueling points)
p p ∈ Z+ Number of tankers
q q ∈ Z+ Number of threat areas
n n ∈ Z+ Total number of nodes
N N = {1, . . . , i, . . . , n} Node set

δ(i) δ(i) = (xi, yi), i ∈ N Coordinates of the nodes
A A = {1, . . . , a, . . . , o} Airport set
B B = {1, . . . , b, . . . , m} Target point set
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Table 1. Cont.

Variables Variable Definition Description

C C = {1, . . . , c, . . . , l} Refueling point set
D D = {1, . . . , d, . . . , l} UAVF set
E E = {1, . . . , e, . . . , p} Tanker set
F F = {1, . . . , f , . . . , q} Threat area set
T T = {Td|d ∈ D} Set of refueling time for UAVF

s(d) s(d) ∈ Z+, d ∈ D UAVF scale
vd vd ∈ R+, d ∈ D Cruising speed of UAVF
ve ve ∈ R+, e ∈ E Single-tube refueling speed of the tanker

Tpre Tpre ∈ R+ Docking and disengagement time between UAV and tanker during refueling
v∗d v∗d ∈ R+, d ∈ D UAV fuel consumption rate of UAVF
ηi-j ηi-j ∈ {0,1} Remaining fuel ratio of the jth pair drones in formation i when refueling begins
Ti−j Ti−j ∈ R+ Refueling time of jth pair of drones in formation i

rijk rijk ∈ {0, 1}(i ∈ D, j ∈ N, k ∈ N)
Binary variable for determining whether the flight from node j to node k is in

the planned path of UAVF i

r∗ijk r∗ijk ∈ {0, 1}(i ∈ E, j ∈ N, k ∈ N)
Binary variable for determining whether the flight from node j to node k is in

the planned path of tanker i
Ujk Ujk ∈ R+(j ∈ N, k ∈ N) Flight distance from node j to node k

Vdac Vdac ∈ R+(a ∈ A, c ∈ C, d ∈ D)
Flight distance of UAVF d from the airport a to the refueling point c along the

planned path

Wdac Wdac ∈ R+(a ∈ A, c ∈ C, d ∈ D)
Flight distance of UAVF d returning to the airport a from the refueling point c

along the planned path

3.3. Objective Functions

The decision variables of the objective function are as follows. (1) rijk: a binary variable
to determine whether the flight from node j to node k is in the planned path of UAVF
i, where the nodes include the airports and target points. (2) r∗ijk: a binary variable to
determine whether the flight from node j to node k is in the planned path of tanker i, where
the nodes include airports and target points. (3) C = {1, . . . , c, . . . , l}: refueling point set.
In the collaborative path-planning process (shown in Figure 5), we try to shorten the flight
distance of the UAVFs so that the UAVFs can complete the reconnaissance mission for the
target group as soon as possible (assuming the formation speed is constant). Therefore, we
first carry on the path planning of the UAVFs, and we set the refueling points on the path
of the UAVFs to avoid increasing the flight distance and replanning the route. Using the
decision variable rijk and the threat avoidance strategy, we can obtain the path planning for
the UAVFs. We can obtain the path planning of the refueling tankers using the decision
variable r∗ijk, C = {1, . . . , c, . . . , l} and the threat avoidance strategy. We can calculate the
refueling time of the UAVFs and flight distance of the tankers using the UAVFs planning
path and the set of refueling points.

In the path planning of the UAVFs, the objective is to minimize the total flight distance
of the UAVFs.

min F1 = ∑
i∈D

∑
j∈(A∪B)

∑
k∈(A∪B)

[
rijk ×Ujk

]
(1)

The objective function ∑
i∈D

∑
j∈(A∪B)

∑
k∈(A∪B)

[
rijk ×Ujk

]
represents the total flight dis-

tance of all of the UAVFs, which is based on the graph model [41,42]. Ujk is the sailing
distance from node j to node k. If threat areas need to be avoided, Ujk is the flight distance
between the two nodes adjusted using the threat strategy; otherwise, it is the shortest
Euclidean distance between the two nodes. The constraints are shown in Formulas (2)–(7).

∑
i∈D

∑
j∈B

rijk = 1, ∀k ∈ B (2)

∑
i∈D

∑
k∈B

rijk = 1, ∀j ∈ B (3)
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Formulas (2) and (3) are designed to ensure that all of the targets are reconnoitered
only once by a UAVF.

∑
j∈(A∪B)

∑
k∈(A∪B)

rijk ≥ β, ∀i ∈ D (4)

∑
j∈A

∑
k∈A

rijk = 0, ∀i ∈ D (5)

Formulas (4) and (5) ensure that each UAVF carries out a reconnaissance mission and
detects a certain number of target points. β represents the minimum number of target
points for each UAVF in the reconnaissance.

∑
j∈Q

∑
k∈Q

rijk ≤
∣∣∣Q∣∣∣− 1, ∀Q * B, i ∈ D, 2 ≤ |Q| ≤ |B| − 1 (6)

rijk ∈ {0, 1} (7)

Formula (6) ensures that there are no sub-tours in each UAVF’s path. Q represents the
nonvoid proper subset of B, || represents the number of elements in a certain set. If there
are sub-tours in the path of the UAVF i, ∑

j∈Q
∑

k∈Q
rijk ≥

∣∣∣Q∣∣∣, ∃Q * B, 2 ≤ |Q| ≤ |B| − 1. We

only need to consider nonvoid subsets with more than two elements, because at least two
elements are needed to form a sub-tour. Formula (7) represents the range of the binary-type
decision variables used.

In the path planning of the refueling tankers, this is a multi-objective optimization
problem. The objective is to minimize the entire flight distance of the refueling tankers and
the total refueling time of the UAVFs.

minF2 = ∑
i∈D

∑
j∈(A∪B)

∑
k∈(A∪B)

[
r∗ijk ×Ujk

]
(8)

minF3 = ∑
i∈C

Ti (9)

∑
i∈D

∑
j∈(A∪B)

∑
k∈(A∪B)

[
r∗ijk ×Ujk

]
represents the total flight distance of all of the refueling

tankers. ∑
i∈C

Ti represents the refueling time of all of the UAVFs. Ti is the refueling time

of UAVF i. The main constraint is that the refueling points should be set on the path of
the UAVFs. In Formula (1), we use indices of route points from sets A and B. Therefore,
the path of UAVF can be defined as a vector of point numbers from these sets, assum-
ing that the starting and ending points belong to A. The other constraints are shown in
Formulas (10)–(16).

∑
i∈E

∑
j∈C

r∗ijk = 1, ∀k ∈ C (10)

∑
i∈E

∑
k∈C

r∗ijk = 1, ∀j ∈ C (11)

Formulas (10) and (11) ensure that all of the refueling points are accessed only once by
a tanker.

∑
j∈(A∪C)

∑
k∈(A∪C)

r∗ijk ≥ 1, ∀i ∈ E (12)

∑
j∈A

∑
k∈A

r∗ijk = 0, ∀i ∈ E (13)

Formulas (12) and (13) ensure that each tanker accesses at least one refueling point.

∑
j∈Q

∑
k∈Q

r∗ijk ≤
∣∣∣Q∣∣∣− 1, ∀Q * C, i ∈ E, |Q| ≥ 2 (14)
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0.1 ≤ η(i) ≤ 0.5, ∀i ∈ C (15)

r∗ijk ∈ {0, 1} (16)

Formula (14) ensures that each tanker’s path does not have multiple divided sub-route
cycles. Formula (15) ensures that the remaining fuel ratio for each UAVF to the refueling
point is between 0.1 and 0.5. Formula (16) represents the range of the binary-type decision
variables used.

Next, the specific calculation process of the refueling time of the UAVF, Ti in the
objective function, is presented.

The remaining fuel ratio η(i) when UAVF i arrives at their refueling point can be
calculated as follows:

η(i) = 1−
Viac ∗ v∗d
Yd ∗ vd

(17)

In Formula (17), Viac is the flight distance of UAVF i from the airport a to refueling
point c along the planned path. Yd is the fuel tank capacity of the UAV. vd is the cruising
speed of the UAVF, and v∗d is the fuel consumption rate of the UAVF.

Formula (18) is used to calculate the refueling times of UAVF i, which is guaranteed
by a refueling tanker:

Nr(i) =
[

s(i)
num

]
(18)

In Formula (18), [] represents an upward rounding calculation, s(i) is the scale of
UAVF i, and num is the number of drones that a refueling tanker can guarantee at once.

The remaining fuel ratio ηi−1 and refueling time Ti−1 of the first pair of drones in the
UAVF i can be calculated as follows:

ηi−1 = η(i) (19)

Ti−1 = Tpre +
Yd(1− ηi−1)

ve − v∗d
(20)

In Formula (20), Tpre is the docking and disengagement time between the UAV and
tanker during refueling, and ve is the single-tube refueling speed of the tanker.

While waiting for refueling, the other drones in the formation are still consuming fuel
at speed. Therefore, the later the drones in the formation refuel, the longer their refueling
time. The remaining fuel ratio and refueling time of the second pair of drones in the UAVF
can be calculated as follows:

ηi−2 = ηi−1 −
v∗d ∗ Ti−1

Yd
(21)

Ti−2 = Tpre +
Yd(1− ηi−2)

ve − v∗d
(22)

Through recursion, we can obtain the formulas for calculating the remaining fuel ratio and
refueling time when the jth pair of drones in UAVF i begins to refuel (Formula (23) and (24)).
As a result, we can calculate the refueling time of UAVF i (Formula (25)).

ηi−j = ηi−1 −
v∗d ∗

j−1

∑
k=1

Ti−k

Yd
(23)

Ti−j = Tpre +
Yd(1− ηi−j)

ve − v∗d
(24)

Ti =
Nr(i)

∑
k=1

Ti−k (25)
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4. Threat-Oriented Collaborative Path-Planning Model for URMFTG Solution Approach
4.1. Framework of the Two-Stage Solving Algorithm

The algorithm can be divided into two stages (Figure 6). (1) First, there is the path-
planning algorithm for the UAVFs based on the FSGA: considering the disadvantages of
the genetic algorithm (GA), i.e., that the search direction is not strong and it easily falls into
the precocious phenomenon, in this study, the FSGA algorithm was used to quickly search
the population by introducing the optimal search operator to improve the search speed and
avoid falling into the local optimal solution on the premise of ensuring that the individual
adaptive value of the population does not decrease. (2) Second, there is the path-planning
algorithm for the refueling tanker based on the improved NSGA-II: although the NSGA-II
increases the population diversity through the crowding distance mechanism, it still has
some problems, such as a poor distribution and local optimization. The NSGA-II uses the
simulated binary crossover (SBX) operator and polynomial mutation operator. To improve
the global search ability, prevent falling into the local optimum, and maintain the diversity
of the population, in this study, the normal distribution crossover (NDX) operator, adaptive
mutation operator, and a new crowded distance calculation method were used to improve
the NSGA-II.
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4.2. Path-Planning Algorithm for UAVFs Based on the FSGA

The process of the path-planning algorithm for UAVFs is as follows:
Step 1: Determine the coding mode and generate the initial population. The individual

gene code is a two-segment chromosome code. The first part is the path genotype, which
is the random arrangement of n target points; and the second part is the breakpoint
genotype, the length of which is the number of UAVF-1. Figure 7 shows an example of an
individual genotype. There are nine target points and three UAVFs. The path genotypes
are {2 3 1 5 4 8 7 6 9}, and the breakpoint genotype is [26]. The information presented in
Figure 7 is as follows: the planned route of UAVF 1 is airport–target 2–target 3–airport. The
planned route of UAVF 2 is airport–target 1–target 5–target 4–target 8–airport. The planned
path of UAVF 3 is airport–target 2–target 6–airport.
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Step 2: Calculate the individual fitness value. The individual fitness value is the path
distance of the UAVFs (F1), which is calculated according to Formula (1). If the threat area
does not overlap with the planned path of the individual, the individual adaptation value
is calculated directly according to the intended path; otherwise, the adaptation value of the
individual is calculated according to the path adjusted using the threat avoidance strategy.

Step 3: Genetic operation. In this study, new individuals were produced through
mutation of the path genotype instead of using the cross-exchange between two individu-
als. Three mutation operators are given: the reversal, exchange, and insertion operators
(Figure 8). Reversal operator: select two reversal points in the path genotypes and reverse
the sequence between the two points. Exchange operator: in the path genotype, select
two exchange points and exchange the positions of the two points. Insertion operator:
in the path genotype, select two insertion points and insert the first point in front of the
second point.
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Step 4: Evolutionary iteration. In the evolution process, individuals with higher fitness
values are retained to form new populations, and new offspring are generated through
genetic operations such as mutation (Figure 8) and recombination (Figure 9). When the
maximum number of evolution cycles is reached, we can obtain the path-planning results
for the UAVFs.
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4.3. Path-Planning Algorithm for the Refueling Tankers Based on the Improved NSGA-II

The improved NSGA-II is roughly the same as the NSGA-II in terms of the
algorithm’s workflow.

Step 1: Determine the coding mode and generate the initial population that meets the
constraints. The constraints mainly include the fuel constraint of the UAVFs (as shown in
Formula (15)) and the refueling points that must be set on the path of the UAVFs. Some
other constraints are shown in Formulas (10)–(14) and (16).

Step 2: Genetic operation. The initial population generates a new population that
meets the constraints through crossover and mutation operations.

Step 3: Screen individuals via sorting to generate the next population. The population
obtained in step 2 is blended with the initial population, and the population of the next
generation is obtained through non-dominant sorting and crowding distance sorting. In the
process of non-dominant sorting, the indicators of evaluation are the entire flight distance
of the refueling tankers (F2), which is calculated according to Formula (8) and the total refu-
eling time of the UAVFs (F3), which is calculated according to Formulas (9) and (17)–(25).

Step 4: Evolutionary iteration. Determine whether the evolutionary algebra reaches
its maximum. If not, take the population obtained in step 3 as the initial population and
return to step 2; otherwise, we can obtain the Pareto solution set.

Compared with the NSGA-II, the improved NSGA-II has the following advantages. In
the crossover and mutation processes, in this study, the NDX operator and adaptive muta-
tion operator were used, which expands the search range and improves the convergence
speed. When calculating the individual crowding degree, a new crowding degree calcula-
tion formula was used to enhance the uniformity of the distribution of the individuals in
the population.

The crossover process in the NSGA-II uses the SBX operator, and most of the child
solutions of the SBX operator are located in the adjacent areas of the parent solution,
which leads to a low possibility of finding a non-dominant solution. In contrast, the NDX
operator has stronger global searchability. In this study, the NDX operator was introduced
to enhance the spatial search ability of the algorithm. Assuming that the parents are x1 and
x2 and the offspring are y1 and y2, the cross-process of the variables is as follows:

y1,i =
x1,i + x2,i

2
+

1.481(x1,i − x2,i)|N(0, 1)|
2

,

y2,i =
x1,i + x2,i

2
− 1.481(x1,i − x2,i)|N(0, 1)|

2
,

u ≤ 0.5 (26)


y1,i =

x1,i + x2,i

2
− 1.481(x1,i − x2,i)|N(0, 1)|

2
,

y2,i =
x1,i + x2,i

2
+

1.481(x1,i − x2,i)|N(0, 1)|
2

,

u > 0.5 (27)
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where u is a random number with values ranging from 0 to 1, and N(0,1) is a random
variable with a normal distribution.

The NSGA-II uses the polynomial mutation operator, which has limitations in terms
of its application in this study. The most commonly used mutation operators are the
Gaussian, Cauchy, and uniformly distributed mutation operators. Compared with the
polynomial mutation operator, the effects of these three mutation operators are better.
The Gaussian mutation operator has an outstanding local search performance, while the
uniformly distributed mutation operator has a solid global search advantage, making the
individual jump out of the local optimization. The searchability of the Cauchy mutation
operator is between those of the above two operators. According to the characteristics of
the different evolution stages, in this study, an adaptive mutation operator was set up to
give full play to the advantages of the varying mutation operators (Formula (28)). In the
early stage of evolution, the uniform distribution mutation operator is used to improve
the global search ability of the algorithm. In the middle stage of evolution, the Cauchy
mutation operator is used to improve the convergence speed of the algorithm. In the later
stage of evolution, the Gaussian mutation operator is used to complete the local search of
the algorithm.

y1,i =


x1,i + U(−δ1, δ1), 0 < t ≤ 3T/10

x1,i + C(0, δ2), 3T/10 < t ≤ 7T/10

x1,i + N(0, δ3), 7T/10 < t ≤ T

(28)

In Formula (28), U(−δ1, δ1) is a uniformly distributed random number with values
ranging from−δ1 to δ1. C(0, δ2) is a random number satisfying the Cauchy distribution.N(0, δ3)
is a random number satisfying a normal distribution with a mean value of 0 and a standard
deviation of δ3.

The NSGA-II algorithm only considers the distances between the individuals and
neighboring individuals. Still, individuals with significantly different crowding distance
values in different objective functions cannot obtain more genetic opportunities, which
is not conducive to maintaining the distribution of the population. A new formula for
calculating the crowding distance was derived:

dn =
m

∑
j=1

(|
f n+1
j − f n−1

j

f max
j − f min

j
|) (29)

In Formula (29), f n+1
j and f n−1

j are the jth objective functions of individuals n + 1

and n − 1. Respectively, f max
j and f min

j are the maximum and minimum values of the jth
objective function in this level under non-dominant sorting, respectively.

5. Computational Experiments
5.1. Experimental Conditions

This section presents several computational experiments used to verify the model and
two-stage solving algorithm. The solving algorithm and experiments were implemented
in MatlabR2017b. The test experiment was conducted using a ThinkPad with Intel Core
i5-7500, 8GB RAM, running Windows 10. In this paper, a threat-oriented URMFTG scene is
generated within the scope of a 2500 km × 2000 km area. The scene contains twenty target
points, five departure airports (including two tanker airports and three UAVF airports),
and four threat areas (Figure 10).

There are four UAVF and two refueling tankers. The value of β is 4, which represents
that each UAVF detects at least four targets The parameters of the UAVFs and refueling
tankers are presented in Tables 2 and 3. In the GA, the population size is 160, and the
evolution algebra is 1000. In the FSGA, the population size is 160, and the evolution algebra
is 1000. In the NSGA-II, the population size is 100, and the evolution algebra is 2000. The
crossover probability is 0.9, and the mutation probability is 0.25. The binary crossover
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parameter is 20, and the polynomial variation parameter is 50. In the improved NSGA-II,
the population size is 100, and the evolution algebra is 2000. The crossover probability is
0.9, and the mutation probability is 0.25. The parameter settings of the mutation operator
are δ1 = 20, δ2 = 10, and δ3 = 5.
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Table 2. UAVF parameters.

Formation Departure
Airport

Cruising Speed
(km/h)

Fuel Consumption
Rate (kg/min)

Formation
Scale

Fuel Tank Capacity of
UAV (kg)

UAVF 1 Airport 1 900 24 10 4500
UAVF 2 Airport 2 900 25 12 4700
UAVF 3 Airport 3 800 23 8 5500
UAVF 4 Airport 2 850 22 10 4400

Table 3. Refueling tanker parameters.

Refueling Tanker Departure Airport Cruising Speed
(km/h)

Refueling Speed
(kg/min)

Fuel Tank
Capacity (kg)

Number of Drones
That Can Be

Guaranteed at Once

Tanker 1 Airport 4 650 1500 80,000 2
Tanker 2 Airport 5 600 1200 90,000 2

5.2. Analysis of Results

Figure 11 shows the optimal path-planning results under different conditions. Without
considering the threat area, the total flight distance of the UAVFs is 14189.71 km, and
the specific path planning is shown in Figure 11a. When the threat area is considered,
the total distance of the UAVFs increases due to the need to avoid the threat area. The
total distances of the UAVFs calculated using the FSGA and GA are 14626.85 km and
14505.97 km, respectively. Figure 11b,c show the specific routes. Figure 11d shows the
solution history for the FSGA and GA. It can be seen that the FSGA is superior to the
GA in terms of the calculation result and convergence speed. Table 4 shows the detailed
information about the flight distances of the UAVFs for the three different cases. Compared
with the GA, the FSGA decreases the rate of the UAVF distance growth from 3.1% to 2.2%.

Taking the UAVFs planning path calculated using the GA as the constraint, the refuel-
ing points were set on the planning path. We used the improved NSGA-II and NSGA-II
to conduct the refueling tankers’ path planning. After 2000 generations of evolution, the
Pareto level of the Pareto solution obtained by the improved NSGA-II and NSGA-II is 1.
We select the first 50 Pareto solutions by using the ranking method of crowding distance,
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and the results are shown in Figure 12 with the total refueling time of the UAVFs and the
total distance of the tankers as the objective functions.
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Table 4. Detailed information about the flight distances of the UAVFs for the three situations.

Formation
Flight Distance (km)

Without Consideration of
Threat Areas

GA Algorithm Considering
the Threat Areas

FSGA Algorithm Considering the
Threat Areas

UAVF 1 2682.54 4798.16 3179.54
UAVF 2 4730.93 3117.63 3117.63
UAVF 3 3648.42 3648.42 3272.06
UAVF 4 3127.82 3062.64 4936.73

Total distance 14,189.71 14,626.85 14,505.97

Increase rate of distance / 3.1% 2.2%
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Through calculation, the Pareto solutions of infinite crowding distance in NSGA-II
are (7552.20, 61.15) and (7319.52, 67.27). The Pareto solutions of infinite crowding distance
in the improved NSGA-II are (7552.20, 61.15) and (7233.83, 74.53), respectively. The two
Pareto solutions are the same. Taking the above two Pareto solutions obtained using the
improved NSGA-II as examples, the collaborative route planning of the refueling tankers
and UAVFs is shown in Figure 13, and the detailed information about the second Pareto
solution is presented in Table 5.
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We further analyze the performance of the two algorithms. We analyzed the distri-
bution of the Pareto solutions calculated by using the two algorithms under different four
evolution algebra (500, 1000, 1500, and 2000), as shown in Figure 14.
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Table 5. Detailed information about the Pareto solution of infinite crowding distance obtained by
improved NSGA-II.

The Pareto Solution (7552.20, 61.15)

Refueling point Coordinates Refueling time (min) Total refueling time (min)
Point 1 (1661.4, 987) 13.85

61.15
Point 2 (1618.82, 633.88) 19.92

Point 3 (1710, 1871) 11.96
Point 4 (1594, 979.2) 15.42

Refueling tanker Flight distance (Km) Total flight distance (Km)
Tanker 1 4194.63

7552.20Tanker 2 3357.57

The Pareto Solution (7233.83, 74.53)

Refueling point Coordinates Refueling time (min) Total refueling time (min)
Point 1 (1661.4, 987) 13.85

74.53
Point 2 (1643.26, 759.62) 27.18

Point 3 (1950, 1437) 17.47
Point 4 (1647.2, 911.56) 16.03

Refueling tanker Flight distance (Km) Total flight distance (Km)
Tanker 1 3982.52

7233.83Tanker 2 3251.31
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Pareto solution obtained by two algorithms in 2000 generations.

By comparison, we can draw the conclusion that the range of Pareto solutions obtained
by Improved NSGA-II is obviously larger than that of NSGA-II. With the increase in
evolutionary algebra, NSGA-II cannot guarantee the optimization of the Pareto solution. In
the solution process, NSGA-II uses a binary crossover operator and polynomial mutation
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operator, which makes the search range of the Pareto solution small and the search process
has great uncertainty, resulting in the appearance of local optimal solutions and unstable
Pareto solution results. In Figure 14c, the Pareto results obtained by NSGA-II running
for 1500 generations are worse than 1000 generations. In Figure 14d, NSGA still falls
into the local optimal solution when it runs for 2000 generations. Improved-NSGA-II
uses a normal distribution crossover operator and adaptive mutation operator, which
expands the search range of the Pareto solution and is more purposeful in the evolutionary
iteration process, thereby improving the stability and convergence speed of the algorithm
solution. From Figure 14, the Pareto solution of Improved NSGA-II tends to be stable
when running for 500 generations, which is consistent with the results of 1000, 1500 and
2000 generations. However, the result of the Pareto solution obtained by NSGA-II running
for 2000 generations is still unstable and falls into the local optimal solution. From the
result of the Pareto solution, Improved-NSGA-II is better than NSGA-II, which is mainly
reflected in the distribution range of the Pareto solution and the fitness function of the
Pareto solution.

We further analyze the solution speed of the two algorithms. We analyzed the time
distribution of determining individual solutions calculated by using the two algorithms
under different four evolution algebra (500, 1000, 1500, and 2000). In each evolution algebra
setting, we repeated the experiment 10 times and calculated the average running time of
the algorithms in the experiments to compare the solution speed of the two algorithms, as
shown in Table 6.

Table 6. Comparison of the two algorithms for time of determining individual solutions under
different four evolution algebra.

Algorithm
Time of Determining Individual Solutions under Different Evolution Algebra (s)

500 Generations 1000 Generations 1500 Generations 2000 Generations

NSGA-II 182.7 374.0 565.5 760.9

Improved-NSGA-II 220.6 420.1 644.2 836.5

By comparison, we can draw the conclusion that the running time of Improved NSGA-
II is relatively longer than that of NSGA-II, which shows that Improved NSGA-II is worse
than NSGA-II in terms of running speed. Through the analysis, we think that the main
reason is that the adaptive mutation operator and the new crowding distance calculation
in Improved NSGA-II are improved on the basis of algorithm NSGA-II to expand the
search space of the individual solutions. In addition, the calculation of these two variables
becomes more complicated. These factors will increase the computational complexity of
the algorithm, which makes the running time of the algorithm longer.

Through the above analysis, we think that Improved NSGA-II is better than NSGA-II
in terms of algorithm stability, convergence speed, and Pareto solution results, but it is
worse in terms of running speed. While Improved NSGA-II has some defects in running
speed, its remarkable advantages in convergence speed, solution search space and stability
can make up for this deficiency and can help us to find better Pareto solutions. Therefore,
we think that Improved NSGA-II is better than NSGA-II as a whole.

6. Conclusions

In this paper, we establish a collaborative path planning model for a URMFTG and
design a two-stage solution algorithm to solve the model. In the first stage, the path
planning of the UAVFs is carried out with the shortest path of the UAVFs as the objective.
In the second stage, based on the path planning of the UAVFs (the refueling points should
be set on the flight of the UAVFs), the path planning of the refueling tankers is carried out
with the total refueling time and the total distance of the refueling tankers as the objectives.
A threat-avoidance strategy is also used to adjust the paths of the UAVFs and the tankers
considering the threat areas in the target group during the solution process.
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In the first stage of the model-solving algorithm, we propose the FSGA to improve
the search efficiency and calculation result of the algorithm. In the second stage of the
model-solving algorithm, an improved NSGA-II is proposed to solve the Pareto solution of
the path planning of the refueling tankers. Compared with the NSGA-II, we use the normal
distribution crossover operator, design a new adaptive mutation operator, and propose a
new formula for calculating the crowding distance., which enhances the accuracy of the
calculation results, the searching range of the Pareto solution, and the convergence rate of
the algorithm. The conclusion can be drawn as follows:

(1) Through research, it is concluded that the collaborative path planning for a URMFTG
is primarily affected by the locations and sizes of the threat areas. In order to avoid
the threat area, the UAVFs and refueling tankers should adjust their routes, resulting
in increased flight distances.

(2) A threat-oriented collaborative path-planning model for a URMFTG was established
to analyze the collaborative complexity of the path planning of the UAVFs and the
refueling tankers. A threat avoidance strategy was designed to adjust the path in
order to avoid the threat area.

(3) In the first stage of the solving algorithm, the FSGA can reduce the total UAVF’s
distance growth rate from 3.1% to 2.2% and improve the convergence speed com-
pared with the GA. FSGA is better than GA in terms of convergence speed and
solution results.

(4) In the second stage of the algorithm, compared with the NSGA-II, the improved
NSGA-II uses a normal distribution crossover operator, a new adaptive mutation
operator, and a new crowding distance formula, which expands the search range of
the Pareto solution and is more purposeful in the evolutionary iteration process. The
Improved NSGA-II is better than NSGA-II in terms of algorithm stability, convergence
speed and Pareto solution results.

Some limitations should be investigated in further research. The threat avoidance
strategy proposed in this paper is useful for the obstacles clustered in clusters. However, it
is not applicable in the case of scatter obstacles that may form convex polygons, which is a
problem that we need to consider in our future research. The Improved NSGA-II proposed
in this paper should have its running speed improved. When selecting the refueling points
in the tanker’s path planning, time factors, such as the departure time of the UAVF and
the tanker and the constraints of the refueling point arrival time sequence, were not taken
into account and should be considered in future research. Based on actual situations, the
mission completion time should also be further considered.
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