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Abstract

:

In this paper, a differential quadrature method of high-order precision (DQ−Pade), which is equivalent to the generalized Pade approximation for approximating the end of a time or spatial interval, is used to solve nonlinear fully intrinsic equations of beams. The equations are a set of first-order differential equations with respect to time and space, and the explicit unknowns of the equations involve only forces, moments, velocity and angular velocity, without displacements and rotations. Based on the DQ−Pade method, the spatial and temporal discrete forms of fully intrinsic equations were derived. To verify the effectiveness and applicability of the proposed method for discretizing the fully intrinsic equations, different examples available in the literatures were considered. It was found that when using the DQ−Pade method, the solutions of the intrinsic beam equations are obviously superior to those found by some other usual algorithms in efficiency and computational accuracy.
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1. Introduction


Due to the high aspect ratio of a rotor blade, which is usually regarded as a beam-like structure, beam theory has been a very important part of helicopter rotor dynamics modeling and analysis. The blade will have medium or large deflection in complex working environments, which leads to the nonlinear characteristics of the aeroelastic response analysis of the helicopter rotor. Among the many beam theories describing these nonlinear behaviors, the large deformation beam theory has attracted the most attention. It has only a small strain assumption and no restriction on displacements or rotations.



At present, the large deformation beam theory has been applied in many fields, and lots of beam models have been developed. They can be classified according to their solution methods. It was found that there are three categories: displacement-based methods [1], mixed-form methods [2,3] and stress-based methods [4,5]. The main advantage of displacement-based methods is the ease of applying geometric boundary conditions with them. However, they are computationally expensive due to the higher-order nonlinear terms. Even with high-order truncation, the complete formula has to be written over several pages. Mixed-form methods establish the kinematics equation by mixing the rotation and displacement variables with the generalized velocity and strain measures. Lagrange multipliers are used to apply the constitutive and kinematic relations to the governing equations in the mixed formula. Differently from the displacement-based theory and the mixed formula theory, there is no displacement, nor any rotation variables, in the stress-based formula. Green and Laws [6] coined the term “fully intrinsic” for this concept. The fully intrinsic theory was originally proposed by Hegemier and Nair [7]. In 2003, Hodges [4] reconsidered it on the basis of [2] and developed the fully intrinsic equations of geometrically exact beams, which only include forces, moments, velocity and angular velocity. The displacements and rotations can be obtained by recovering them in the post-processing. Due to no truncation in the derivation process, these compact equations are complete and accurate, and the maximum nonlinearity (the highest order of the nonlinear terms in the equations) is only two. Palacios and Cesnik [8] compared the numerical efficiency and ease of use of these three different methods for the analysis of aircraft structure, aeroelastic characteristics, and flight dynamics.



Patil and Hodges [9] analyzed the nonlinear aeroelastic characteristic of wings with a high aspect ratio using the fully intrinsic method. Patil and Althoff [10] presented an energy-continuous Galerkin method for solving the fully intrinsic equations, which can obtain a high precision solution with a low computational cost. However, the Galerkin method was also found to face some difficulties in practical applications, such as time-consuming integration and an inability to deal with spatial discontinuity. Patil and Hodges [11] proposed the concept of the variable-order finite-element Galerkin method. They found that the third-order finite element offers a particularly good balance of accuracy, computational efficiency, and applicability to general problems. Sotoudeh and Hodges [12] developed an incremental method for solving the fully intrinsic equations of statically indeterminate structures. They [13] also extended the application of fully intrinsic theory to more general configurations by establishing different types of fully intrinsic boundary conditions. Khaneh, Masjedi, and Ovesy [14,15] investigated the static analysis method by discretizing the fully intrinsic equations using the Chebyshev collocation method. Tashaorian et al. [16] established non-local, fully intrinsic equations for non-beam-like structures whose one-dimensional structure length is close to the two-dimensional cross-section size, which breaks through the limitation that the fully intrinsic equations can only be used for modeling slender structures. Byeonguk et al. [17] used the exponential function to replace the Rodrigues parameters to represent the finite rotation, and realized the absolute non-singularity expression in the equations, and therefore, the numerical realization of solving the equations became more compact.



The fully intrinsic equations developed by Hodges are the differential equations of first-order partial derivatives in time and space. Usually, two steps are needed to discretize them: the first is to discretize the equations of motion in the spatial domain to obtain the first-order partial differential equations about time; the second is to discretize the equations of motion in the time domain to obtain the algebraic equations, which can be solved directly. There are four commonly used methods for spatial discretization in the literature which the reader can consult. The first is the finite difference method. Hodges [2] used the central difference scheme to discretize the equations in the spatial domain, and mentioned that this method has second-order accuracy. The second is the Galerkin method, which was presented by Patil [10] using Legendre polynomials as weighting functions to establish integral equations. The third method is the Chebyshev collocation method. Khaneh, Masjedi, and Ovesy [14,15] used this method to discretize static intrinsic equations. The last method is the differential quadrature (DQ) method that has been used more recently.



It was proposed by Bellman and Casti [18] in 1971. The basic principle is that the derivative of a function at a specific point can be approximated as a weighted linear summation of the function values at all discrete points in the entire domain. Bert [19] first applied the method to the mechanical analysis of structural elements, and found that the method has the advantages of a simple formula, convenient use, less computation, and high precision. However, with the deepening of research and applications, researchers found that when the number of discrete points is large, the numerical ill-condition will appear when calculating the weighting coefficients. This disadvantage limited the application of the DQ method. Shu and Richards [20,21] overcame the shortcoming by introducing the generalized differential quadrature (GDQ) method based on Lagrange polynomial vector space. By using the GDQ method, the weighting coefficients of arbitrary-order derivatives are calculated using simple algebraic formulas. A notable feature of the GDQ method is that there are no limits to the type and number of discrete points. Oleg et al. [22] constructed a multi-layer wavelet collocation method which uses the Gaussian wavelet function as the interpolation basis function, and the collocation points are selected by dichotomy. An adaptive multi-layer wavelet configuration method [23] and a fast, adaptive wavelet configuration method [24] were presented by the same group. Chen [25] proposed the concept of the differential quadrature element method, which discretizes the domain into several regular sub-domains to deal with irregular boundaries. Wei et al. [26] found that the differential quadrature element method is more effective at dealing with higher-order derivative problems. Fung [27,28] pointed out that the accuracy and stability of the DQ method in the time domain depend on the locations of the sampling discrete points. By using appropriately distributed discrete points, the accuracy of the end value of the time interval can be improved to 2N-1 or 2N (N is the maximum order of polynomials), which is better than the commonly used uniformly spaced point and Chebyshev–Gauss–Lobatto point distribution. They proved that this terminal approximation is equivalent to the generalized Pade approximation.



Amoozgar and Shahverdi [29] firstly applied the differential quadrature method to solve the fully intrinsic equations of a geometrically exact beam. They found that the GDQ method can obtain more accurate results with a lesser computational cost than the traditional finite element method. Based on GDQ method, they also analyzed the dynamic stability of the beam under following forces [30] and the aeroelastic stability of the hingeless rotor [31]. Tashaorian et al. [16] used the GDQ method for the spatial discretization of non-local fully intrinsic equations.



For the first-order partial differential equations with respect to time obtained after the space discretization of the fully intrinsic equations, the difference algorithms [2,10,32] are commonly used to solve them recursively. These algorithms often need to go through a time-consuming recursion process when solving the aeroelastic response of the rotor, especially when solving the steady-state periodic response of the rotor. Borri [33] also pointed out the shortcomings of these algorithms in solving the steady-state response of the rotor’s aeroelasticity: since these algorithms are solved step by step, recursively, an initial value is required. For the nonlinear equations of aeroelasticity, it may be difficult to find an initial value related to a specific periodic solution. Therefore, he proposed that in the time-discrete process of the equations of motion, a set of algebraic equations should be derived by substituting periodic boundary value conditions, so that the nonlinear steady-state periodic solution of the rotor aeroelasticity can be obtained directly.



In this paper, the space-time discretization of the fully intrinsic beam equations is carried out on the basis of a differential quadrature method of high-order precision, and the new calculation formulas for solving the responses of the fully intrinsic dynamic equations of the beam are presented. The validity and applicability of the formulas proposed in this paper are verified by static analysis and modal calculation of the cantilever beam, and the calculation of the beam’s dynamic response, including the transient response and periodic steady-state response.




2. Fully Intrinsic Beam Equations


Figure 1 shows the undeformed and deformed states of the beam. At each point on the axis of the undeformed beam, a reference coordinate system   b (  x 1  )   is introduced. At each point along the axis of the deformed beam, a reference coordinate system   B (  x 1  )   is introduced. All variables involved in the fully intrinsic equations are expressed in the coordinate system  b  and  B . The equations can be expressed in a compact form as


     F B ′  + (  k ˜  +  κ ˜  )  F B  +  f B  =   P ˙  B  +   Ω ˜  B   P B       M B ′  + (  k ˜  +  κ ˜  )  M B  + (   e ˜  1  +  γ ˜  )  F B  +  m B  =   H ˙  B  +   Ω ˜  B   H B  +   V ˜  B   P B       V B ′  + (  k ˜  +  κ ˜  )  V B  + (   e ˜  1  +  γ ˜  )  Ω B  =   γ ˙  B       Ω B ′  + (  k ˜  +  κ ˜  )  Ω B  =   κ ˙  B     



(1)







Here,   (    ) ′    represents the partial derivative with respect to the reference axis of the undeformed beam coordinate system, and    ( ·  )   represents the partial derivative with respect to time.   F ( x , t )   and   M ( x , t )   represent the force and moment of the beam section, respectively.   P ( x , t )   and   H ( x , t )   represent the linear momentum and angular momentum of the beam section, respectively.   γ ( x , t )   and   κ ( x , t )   represent the generalized force and moment strains of the beam, respectively.   V ( x , t )   and   Ω ( x , t )   represent the linear and angular velocities of the beam section, respectively.   f ( x , t )   and   m ( x , t )   represent the external force and moment acting on the beam, respectively.  k  is the initial twist/curvature of the beam that expressed in the undeformed coordinate system  b .     (   )  ˜    is the cross-product operator, and for   k =          k 1       k 2       k 3         T   , the operator can be expressed as


   k ˜  =      0    −  k 3       k 2         k 3     0    −  k 1        −  k 2       k 1     0       



(2)







The first two equations in Equations (1) are partial differential equations of linear and angular momentum equilibrium. The latter two are partial differential equations for the kinematic equations, which were derived from the generalized strain-displacement and generalized velocity-displacement equations. This process essentially eliminates the displacement and rotation variables, leaving the equation with only intrinsic quantities.


         γ     κ      =      R   S       S T     T           F     M               P     H      =       μ Δ     − μ  ξ ˜        μ  ξ ˜     I           F     M         



(3)







Equations (3) are the equations for the beam constitutive relation and the generalized velocity-momentum relation.   R ( x )  ,   T ( x )  , and   S ( x )   are the flexibility characteristic constants of the beam profile. This linear constitutive relation is valid for small-strain cases.   μ ( x )  ,   ξ ( x )  , and   I ( x )   represent the beam’s linear density, centroid offset (the centroid of the profile relative to the reference axis), and the moment of inertia per unit length, respectively. Equations (1) and (3) constitute a complete set of differential equations for first-order partial derivatives in time and space.




3. Space-Time Discretization of Fully Intrinsic Equations


3.1. Discretization in the Spatial Domain


To solve the above equations, space discretization must be carried out first. The essence of spatial discretization is to eliminate the derivative terms. The DQ method, which has received much attention in recent years, approximates the derivative term as the weighted linear summation of the function values at all discrete points along the domain. Therefore, the computation of the weight coefficients is very important, which depends on the distribution of discrete points. The approximate solution at the end of time interval obtained by the discrete point distribution used in the [27,28] is equivalent to the approximate solution obtained by using the Pade approximation. Its characteristic is that the accuracy of the approximate solution at the inner points of the domain is no different from it is other points on the distribution, both of which are  p -order ( p  is the maximum order of the polynomials). However, the accuracy at the terminal node can be improved to   2 p   where the additional parameter   μ = 1   (the format is non-dissipative at the high-frequency regime).



This paper firstly adopts this discrete points’ distribution to discretize the spatial domain equations, and this differential discretization method is called the DQ−Pade method in this paper. The  n th derivative of the function   f ( x )   with respect to the spatial direction  x  can be expressed as


      ∂  ( n )   f   ∂  x  ( n )      =  f x  ( n )   (  x i  ) =   ∑  k = 1  N    W  i k   ( n )   f (  x k  )   ,   n  = 1 ,  … , N  



(4)







Here,    W  i k   ( n )     is the weight coefficient, and the algebraic expression is as follows:


     W  i k   ( 1 )   =    M  ( 1 )   (  x i  )   (  x i  −  x k  )  M  ( 1 )   (  x k  )   ,   i , k = 0 , 1 , … . , N   b u t   i ≠ k      W  i i   ( 1 )   =    M  ( 2 )   (  x i  )   2  M  ( 1 )   (  x k  )   , i = 0 , 1 , … . , N    



(5)







Among them,  M ,    M  ( 1 )    , and    M  ( 2 )     can be calculated by the respective following formulas:


    M ( ζ ) =  ζ  N + 1   −  W 1  ζ −  W 2   ζ 2  −  W 3   ζ 3  − … −  W N   ζ N       M  ( 1 )   ( ζ ) = ( N + 1 )  ζ N  −  W 1  − 2  W 2  ζ − 3  W 3   ζ 2  − … − N  W N   ζ  N − 1        M  ( 2 )   ( ζ ) = N ( N + 1 )  ζ  N − 1   − 2  W 2  − 6  W 3  ζ − … − N ( N − 1 )  W N   ζ  N − 2      



(6)




where


   W k  =     ( − 1 )   N − k   N ! N ! ( N + k − 2 ) !   ( k − 1 ) ! ( k − 1 ) ! ( N + 1 − k ) ! ( 2 N ) !     ·     2 ( N + μ ( k − 1 ) )   1 + μ      ,    0 ≤ μ ≤ 1  



(7)







The calculation method of discrete points is obtained by the following formula:


   ζ N  −  W 1  −  W 2  ζ −  W 3   ζ 2  − … −  W N   ζ  N − 1   = 0  



(8)







By taking the root of the above equation,  N  discrete points can be obtained. Figure 2 shows the distribution at   N = 9  . As can be seen in the figure, the discrete points are not evenly distributed, and nodal points (0 or 1) are not included. Therefore, when introducing boundary conditions    V 0   ,    Ω 0   ,    F L   , and    M L    , Equation (5) should be used to directly calculate the weight coefficient    W  i 0     of the start point value or to calculate    W  i L      of end point after some transformations. Thus, the spatial derivative terms in Equation (1) are written as


     V i ′  =   ∑  k = 1  N    W  i k     V k    +  W  i 0    V 0       Ω i ′  =   ∑  k = 1  N    W  i k     Ω k    +  W  i 0    Ω 0       F i ′  =   ∑  k = 1  N    W  i k     F k    +  W  i L    F L         M i ′  =   ∑  k = 1  N    W  i k     M k    +  W  i L    M L       



(9)







By substituting Equation (9) into Equation (1), the spatial discretization of the intrinsic equations based on DQ−Pade method can be expressed as


      ∑  k = 1  N    W  i k    F k  + (   k ˜  i  +   κ ˜  i  )    F i  +  f i  +  W  i L    F L  =   P ˙  i  +   Ω ˜  i   P i        ∑  k = 1  N    W  i k    M k  + (   k ˜  i  +   κ ˜  i  )    M i  + (   e ˜  1  +   γ ˜  i  )  F i  +  m i  +  W  i L    M L  =   H ˙  i  +   Ω ˜  i   H i  +   V ˜  i   P i        ∑  k = 1  N    W  i k    V k  + (   k ˜  i  +   κ ˜  i  )    V i  + (   e ˜  1  +   γ ˜  i  )  Ω i  +  W  i 0    V 0  =   γ ˙  i        ∑  k = 1  N    W  i k    Ω k  + (   k ˜  i  +   κ ˜  i  )    Ω i  +  W  i 0    Ω 0  =   κ ˙  i     



(10)







In Equations (9) and (10), the subscripts containing  i  or  k  are variables corresponding to discrete points    x i     or    x k   . Arrange the equations with respect to the time term, and then a set of differential equations with respect to time, which are the same in form as other spatial discretization methods, is obtained:


   A  j i     q ˙  i  +  B  j i    q i  +  C  j i k    q i   q k  +  D j  = 0  



(11)




where  q  is the vector of unknown intrinsic variables,  A  and  B  are linear coefficient matrices.  C  is a nonlinear coefficient matrix.  D  is the external load vector, which also contains intrinsic dynamic boundary conditions    V 0   ,    Ω 0   ,    F L   , and    M L    .



It is worth mentioning that the DQ−Pade method can also be used to discretize the equations of displacements and rotations recovering from the intrinsic variables (Hodges [5]):


     u ′  =  C T  (  e 1  + γ ) −  e 1  −  k ˜  u      θ ′  = ( Δ +  1 2   θ ˜  +  1 4  θ  θ T  ) ( κ + k − C k )    



(12)




where


  C =   [ 1 − ( 1 / 4 )  θ T  θ ] Δ −  θ ˜  + ( 1 / 2 ) θ  θ T    1 + ( 1 / 4 )  θ T  θ    



(13)







The equations after using DQ−Pade discretization can be expressed as


      ∑  k = 1  N    W  i k    u k    +  W  i 0    u 0  −  C i T  (  e 1  +  γ i  ) +  e 1  +   k ˜  i   u i  = 0       ∑  k = 1  N    W  i k    θ k    +  W  i 0    θ 0  − ( Δ +  1 2    θ ˜  i  +  1 4   θ i   θ i T  ) (  κ i  +  k i  −  C i   k i  ) = 0    



(14)







Here,  θ  is the Rodriguez parameter representing the rotation matrix.    u 0    and    θ 0    are the geometric boundary conditions. The discretized equations are algebraic equations containing nonlinearity and need to be solved iteratively.




3.2. Discretization in the Time Domain


DQ−Pade was originally derived for the solution of time-domain responses and has been successfully applied in time-domain problems [20,21]. Therefore, it is naturally used in this paper to discretize the first-order partial differential equation with respect to time obtained after space discretization. Compared with the traditional recursive method, this paper presents the global format of the DQ−Pade method, which can get the responses of all discrete time points at once.



If there are M + 1 time points (   t 0   ,  t 1  , … ,  t M   ) in a time domain  T ,    t i  ( i = 1 , … , M )   is the best approximation of the time discrete point calculated by Equations (7) and (8). Additionally,    t 0     is the start point of the time domain  T . Thus, the time derivative term   q ˙   in the discrete Equation (11) can be discretized by the DQ−Pade method:


   q ˙  ( t ) =   ∑  k = 1  M    W  i k     q k    +  W  i 0    q 0  i n i t i a l    



(15)




where the weight coefficients  W  can be calculated using Equation (5)–(8);    q 0  i n i t i a l     is the initial condition. Substitute Equation (15) into (11). Then, the following equation is obtained:


  A   ∑  k = 1  M    W  i k     q k    + A  W  i 0    q 0  i n i t i a l   + B  q i  + C (  q i  )  q i  +  D i  = 0 ,   i = 1 , … , M  



(16)







Equation (16) can also be written in matrix form as


          A  W  11   + B + C (  q 1  )     A  W  12       A  W  13      …    A  W  1 M         A  W  21       A  W  22   + B + C (  q 2  )     A  W  23      …    A  W  2 M         A  W  31       A  W  32       A  W  33   + B + C (  q 3  )    …    A  W  3 M        ⋮   ⋮   ⋮   ⋱   ⋮      A  W  M 1       A  W  M 2       A  W  M 3      …    A  W  M M   + B + C (  q M  )              q 1         q 2         q 3       ⋮       q M            +       A  W  10   ⋅  q 0  i n i t i a l         A  W  20   ⋅  q 0  i n i t i a l         A  W  30   ⋅  q 0  i n i t i a l        ⋮      A  W  M 0   ⋅  q 0  i n i t i a l         +        D 1         D 2         D 3       ⋮       D M        = 0    



(17)







The above equation can be written in a simplified form:


   A  t o t a l   ⋅  q  t o t a l   +  A 0  ⋅  q 0  i n i t i a l   +  D  t o t a l   = 0  



(18)







This is the initial value formula for the time-discrete solution based on the DQ−Pade method. Given the initial condition    q 0  i n i t i a l    , the responses at all discrete time points can be solved at one time.



If the time domain  T  is a period, the steady-state periodic response of the intrinsic equations is required. For this case, it is difficult to give the initial value    q 0  i n i t i a l     satisfying the final steady-state periodic response when Equation (18) is still used. Therefore, it is necessary to deduce the discrete formula with consideration of the periodic boundary condition


   q 0   =  q T   



(19)







Here,    q T     can be obtained by polynomial interpolation:


   q T  =  L 0  ( 1 )  q 0  +  L 1  ( 1 )  q 1  + … +  L M  ( 1 )  q M   



(20)




where    L k    is the Lagrange interpolation polynomial. Substitute Equation (19) into (18) to get


   q 0  b o u n d a r y   =  l 1   q 1  + … +  l M   q M     ,     l i  =  L i  / ( 1 −  L 0  )  



(21)







   q 0  b o u n d a r y     is the constraint condition of periodic boundary value problems. Bring it into Equation (16) and write it in matrix form:


          A  W  11   + B + C (  q 1  )     A  W  12       A  W  13      …    A  W  1 M         A  W  21       A  W  22   + B + C (  q 2  )     A  W  23      …    A  W  2 M         A  W  31       A  W  32       A  W  33   + B + C (  q 3  )    …    A  W  3 M        ⋮   ⋮   ⋮   ⋱   ⋮      A  W  M 1       A  W  M 2       A  W  M 3      …    A  W  M M   + B + C (  q M  )              q 1         q 2         q 3       ⋮       q M            +       A  W  10   ⋅  l 1      A  W  10   ⋅  l 2      A  W  10   ⋅  l 3     …    A  W  10   ⋅  l M        A  W  20   ⋅  l 1      A  W  20   ⋅  l 2      A  W  20   ⋅  l 3     …    A  W  20   ⋅  l M        A  W  30   ⋅  l 1      A  W  30   ⋅  l 2      A  W  30   ⋅  l 3     …    A  W  30   ⋅  l M       ⋮   ⋮   ⋮   ⋱   ⋮      A  W  M 0   ⋅  l 1      A  W  M 0   ⋅  l 2      A  W  M 0   ⋅  l 3     …    A  W  M 0   ⋅  l M               q 1         q 2         q 3       ⋮       q M        +        D 1         D 2         D 3       ⋮       D M        = 0    



(22)







Similarly, the equation can be simplified as


   A  t o t a l   ⋅  q  t o t a l   +  A 0  ⋅  q 0  b o u n d a r y   +  D  t o t a l   = 0  



(23)







Equation (23) is the periodic boundary value formula based on the DQ−Pade method for a time discrete solution. Like the initial value formula of Equation (17) and (18), the derived algebraic equations contain nonlinear terms,  C . Therefore, it is necessary to solve the algebraic equations via nonlinear iteration, e.g., a Newton iteration method. To get the function’s values at other points along the domain, Lagrange polynomial interpolation can be used.




3.3. DQ−Pade Element Method


It can be seen in the space discrete equation, Equation (10), and the time discrete equation, Equations (18) and (23), that the coefficient matrixes of the equations are fully matrixes (each element of a matrix has a nonzero value). When dealing with large-scale problems, such as rapid changes or discontinuities in spatial or time domains, the quantity of discrete points needs to be increased, and then the cost of storing and operating the coefficient matrix will increase rapidly, reducing the computational efficiency. Another reason that can be seen in Equation (8) is that when the discrete number  N  is large, it is difficult to find the root of the formula, which leads to a decrease in the calculation accuracy of the weight coefficient. Meanwhile, there are more nodal points in the domain, which is beneficial to the accuracy of the DQ−Pade method to some extent. Therefore, it is necessary to divide the entire time/space domain into multiple sub-domains, similarly to the finite element method. Additionally, the sub-domains are connected through the weight coefficients of the public points.



If  M  elements are divided in the spatial domain, the spatial discrete Equation (10) is transformed into


      ∑  k = 1  N    W  i k    F k m  + (   k ˜  i m  +   κ ˜  i m  )    F i m  +  f i m  +  W  i L   (   ∑  k = 1  N    L k  ( 0 )    F k  m + 1   ) =   P ˙  i m  +   Ω ˜  i m   P i m        ∑  k = 1  N    W  i k    M k m  + (   k ˜  i m  +   κ ˜  i m  )    M i m  + (   e ˜  1  +   γ ˜  i m  )  F i m  +  m i m  +  W  i L   (   ∑  k = 1  N    L k  ( 0 )    M k  m + 1   ) =   H ˙  i m  +   Ω ˜  i m   H i m  +   V ˜  i m   P i m          ∑  k = 1  N    W  i k    V k m  + (   k ˜  i m  +   κ ˜  i m  )    V i m  + (   e ˜  1  +   γ ˜  i m  )  Ω i m  +  W  i 0   (   ∑  k = 0  N    L k  ( 1 )    V k  m − 1   ) =   γ ˙  i m        ∑  k = 1  N    W  i k    Ω k m  + (   k ˜  i m  +   κ ˜  i m  )    Ω i m  +  W  i 0   (   ∑  k = 1  N    L k  ( 1 )    Ω k  m − 1   ) =   κ ˙  i m     



(24)







The boundary conditions can be expressed as


          ∑  k = 0  N    L k  ( 1 )    V k  m − 1   =  V 0   ,     ∑  k = 1  N    L k  ( 1 )    Ω k  m − 1   =  Ω 0    ,   when    m = 1         ∑  k = 1  N    L k  ( 0 )    F k  m + 1   =  F L  ,     ∑  k = 1  N    L k  ( 0 )    M k  m + 1   =  M L    ,   when    m = M        



(25)







When  M  elements are divided in the time domain, the initial value Equation (17) is transformed into


            AW   11    + B + C  (  q 1 1  )    ⋯      AW   1 N                             ⋮   ⋱   ⋮                             AW   N 1      ⋯      AW   N N    + B + C  (  q N 1  )                              AW   10   ⋅  L 1  ( 1 )    ⋯      AW   10   ⋅  L N  ( 1 )       AW   11    + B + C  (  q 1 2  )    ⋯      AW   1 N                    ⋮   ⋱   ⋮   ⋮   ⋱   ⋮                    AW   N 0   ⋅  L 1  ( 1 )    ⋯      AW   N 0   ⋅  L N  ( 1 )       AW   N 1      ⋯      AW   N N    + B + C  (  q N 2  )                                    ⋱                       ⋱      AW   10   ⋅  L 1  ( 1 )    ⋯      AW   10   ⋅  L N  ( 1 )       AW   11    + B + C  (  q 1 M  )    ⋯      AW   1 N                    ⋮   ⋱   ⋮   ⋮   ⋱   ⋮                    AW   N 0   ⋅  L 1  ( 1 )    ⋯      AW   N 0   ⋅  L N  ( 1 )       AW   N 1      ⋯      AW   N N    + B + C  (  q N M  )           ⋅        q 1 1       ⋮       q N 1         q 1 2       ⋮       q N 2       ⋮       q 1 M       ⋮       q N M        +        D 1 1  +   AW   10   ⋅  q 0  i n i t i a l        ⋮       D N 1  +   AW   N 0   ⋅  q 0  i n i t i a l          D 1 2       ⋮       D N 2       ⋮       D 1 M       ⋮       D N M        = 0    



(26)




and the boundary value formula, Equation (22), is transformed into


            AW   11    + B + C  (  q 1 1  )    ⋯      AW   1 N                     AW   10   ⋅  L 1  ( 1 )    ⋯      AW   10   ⋅  L N  ( 1 )      ⋮   ⋱   ⋮               ⋮   ⋱   ⋮        AW   N 1      ⋯      AW   N N    + B + C  (  q N 1  )                   AW   N 0   ⋅  L 1  ( 1 )    ⋯      AW   N 0   ⋅  L N  ( 1 )         AW   10   ⋅  L 1  ( 1 )    ⋯      AW   10   ⋅  L N  ( 1 )       AW   11    + B + C  (  q 1 2  )    ⋯      AW   1 N                    ⋮   ⋱   ⋮   ⋮   ⋱   ⋮                    AW   N 0   ⋅  L 1  ( 1 )    ⋯      AW   N 0   ⋅  L N  ( 1 )       AW   N 1      ⋯      AW   N N    + B + C  (  q N 2  )                                    ⋱                       ⋱      AW   10   ⋅  L 1  ( 1 )    ⋯      AW   10   ⋅  L N  ( 1 )       AW   11    + B + C  (  q 1 M  )    ⋯      AW   1 N                    ⋮   ⋱   ⋮   ⋮   ⋱   ⋮                    AW   N 0   ⋅  L 1  ( 1 )    ⋯      AW   N 0   ⋅  L N  ( 1 )       AW   N 1      ⋯      AW   N N    + B + C  (  q N M  )           ⋅        q 1 1       ⋮       q N 1         q 1 2       ⋮       q N 2       ⋮       q 1 M       ⋮       q N M        +        D 1 1       ⋮       D N 1         D 1 2       ⋮       D N 2       ⋮       D 1 M       ⋮       D N M        = 0    



(27)







The main diagonal matrix block in Equation (26) and (27) is the coefficient matrix of each element, and the sub-diagonal matrix is the connection coefficient matrix formed by each element through the public point (the connecting point of two elements). The matrix block in the upper right corner of the Equation (27) is a connected coefficient matrix formed by the periodic boundary condition. The initial value condition is reflected in the first sub-vector in the total load vector of Equation (26).



It can be seen in the matrix form that the coefficient matrix of the equations after dividing is characterized by a sparse banded distribution. Compared with the method of forming full matrix coefficients without dividing elements, the DQ−Pade element method can improve the calculation speed of the matrix and reduce the storage cost, thereby improving the calculation efficiency. The accuracy and efficiency of the method are verified by the following examples.





4. Numerical Results


To verify the applicability and validity of the proposed time/spatial discretization formula for intrinsic beam equations, two examples are considered. Firstly, the spatial discrete formula is verified by static analysis and modal calculation of the cantilever beam. Another example is calculating the dynamic response of a rotating cantilever beam to verify the accuracy and efficiency of the proposed time-discrete formula.



4.1. Static Analysis and Modal Calculation of the Cantilever Beam


Firstly, the static analysis of the following force applied to the tip of the cantilever beam is considered. Then, the velocity condition is applied to its root to calculate its natural frequency [10]. The structural characteristics of the cantilever beam are shown in Table 1. For static analysis, apply a following force    F  t i p   = 3 E I /  L 2    at the tip. Simitses and Hodges [34] gave the exact solution of the dimensionless equation (made by    F  t i p   L  ) for the bending moment at the root     M ¯   r o o t   = 0.8104403623  . Due to static analysis, time-dependent terms are eliminated in Equation (9), and it can be simplified to


      ∑  k = 1  N    W  i k    F k  +   κ ˜  i     F i  +  W  i L    F L  = 0       ∑  k = 1  N    W  i k    M k  +   κ ˜  i     M i  +   e ˜  1   F i  +  W  i L    M L  = 0    











Table 2 lists the results of the root bending moment calculated by different DQ methods. The GDQ method is the discretization method based on Lagrange polynomial space that was used to calculate weight coefficients in [29]. The wavelet-differential quadrature (WDQ) method is a DQ method based on the adaptive multi-layer wavelet collocation method in [27,28]. The number of discrete points is determined by the wavelet resolution layer  j  and the translation factor  N  (  n =  2  j + 1   + 2 N + 1  ), and   N = 2  ,   j = 0 ∼ 4   is taken here. The results of the central difference method (CDM) used by the Hodges [4] are also listed in this table.



From Table 2 and Figure 3 and Figure 4, it can be clearly seen that the DQ methods has better accuracy than the CDM. Compared with the other two DQ methods, the DQ−Pade method has obvious advantages in convergence speed. With the same computational cost, the accuracy of this method is at least three orders of magnitude higher than those of the other two methods. To achieve the minimum error magnitude of 10−10, only nine discrete points are needed in this method. The computational cost is much lower than 16 points for the GDQ method and 37 points for the WDQ method.



However, it can be seen in Figure 3 that when the number of discrete points exceeds 9, the calculation accuracy of this method decreases as the number of discrete points increases. The reason is that with the increase in the number of discrete points, it will be difficult to calculate the distributed discrete points, resulting in a decrease in the accuracy of calculating discrete weight coefficients. Figure 4 shows the error curve of calculating the bending moment at the root by dividing different discrete element numbers. It can be seen in the figure that dividing discrete elements can effectively improve the calculation accuracy and restrain the divergence of error. At the same time, it is worth noting that as the number of element (M) increases, the rate of error convergence decreases. Additionally, it is observed that when the number of discrete points in single element exceeds 10, the accuracy usually decreases. Therefore, it is recommended to divide the sub-domains as little as possible in the entire domain, and discretize points in any sub-domain no more than 10 times.



If the intrinsic dynamic boundary conditions of the rotating cantilever beam [10] are


   V 0 T  = [ 0 , 51.03 , 0 ] ,  Ω 0 T  = [ 0 , 0 , 3.189 ] ,  F L T  = [ 0 , 0 , 0 ] ,  M L T  = [ 0 , 0 , 0 ]  











Wright [35] gave an exact solution for the bending frequency in this case:


   ω  1 s t , b e n d i n g   = 5.703 ,  ω  2 n d , b e n d i n g   = 18.72 ,  ω  3 r d , b e n d i n g   = 44.50  











Table 3 lists the frequency results of CDM, DQ−Pade, and the GDQ method. The CDM is sensitive to the calculation step, so it needs more discrete points. It was found that the frequency results had considerable accuracy when the number of discrete points exceeds 150. Compared with the GDQ method, our method still has the prominent characteristics of low cost and high precision, so it is an ideal choice for the spatial discretization of the fully intrinsic equations.




4.2. Dynamic Response of the Rotating Beam


In the second example, the dynamic response analysis of rotating cantilever beam is considered, including transient and steady-state responses. The length of the beam is 1 m, and the rotational speed is 70 rad/s. The material properties of the beam are shown in Table 4 [32].



A periodic excitation force   F = 50 sin ( 20 t )   N   is applied in the flapping direction at the tip of the beam. The transient response results of DYMORE with a calculation step size of 0.001 s is given in [32]. This present method had the same calculation cost: 125 time elements and 8 time points in each element, denoted as M125−N8. Tip displacement, tip rotation angle, root force, and bending moment are shown in Figure 5, Figure 6, Figure 7 and Figure 8, respectively. From these figures, it can be seen that the present method is in good agreement with the calculation results of DYMORE. Even for axial forces with insufficient calculation accuracy in [32], this method can still achieve satisfactory accuracy.



With the same rotational speed, a periodic harmonic force is applied in the direction of tip flapping:


  F = 10 sin ( 70 t ) + 5 sin ( 2 ⋅ 70 t ) + 2 sin ( 3 ⋅ 70 t )   N  











The authors of [32] used the backward second-order Euler method to calculate the time domain response. We took the Euler method as a reference for the steady-state response. Figure 9, Figure 10, Figure 11 and Figure 12 shows the steady-state periodic response curves of tip displacements, rotations, root forces, and moments calculated by the two methods. In the figures, the steady-state period formula of the DQ−Pade element method uses a combination of eight time elements divided in one period and nine distribution points used in each element (M8−N9), both of which use the same time element step size,   t = 2 π / 70 / 72   (one time element per 5°). It can be seen in the figures that the two curves basically coincide, and both can well meet the periodic condition. When the calculation step size is 5°, the Euler method required six periods, and it took 114 s, to reach the so-so periodic boundary condition (absolute error < 1). When calculating 15 cycles, which took 286 s, the periodic boundary value condition converged to the order of 10−2. The results of Euler method in the figures are given for this condition.



The steady-state periodic boundary value formula of the DQ−Pade method itself satisfies the periodic boundary conditions. At the same calculation cost, i.e., calculating 72 time discrete points in a cycle, the calculation accuracy and calculation time were compared, with different combinations of discrete element numbers and discrete point numbers (M × N = 72). Taking M36−N10 (one time element per 1°) as a reference, and taking the bending moment of the beam root as an example, Figure 13 shows the convergence of different combinations. It can be seen that the combination of fewer discrete elements and more discrete points distributed in each element can obtain the best accuracy. Table 5 gives the calculation times of different combinations. The combination with the best accuracy took the longest, but this was still far less than the calculation time of the Euler method. The reason is that each time discrete point has a state quantity that contains all the structural degrees of freedom, and the increase in discrete points in the time element leads to the multiplication of the matrix operation cost. Therefore, it is needed to make a balance between accuracy and computational efficiency.





5. Conclusions


In this paper, a new method based on the DQ−Pade method was proposed to solve the nonlinear fully intrinsic equations of geometrically exact beams. Starting from the spatial and temporal discretization of the fully intrinsic equations, the DQ−Pade method was used to re-deduce the spatial discretization equations of the fully intrinsic beam equations, and the static analysis and modal calculation of the beam were investigated. It was found that the accuracy and efficiency of this method are better than those of the traditional GDQ method. In terms of time discretization, a calculation formula of initial value and steady-state periodic boundary value is proposed, based on the DQ−Pade method. With the consideration of the efficiency and accuracy of the DQ−Pade method, the DQ−Pade element method was further proposed. The results show that the method is very effective, and it has outstanding performance in terms of accuracy and efficiency, which makes a good foundation for the subsequent rotor vibration load prediction and aeroelastic stability analysis.
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Figure 1. Sketch map of beam before and after deformation. 
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Figure 2. Distribution of discrete points when N = 9. 
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Figure 3. The accuracy comparison of different DQ methods. 
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Figure 4. Precision of the DQ−Pade element method. 
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Figure 5. Displacements time history curve of the beam tip. 
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Figure 6. Rotation time history curve of the beam tip. 






Figure 6. Rotation time history curve of the beam tip.



[image: Aerospace 09 00596 g006]







[image: Aerospace 09 00596 g007 550] 





Figure 7. Time history curve of beam root forces. 
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Figure 8. Time history curve of beam root moments. 






Figure 8. Time history curve of beam root moments.
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Figure 9. Steady−state periodic curves of beam tip displacements. 
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Figure 10. Steady−state period curve of beam tip rotations. 






Figure 10. Steady−state period curve of beam tip rotations.
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Figure 11. Steady−state periodic curve of beam root forces. 
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Figure 12. Steady−state periodic curve of beam root moments. 






Figure 12. Steady−state periodic curve of beam root moments.



[image: Aerospace 09 00596 g012]







[image: Aerospace 09 00596 g013 550] 





Figure 13. Beam root flapping moment curves with different combinations of discrete elements and points. 
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Table 1. The structural characteristics of the cantilever beam.






Table 1. The structural characteristics of the cantilever beam.





	Parameter
	Value





	Span
	16 m



	Chord
	1 m



	Mass density
	0.75 kg/m



	Moment of inertia (50% chord)
	0.1 kg m



	Spanwise elastic axis
	50% chord



	Center of gravity
	50% chord



	Bending rigidity
	2 × 104 Nm2



	Torsional rigidity
	1 × 104 Nm2



	Bending rigidity (chordwise)
	4 × 106 Nm2



	Shear/extensional rigidity
	∞
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Table 2. Results of the root bending moment calculated by different DQ methods.






Table 2. Results of the root bending moment calculated by different DQ methods.













	Method
	n = 3
	n = 4
	n = 5
	n = 6
	n = 7





	CDM
	0.795943708
	0.804111347
	0.806942329
	0.808227074
	0.808914563



	GDQ
	0.628913129
	0.848504651
	0.803100361
	0.809702945
	0.810900600



	WDQ
	-
	-
	-
	-
	0.811791100



	Present
	0.806762171
	0.809924405
	0.810414363
	0.810437905
	0.810440225



	
	n = 8
	n = 9
	n = 10
	n = 13
	n = 21



	
	0.809324779
	0.809589080
	0.809769336
	0.810064442
	0.810305505



	
	0.810379136
	0.810430350
	0.810445453
	0.810440413
	0.810440363



	
	-
	0.810440438
	-
	0.810440087
	0.810440342



	
	0.810440354
	0.810440362
	0.810440363
	0.810440356
	0.812366715
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Table 3. Results of a beam rotating at natural frequency.






Table 3. Results of a beam rotating at natural frequency.





	Frequency
	n = 5
	n = 6
	n = 7
	n = 8
	n = 9
	n = 10





	1st bending/Present
	5.7024
	5.7024
	5.7024
	5.7024
	5.7024
	5.7024



	1st bending/GDQM
	5.6983
	5.7027
	5.7023
	5.7024
	5.7024
	5.7024



	1st bending/CDM
	6.5402
	6.3841
	6.2779
	6.2005
	6.1417
	6.0953



	2nd bending/Present
	18.7226
	18.7229
	18.7229
	18.7229
	18.7229
	18.7229



	2nd bending/GDQM
	18.7054
	18.7208
	18.7226
	18.7228
	18.7229
	18.7229



	2nd bending/ CDM
	19.7283
	19.7155
	19.6650
	19.6021
	19.5377
	19.4790



	3rd bending/Present
	44.7008
	44.5122
	44.4997
	44.4985
	44.4985
	44.4985



	3rd bending/GDQM
	42.3069
	42.2699
	44.4587
	44.5012
	44.4983
	44.4984



	3rd bending/CDM
	35.3993
	39.3702
	41.2891
	42.3684
	43.0291
	43.4587
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Table 4. Material properties of the beam.






Table 4. Material properties of the beam.





	Parameter
	Value





	Mass per unit length
	0.2 kg/m



	   Moment   of   inertia   per   unit   length    I  x x     
	10−4 kg·m



	   Moment   of   inertia   per   unit   length    I  y y     
	10−6 kg·m



	   Moment   of   inertia   per   unit   length    I  z z     
	10−4 kg·m



	   Extensional   rigidity    K  11     
	106 N



	   Shear   rigidity    K  22     
	1020 N



	   Shear   rigidity    K  33     
	1020 N



	   Torsional   rigidity    K  44     
	50 N·m2



	   Bending   rigidity    K  55     
	50 N·m2



	   Bending   rigidity   ( chordwise )    K  66     
	1000 N·m2
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Table 5. The calculation times of different combinations of discrete elements and points.






Table 5. The calculation times of different combinations of discrete elements and points.





	M/N
	36/2
	24/3
	18/4
	12/6
	9/8
	8/9





	CPU Time
	23.01 s
	25.17 s
	28.84 s
	38.88 s
	53.66 s
	63.12 s
















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file8.jpg
S Presert
|—— Svwiore

09

08

07

[

3

04

03

0z

01

03

08

o7

[

0s

04

03

0z

01

001

5 o0t

002!

0®
2210

09

08

o7

06

[

e

04

03

02

01





media/file13.png
Present
DYMORE






media/file12.jpg
P2, N

o o1 o2 03 o0& 05 o5 07 08 o9 1

100

F3,0lN

o1 02 03 04 05 05 07 08 o9 1
vs





media/file18.jpg
002,

s
i
002/
o 001 ooz oos  oos o005 oo oo oo
5
B
) 001 ooz oos oo o005 oo oor oo
005
e
005!
o 001 ooz oos oo o005 oo oor oo

000





media/file9.png
/m

tip

u1i

0.01

o

Present

DYMORE

X %1073






media/file14.jpg
wN'zn





media/file20.jpg
35,

F2,0fN

oot ooz om oo o005 006 o007 oo oo

oo o0z 03 oo 005 006 o007  oos 009

oo o0z o  ooe o005 o006 o007  oos o009
»





media/file23.png
I I
©
o
N =
et
te
c =
T
|nr_vm —
o w
o
| |
-~ Te} m T} ~—
c 9 @ o
o n.U !

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.01






media/file5.png
o"EXACT])

Log, ,(IM

100§

10-10 :

102 F
10 £
100 |

108 |

-0 GDQ
o ——3f— Present

—8—wDQ | ]
——com_ |
) .

ST |

| | | | | | |
5 10 15 20 25 30 35

Grid Points/N

40





media/file15.png
Present
DYMORE

"Tegy (@}
-yt o
nI.l‘.\llu.
O | B
.....
gUSY )
asaes b B
o
.himnlbllll!ss ~
g IS
:iL:
©
(]
:,:-.-T
) O
aagf
~os e
S S

Meagyr

anee st

e

Y

0.5

..'--...l-:. -

sﬂ.«.-.ﬁ:.-‘s‘ AI.
By BN=)
LU e e e
_ I o
N <
< N - S S
o o _

50

iitees,

RS
.
CCED080
OIS B A el
3 3 Sonieinss

=R
TaTaTa
AraTa T T
.p.-.wu\|

m ;.::?:

:::.:,T.

SO

(A B

()

LTI

Z00

:».::
[

Tasesstl

v

t;:::,t;

:l::f

CA
B DO
ans

&
an

0.9

0.8

0.7






media/file19.png
Present

Euler Method

0.02

0.01
-0.01

d
oJ Leey

-0.02

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.01

d
oJ zeoy

0.05

-0.05

d
J eerey





media/file2.jpg





nav.xhtml


  aerospace-09-00596


  
    		
      aerospace-09-00596
    


  




  





media/file11.png
lllllllllll

DYMORE

RN
||||||||

A7
s Tt aaagyyy
— " *err,,

LA X

Tyt

......

,,,,,

')""li,ﬂ,ﬁ,
SIS Sme=

.-
N -

--------

Ll e e TN
o e

e g DT
.

AT

kO
C..-Dlllillln :
: e

0.1

0.05
-0.05

dn
o/ " LEIBY]

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

20

]
o
-—

d
of

i

_
=)
o

zeloy

o
o

0.9

0.8

4

0

0.6

0.5

0.4

0.3

0.2

0.1

eI R RN

dn
o/ EElvY}






media/file6.jpg
-EXACT])

oot

Log, (M,

1010

1042

——Mm1
——M2
——m3
—a— w4
—p—wi5
—e— M6
—f—cDM

10

20

30

40
Grid Points/N

50

60

70

80





media/file24.jpg
T T T
10°
5
3
B
g
g

Vs

009





media/file1.png
Undeformed state b,
X1 » D1
P e

Deformed state





media/file10.jpg
G preset
| —— ovioe

0

08

07

06

05

04

03

0z

o1

09

08

[

08

05

04

03

0z

o1

0
10

S Hzmen

)

o1

005

S eeon

o1

09

o8

o7

06

05

vs

04

03

0z

o1





media/file7.png
100§

o EXACT])
3
(o))

Log, ,(IM

1072

107 ¢

10710

|
—— M1
M2 | :
—— M3 |
—— M4 | ]
—P— M5 3
—Q— CDM | *

E 5 > -
A Nz : "

10712 :
0

10 20 30 40 50 60 70 80
Grid Points/N





media/file16.jpg
UBygfm

006

006!

x10%

O prosen
Eueranos
o o0 0@ o0  os 005 oo o007 00 009
104
o0 0@ oo oo 005 oo o007 008 009
o oo 0@ o005 oo o005 oo o007 008 009

vs





media/file3.png
q-

Qs

Qe 1





media/file22.jpg
G proset
—— Evlrntavas

o2 o0 oo+ 005 o006 oor o008 009

o0t

o2 003 oo+ 005 o0  oor o008 009

oot

2

wn/ "z

12

25

wnen

25

o2 o003  oos o005 006  oor o008 009

o0t

v





media/file17.png
Present

Euler Method

6 0.07 0.08 0.09

0.0

0.03 0.04 0.05

0.02

0.01






media/file4.jpg
Log,,(IM, ., -EXACT])

5

10

1070

—©—GDa
—s— Present
—s—woQ

—6—com

Grid Points/N

35






media/file25.png
/Nm
root

M2

EXACT])

root

Log10(|M2

M36,N2

0 M24,N3
M18,N4
M12,N6
M9,N8
M8,N9
_12 | | | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
100 I I I I T T
- ”"' V | i
107° |- .
eV T %% AN
10-10 ] ] | | | | | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

t/s





media/file0.jpg
bs

Undeformed state

X1

Deformed state





media/file21.png
Present

O

Euler Method

495

4390UN

10014

N/

485

6 0.07 0.08 0.09

0.0

0.03 0.04 0.05

0.02

0.01






