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Abstract: Traditional research on static wake-vortex reduction usually considers only the influence of
external environmental factors, while ignoring the dynamic change in an aircraft’s flight state. In
order to solve this problem, this paper proposes a method to reduce separation using dynamic wake
information based on changes in flight velocity. Firstly, relying on the wake-vortex generation and
dissipation model, the initial circulations and dissipation parameters of the wake vortex at different
aircraft velocities are calculated. Then, the complete evolution process of the wake vortex generated
by different types of aircraft at different velocities is analyzed, and the evolution law of a wake
vortex with changing velocity is obtained. Afterwards, according to the actual aerodynamic shape
of CRJ-900, the aerodynamic model for CRJ-900 when it encounters a wake vortex is established.
The situation of an CRJ-900 encountering a wake vortex under TBS is analyzed, which proves that
TBS is safe and has a certain reduction potential. Then, taking the rolling moment coefficient as the
safety index, the minimum safe separations at different velocities are calculated. Finally, a simulation
for the separation reduction based on a dynamic wake vortex is carried out. Compared with the
static wake-based separation, the dynamic wake-based separation technology can greatly reduce the
aircraft separation requirements while ensuring the operation safety. The final simulation results
show that the dynamic separation reduction in CRJ-900 following a medium and heavy aircraft can
reach 44.3% and 51.6%, respectively.

Keywords: velocity change; wake encounter; dynamic wake separation; time-based separation

1. Introduction

During flight, an aircraft generates lift through the pressure difference between the
upper and lower surfaces of an airfoil. At the same time, there is also airflow from the
lower surface around the wing tip to the upper surface, thus creating two vortices near the
wing tip which rotate in opposite directions, namely, the wake vortex. Since wake is an
important factor affecting flight safety, a large number of scholars have conducted extensive
and in-depth research on it, mainly performing studies on wake generation and dissipation,
wake encounter, wake response of a following aircraft, and safety separation standards [1].
Crow et al. studied the generation and dissipation mechanisms of an approaching wake
vortex through extensive observations and experiments [2]. Greene et al. developed the
first wake-vortex dissipation model, called the Greene model [3]. Holzäpfel et al. proposed
a two-stage wake dissipation (P2P) model by numerically simulating the wind, turbulence
and ground effects in an integrated manner [4]. Speijker et al. were the first to use
rolling angular velocity to assess the severity of wake encounters in a following aircraft [5].
Marques et al. developed a computational model of the rolling moment generated by an
aircraft encountering a wake, and then used it for the safety assessment of wake encounters
in the following aircraft [6]. Gerben et al. proposed using the rolling-moment coefficient
to evaluate the severity of wake encounters in a following aircraft, and validated the
grading criteria for the roll-moment coefficient [7]. Moreover, the European-developed
wake-vortex prediction system WSVS can dynamically adjust the separation between
aircrafts without compromising the safety [8–10]. NASA developed a wake prediction
system (AVOSS), which combines real-time weather data, wake-detection data, and wake
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models to determine safe wake separations [11]. Subsequently, Wei Zhiqiang et al. analyzed
the variation law of wake-vortex dissipation with a side wind, through a theoretical study
on the aircraft wake-vortex dissipation mechanism [12,13]. Zhang Junduo et al. studied the
evolution of wake in ARJ21 under the influence of side winds in the near-ground phase [14].
Wang Xuan et al. proposed a Doppler LIDAR to establish a radial wind-speed-based
wake-vortex identification method [15]. Han Hongrong et al. established a model for
calculating the disturbance parameters of an aircraft by considering the influence of various
aircraft parameters on the roll process, and calculated a safe flight separation based on this
model [16]. Pan Weijun et al. analyzed the safety of an ARJ21 aircraft based on ICAO wake
separation standard and the reduction potential of wake separation, and then calculated
the separation reduction when ARJ21 followed different aircraft [17].

Evidently, significant research has been performed on wake vortices; however, most
of these works only focus on the influence of external environmental factors such as side
wind and ground effect on the wake-vortex evolution and safe wake separation, while, in
fact, wake-vortex evolution and separation safety are closely related to an aircraft’s own
flight status, which is also key to achieving dynamic wake-separation reduction.

In this paper, based on the velocity change characteristics of a front and following
aircraft during takeoff and approach phases, the generation and dissipation laws of wake
vortices for different aircraft combinations at different velocities were researched. Combin-
ing this analysis with the aerodynamic model of CRJ-900 that encounters a wake vortex,
the safe separations in longitudinal, vertical and lateral directions were calculated, for
cases where CRJ-900 followed different aircraft at different velocities. Next, the dynamic
wake-separation reduction simulation was performed based on these calculations.

1.1. Wake-Vortex Generation Model

According to a theory proposed by Kutta–Joukowski, aircraft lift is equal to the flux in
vortex momentum, as expressed in the following equations

Γ0Vb0ρ =
ρCl B2V2

2λ
(1)

b0 = s · B (2)

where Γ0 is the initial wake vortex circulation, V is the flight velocity, b0 is the distance
between both vortex centres, ρ is the air density, Cl is the lift coefficient, B is the wing span,
and λ is the aspect ratio. Meanwhile, s is the load factor in the spreading direction, and
s ≈ π/4 when the airfoil type is an elliptical wing.

Through Equations (1) and (2), the initial wake-vortex circulation can be expressed by
the following equation

Γ0 =
ClVB
2sλ

(3)

For asymmetric airfoils, the lift coefficient is calculated as follows:

Cl = Cla(a − a0) (4)

Cla =
2πλ

2 +
√

4 + λ2β2

ηe
(1 + tan2 χ1/2

β2 )
(5)

tan χ1/2 = tan χ − 2
λ
· η − 1

η + 1
(6)

where Cla is the slope of the lift line; a is the aircraft’s current angle of attack; a0 is the
aircraft’s zero-lift angle of attack; ηe is the airfoil efficiency, generally taken as 0.95; χ1/2 is
the swept-back angle of the 1/2 chord; and η is the root-to-tip ratio.

From the above formulas (1–6), it can be seen that the velocity of an aircraft in flight is
the main factor affecting the initial circulation and the parameters of a wake vortex. In this
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paper, we choose A320, B738, A333 and B789 as the front aircraft, and Table 1, below, lists
the specific parameters of each aircraft.

Table 1. Parameters of aircraft.

Aircraft
Type

Wing
Span (m)

Final Approach
Velocity

(m/s)

Maximum
Landing Weight

(kg)

Wing
Area (m2)

Wake Vortex
Classification

A320 34.10 71.94 64,500 122.6 C
B738 34.31 71.94 65,310 125.0 C
A333 60.30 71.94 242,000 361.6 B
B789 60.10 71.94 193,000 325.0 B

1.2. Wake-Vortex Dissipation Model

Wake-vortex dissipation is generally divided into two stages: the near-vortex dissi-
pation stage and far-vortex dissipation stage. The near-vortex dissipation stage is slow,
and generally dissipates about 10% of the initial circulation. Meanwhile, the far-vortex
dissipation stage is a fast dissipation stage, in which the wake vortex dissipates rapidly. In
addition, the near-vortex dissipation time is related to the turbulent-dissipation rate, initial
characteristic velocity, and characteristic time.

b0 = π
4 B

r0 = 0.052B
v0 = Γ0

2πb0

t0 = b0
v0

(7)

where b0 is the distance between both vortex centers, r0 is the initial vortex core radius,
v0 is the characteristic velocity, and t0 is the characteristic time.

Here, the turbulent-dissipation rate ε can be calculated by the following equation

ε = C3/4
mu k3/2

l
Re =

ρVL
µ

I = 0.16Re
−1/8

l = 0.07L/Cmu
3/4

k = 3(IV)2

2

where Cmu is the turbulence parameter, taken as 0.09; k is the turbulent kinetic energy; l is
the turbulence length scale; Re is the Reynolds number; and I is the turbulence intensity. In
addition, L is the characteristic length, which is a ratio of wing area to wingspan.

The duration of the near-vortex dissipation stage, t*, can be calculated according to
the equation proposed by Sarpkaya, given as follows [18]:

t∗ = (0.7475/ε∗)0.75 (ε∗ ≥ 0.2535)

ε∗ = (t∗/t0)
0.25e−

0.7t∗
t0 (0.0121 ≤ ε∗ ≥ 0.2535)

t∗ = t0(9.18 − 180ε∗) (0.001 ≤ ε∗ ≤ 0.0121)
t∗ = 9t0 (ε

∗ ≤ 0.001)

(8)

ε∗ =
(εb0)

1/3

v0
(9)

where ε is the turbulent dissipation rate, ε* is the vortex dissipation rate, and t* is the near
vortex dissipation time.



Aerospace 2022, 9, 633 4 of 14

Accordingly, the formula for far-vortex dissipation is as follows:

Γt

Γ0
= e−(

ct0
t∗ )

v0t
b0 (10)

As can be seen from the above equation, the flight velocity of an aircraft is an important
factor affecting wake-vortex dissipation.

1.3. Wake-Vortex Velocity Model

The Hallock–Burnham model is often used in wake-related studies due to its high
consistency with the measured data of wake [19]. Similarly, the Hallock–Burnham model is
chosen in this paper to calculate the induced wake velocities of different aircrafts.

The corresponding formula for the far-vortex dissipation is as follows:

v(r) =
Γ

2π

r
r2 + r02 (11)

where Г is the wake-vortex circulation, r is the distance to the vortex center, and r0 is the
initial vortex core radius.

Figure 1, below, shows the induced wake velocities of different aircrafts at 174.95 kts.
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Figure 1. Induced velocities of different aircrafts at 174.95 kts. (a) Single vortex. (b) Twin vortex.

1.4. Following-Aircraft Response Model

This paper chooses a CRJ-900 as the following aircraft to research the lift change and
generated roll moment when the aircraft encounters a wake vortex, and calculates the roll
moment coefficient as a safety index.

Since the configuration of CRJ-900 is different from the standard aircraft, this paper
divides CRJ-900 into four parts: fuselage (4, 5, 6, 9, 18–22 in Figure 2), wing (10–17 in
Figure 2), engine (7, 8 in Figure 2), and tail wing (1, 2, 3 in Figure 2), with 22 quadrilateral
blocks, based on the actual aerodynamic shape of CRJ-900, for calculating the lift and roll
moment when encountering a wake vortex. The force model of CRJ-900 and the coordinate
axes are shown in Figure 2.

When the follow aircraft enters the wake-vortex area of front aircraft, its lift changes
due to the additional airflow. The amount of lift change in the wing caused by the wake-
vortex field, ∆Lwing, can be expressed by the following equation:

∆Lwing =
1
2

ρv f
2
∫ B

2

− B
2

∆Clc(y)dy (12)

where ρ is the current air density, vf is the flight velocity of follow aircraft, c(y) is the wing
chord length at the current position, and ∆Cl is the coefficient describing the amount of
change in the lift.
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The fuselage of am CRJ-900 aircraft can be regarded as a slender cylinder with a small
angle of attack, and, according to the linearization theory of a slender spinning body, its lift
variation ∆Lbody can be expressed by the equation given as follows [20]:

∆Lbody =
1
2

ρv f
2sb(2∆a) cos(∆a) +

1
2

ρv f
2sb(2∆a) sin(∆a) (13)

where Sb is the projected area of the fuselage and ∆a is the amount of change in the angle
of attack.
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Figure 2. Force model of CRJ-900 and coordinate axis.

The arrangement of the vortex surface of the engine and tail wing of the CRJ-900
aircraft can be regarded as a plate, and, according to the vortex plate numerical method,
the lift variation in engine and tail wing ∆Lep can be expressed as follows [21]:

∆Lep = ρv f

n

∑
j=1

VjSj (14)

where Vj is the induced velocity of the wake vortex of the front aircraft transferred to the
engine or tank of the following aircraft, and Sj is the engine or tail-wing infiltration area.

The formula for calculating the rolling moment Z generated at the wing profile is
as follows:

Z =
1
2

ρv f Cla

∫ B
2

− B
2

v(r)c(y)ydy (15)

Then, the rolling moment coefficient (RMC), utilized as the measure of wake encounter
safety, can be expressed by the following equation [7]:

σRMC =
Z

1
2 ρv f

2S f B f
(16)

where σRMC is the rolling moment coefficient, Sf is the wing area of the follow aircraft, and
Bf is the wing span of the follow aircraft.

In addition, the maximum rolling moment Zmax can be obtained according to the limit
value of the rolling moment coefficient of the aircraft as:

Zmax =
1
2

ρv f
2S f B f σRMCmax (17)

where σRMCmax is the maximum rolling moment coefficient that a follow aircraft can withstand.
Figure 3, below, shows the rolling moment of an CRJ-900 encountering wake-vortex

under time separation of 100 s at different velocities, when the front aircraft is an A320.
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2. Result
2.1. Wake-Vortex Generation and Dissipation at Different Velocities

The flight velocity of the front aircraft is an important factor affecting the initial
circulation of the wake vortex. The initial circulations produced by different front aircrafts
at different velocities are shown in Table 2. Fundamentally, the initial circulation increases
linearly with the increase in flight velocity. Moreover, the heavier the aircraft, the larger the
wing span and the wing area, and the greater the rate of change in the initial circulation.
The initial circulation of the A320 is least affected by the flight velocity, while that of the
A333 is most affected.

Table 2. Initial circulation of each aircraft at different velocities.

Aircraft
Type

Initial Circulation at Different Flight Velocities (m2/s)

155.51
kts

157.45
kts

159.40
kts

161.34
kts

163.28
kts

165.23
kts

167.17
kts

169.11
kts

171.06
kts

173.00
kts

174.95
kts

A320 167.93 170.12 172.31 174.50 176.69 178.89 181.10 183.31 185.51 187.72 189.94
B738 169.98 172.20 174.41 176.63 178.85 181.10 183.31 185.54 187.77 190.01 192.26
A333 282.58 286.26 289.94 293.63 297.33 301.03 304.73 308.45 312.17 315.89 319.63
B789 258.37 261.74 265.11 268.48 271.86 275.25 278.64 282.04 285.44 288.85 292.27

Furthermore, the flight velocity also significantly affects the dissipation of a wake
vortex. The turbulent-dissipation rate, vortex-dissipation rate, and duration of the near-
vortex stage of different types of front aircraft at different velocities are shown in Tables 3–5,
respectively. Evidently, the turbulent-dissipation rate tends to increase linearly as the flight
velocity increases, where the lighter the aircraft, the greater the rate of change. Meanwhile,
the vortex-dissipation rate decreases linearly with increasing flight velocity. In addition,
the lighter the aircraft, the smaller the wingspan and wing area, and the greater the vortex
dissipation rate. Accordingly, the vortex-dissipation rates of heavy aircrafts are greater than
those of medium aircrafts. Lastly, the duration of a near-vortex stage decreases linearly
with increasing flight velocity; the heavier the aircraft, the larger the wing span and wing
area, and the greater the rate of change.
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Table 3. Turbulent dissipation rate of each aircraft at different velocities.

Aircraft
Type

Turbulent Dissipation Rate at Different Flight Velocities (m2/s3)

155.51
kts

157.45
kts

159.40
kts

161.34
kts

163.28
kts

165.23
kts

167.17
kts

169.11
kts

171.06
kts

173.00
kts

174.95
kts

A320 0.768 0.793 0.819 0.846 0.873 0.900 0.928 0.957 0.986 1.016 1.046
B738 0.754 0.779 0.804 0.830 0.857 0.884 0.912 0.940 0.968 0.997 1.027
A333 0.380 0.393 0.405 0.419 0.432 0.446 0.459 0.474 0.488 0.503 0.518
B789 0.438 0.453 0.467 0.482 0.498 0.513 0.530 0.546 0.563 0.574 0.597

Table 4. Vortex dissipation rate of each aircraft at different velocities.

Aircraft
Type

Vortex Dissipation Rate at Different Flight Velocities (m1/3/s2/3)

155.51
kts

157.45
kts

159.40
kts

161.34
kts

163.28
kts

165.23
kts

167.17
kts

169.11
kts

171.06
kts

173.00
kts

174.95
kts

A320 2.745 2.740 2.734 2.728 2.723 2.717 2.712 2.707 2.701 2.696 2.691
B738 2.718 2.712 2.707 2.701 2.696 2.690 2.685 2.680 2.674 2.670 2.664
A333 2.759 2.754 2.748 2.743 2.737 2.731 2.726 2.721 2.715 2.710 2.704
B789 3.150 3.144 3.128 3.121 3.125 3.118 3.112 3.106 3.100 3.094 3.087

Table 5. Duration of near-vortex phase for each aircraft at different velocities.

Aircraft
Type

Duration of Near Vortex Stage at Different Flight Velocities (s)

155.51
kts

157.45
kts

159.40
kts

161.34
kts

163.28
kts

165.23
kts

167.17
kts

169.11
kts

171.06
kts

173.00
kts

174.95
kts

A320 10.12 10.00 9.89 9.78 9.67 9.57 9.47 9.37 9.27 9.17 9.08
B738 10.19 10.08 9.97 9.86 9.75 9.64 9.54 9.44 9.34 9.24 9.15
A333 18.73 18.51 18.31 18.10 17.91 17.71 17.52 17.34 17.16 16.98 16.81
B789 18.42 18.21 18.01 17.81 17.61 17.42 17.24 17.06 16.88 16.70 16.53

Considering the generation and dissipation characteristics of a wake vortex for the
above aircraft, the evolution of wake vortices of these different aircrafts at different flight
velocities was predicted, and the results are shown in Figure 4.

Evident from the figure, the wake-vortex evolution characteristics for all types of
aircraft show a similar trend, where the higher the aircraft flight velocity, the larger the
initial circulation and the longer the duration of the near-vortex stage. In the far-vortex
stage, there exists a circulation value at which the dissipation times of wake vortices
generated by the same aircraft at different flight velocities tend to be the same, which
is called “dividing circulation” in this paper. In particular, the dividing circulation for
the medium aircraft is about 75 m2/s, and the required dissipation time is about 25 s.
Meanwhile, the dividing circulations of B789 and A333 are about 115 m2/s and 127 m2/s,
respectively, and the required dissipation times are around 45 s. The change in flight
velocity affects both the initial circulation and wake-vortex dissipation. Before reaching the
dividing circulation, the larger the initial flight velocity, the larger the initial circulation,
and the slower the dissipation of a wake vortex where more time is required to dissipate to
a fixed circulation value. However, after reaching the dividing circulation, the larger the
initial flight velocity, the larger the initial circulation, the faster the dissipation of a wake
vortex, and the less the time is required to dissipate to a fixed circulation value.
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2.2. Wake-Vortex Encounter at Different Velocities

The flight velocity of the following aircraft affects the impact when it encounters a
wake vortex and the wake separation. In this work, by researching the ADS-B data of
different aircrafts at Chengdu Shuangliu International Airport, we found that the flight
velocity of all aircrafts in the terminal area is usually in the range of 70–90 m/s. In this
paper, the rolling-moment coefficients of CRJ-900 under different flight velocities were
calculated based on the dividing circulation, and the results are shown in Table 6.

Table 6. The rolling-moment coefficients of CRJ-900 at different velocities.

Dividing
Circulation

Rolling Moment Coefficients at Different Flight Velocities

136.07
kts

139.96
kts

143.84
kts

147.73
kts

151.62
kts

155.51
kts

159.40
kts

163.28
kts

167.17
kts

171.06
kts

174.95
kts

75 0.112 0.109 0.106 0.103 0.101 0.098 0.096 0.094 0.091 0.089 0.087
115 0.173 0.168 0.163 0.159 0.155 0.151 0.147 0.144 0.141 0.137 0.134
125 0.188 0.182 0.177 0.173 0.168 0.164 0.160 0.156 0.153 0.149 0.146

The limit values of rolling-moment coefficients for medium aircrafts exemplified by
the ICAO and RECAT-EU are 0.065 and 0.048, respectively [22], and the control authority of
the roll-moment coefficient for aircrafts using ailerons is 0.05 to 0.07 [17]. It can be seen that
the roll-moment coefficient that a CRJ-900 aircraft can withstand during its encounter with
dividing circulation is much larger than the above-defined safety index; thus, the critical
circulation that a CRJ-900 can withstand is much smaller than the dividing circulation.
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London Heathrow Airport has been implementing time-based separation (TBS) in
recent years, and research shows that TBS can lead to dynamic wake separation. According
to the TBS issued by ICAO, the time separation when a CRJ-900 (F class) follows an A320
or B738 (C class) is 100 s, and the time separation when an A333 or B789 (B class) follows
is 120 s. As shown in Figure 3, above, as the distance from the vortex center increases,
the rolling moment of the CRJ-900 first decreases, then increases, and, finally, decreases
again. In this research, the maximum rolling moment and the RMC of the following
aircraft encountering a wake vortex under TBS is calculated, and the results are shown in
Table 7, below.

Table 7. Maximum rolling moment of CRJ-900 encountering wake vortex under TBS.

CRJ-900

Maximum Rolling Moment of CRJ-900 Encountering Wake Vortex under TBS (KN·m)

A320 B738 A333 B789

174.95
kts

155.51
kts

136.07
kts

174.95
kts

155.51
kts

136.07
kts

174.95
kts

155.51
kts

136.07
kts

174.95
kts

155.51
kts

136.07
kts

174.95 kts −5.66 −8.28 −12.08 −5.79 −8.50 −12.33 −54.44 −66.99 −81.21 −41.61 −56.34 71.66
RMC 0.0012 0.0017 0.0025 0.0013 0.0018 0.0026 0.0113 0.0139 0.0168 0.0086 0.0116 0.0148

As show in Table 7, the rolling moment of a CRJ-900 when following a B-class aircraft
is greater than when following a C-class aircraft under TBS. The smaller the flight velocity
of the front aircraft and the higher the flight velocity of the following aircraft, the greater
the rolling moment and RMC. The impact of encountering a wake vortex when CRJ-900
maintains a certain flight separation from the front aircraft according to TBS is far less than
the affordability of the CRJ-900 itself. TBS standard has some potential for reduction.

By using the minimum roll-moment coefficient of 0.048 as the critical value in the above
safety index, the minimum required flight separation can be calculated. This paper analyzes
several velocity variations in front and following aircrafts that may occur during takeoff and
approach, and classifies them into eight categories: (1) during approach, the front aircraft
decelerates while the following aircraft’s velocity remains unchanged; (2) during takeoff,
the front aircraft accelerates while the following aircraft’s velocity remains unchanged;
(3) during approach, the front and following aircraft decelerate with the same acceleration;
(4) during takeoff, the front and following aircraft accelerate with the same acceleration;
(5) during approach, the front and following aircraft decelerate, and the front one has a
higher acceleration; (6) during takeoff, the front and following aircraft accelerate and the
front one has a higher acceleration; (7) during approach, the front and following aircraft
decelerate and the following one has a higher acceleration; (8) during takeoff, the front
and following aircraft accelerate and the following one has a higher acceleration. Based on
the above eight cases, the reduction in required separation between front and following
aircrafts at different velocities relative to the ICAO standard were calculated, re-spectively,
and the results are provided in Figure 5.

As shown in Figure 5, the heavier the front aircraft is, the smaller the reduction in the
required separation, and the greater is the effect of velocity change on the minimum sepa-
ration. During approach, when the front aircraft decelerates and the following aircraft’s
velocity remains unchanged, the separation reduction is small. Similarly, the separation
reduction also decreases when the front and following aircraft both decelerate, and the front
one has a higher acceleration. In contrast, if the following one has a higher accelera-tion,
the separation reduction increases. In this phase, the following aircraft can obtain the
maximum separation reduction by decelerating with a large acceleration.

Compared to the approach phase, the separation reduction during takeoff is larger;
where the reduction is greatest when the front aircraft’s acceleration is higher than that of
the rear aircraft. In addition, when the front aircraft accelerates and the following aircraft’s
velocity remains unchanged, the separation reduction increases.
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When both front and following aircraft accelerate, if the front one has a higher accel-
eration, the separation reduction increases, whereas if the following one has a higher
ac-celeration, the separation reduction decreases. In this phase, the front aircraft can obtain
the maximum separation reduction by decelerating with a large acceleration.
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Figure 5. Reduction in required flight separation with respect to ICAO standard at different aircraft
velocities. (The legend is “velocity of leading aircraft/velocity of following aircraft”). (a) Case 1,
deceleration is −2 m/s2. (b) Case 2, acceleration is 2 m/s2. (c) Case 3, deceleration is −2 m/s2.
(d) Case 4, acceleration is 2 m/s2. (e) Case 5, front deceleration is −2 m/s2, following deceleration is
−1 m/s2. (f) Case 6, front acceleration is 2 m/s2, following acceleration is 1 m/s2. (g) Case 7, front
deceleration is −1 m/s2, following deceleration is −2 m/s2. (h) Case 8, front acceleration is 1 m/s2,
following acceleration is 2 m/s2.

2.3. Dynamic Wake-Separation Reduction Simulation

Essentially, the above-mentioned calculation results create the conditions for the
realization of dynamic wake-separation reduction. Based on the variation in the flight
velocity of various aircrafts in the ADS-B data of Chengdu Shuangliu International Airport,
a set of velocity profiles of the CRJ-900 following medium and heavy aircrafts is constructed,
before the front aircraft flies over the threshold (which is 600 s). Here, the following aircraft
can adjust the separation by changing the flight velocity, as elaborated in Figure 6.
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The circumstances of separation change when a CRJ-900 follows a medium and heavy
aircraft throughout the threshold segment are shown in Figures 7 and 8. The horizontal
axis represents the distance from the front aircraft to the runway threshold, and the vertical
axis represents the separation between the front and the following aircraft. The minimum
separation at each position is expanded by 10% to further ensure safety, as shown by
the dotted line in the figures. The legends show the flight velocities of the following
aircraft after acceleration. For the whole segment, the final flight separation is the value
corresponding to the vertical coordinate of each curve in the figure when the horizontal
coordinate is 0. If the velocities of the front and following aircrafts remain constant, in
order to maintain the minimum safety separation specified by ICAO, CRJ-900 following a
medium or heavy aircraft needs to maintain a separation 1NM larger than the minimum
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separation specified by ICAO (3 NM for CRJ-medium, 5 NM for CRJ-heavy) at the start
of approach.
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Figure 8. Dynamic separation change when CRJ-900 follows a heavy aircraft.

However, the dynamic separation-reduction technology demonstrates that the follow-
ing aircraft can reduce the separation by accelerating to a greater flight velocity. As shown
in Figures 7 and 8, accelerating to different flight velocities can yield different amounts of
separation reduction. When the front aircraft is a medium aircraft, the following aircraft ac-
celerating to 185.83 kts can obtain the maximum separation reduction. As the velocity after
acceleration increases, the separation reduction increases. If the velocity after acceleration
is greater than 185.83 kts, the following aircraft needs to decelerate in advance to ensure
that it is not lower than the calculated minimum safe separation. When the front aircraft is
a heavy aircraft, the following aircraft accelerating to 207.99 kts can obtain the maximum
separation reduction. As the velocity after acceleration increases, the separation reduction
increases. If the velocity after acceleration is greater than 207.99 kts, the following aircraft
needs to decelerate in advance to ensure flight safety.

Compared with the existing static separation standard, the separation reduction
obtained by dynamic separation reduction technology is up to 1.33 NM for a a medium
front aircraft (44.3% reduction), and up to 2.58 NM for heavy front aircraft (51.6% reduction).

3. Conclusions

In this paper, based on the velocity changes during the aircraft flight, the generation
and dissipation of wake vortices and the safety separation between front and following
aircrafts at different velocities were researched, and, then, a complete dynamic wake
separation reduction method is proposed. The research results show that the change in
flight velocity has an impact on the flight safety separation. Likewise, with the information
on flight velocity, the corresponding minimum safety separation can be calculated, and,
consequently, the separation between the front and following aircrafts can be dynamically
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reduced by adjusting the velocity of the following aircraft, so as to further improve the
efficiency while ensuring the safety.

The dynamic wake-separation reduction method proposed in this paper achieves
good results with the CRJ-900 as the following aircraft, and this method can be adapted
to any conventional aircraft type by adjusting the relevant aerodynamic model, when the
following aircraft encounters a wake vortex. However, this analysis was carried out in an
ideal environment without considering conditions such as crosswind, ground effect, etc.
Therefore, it is difficult to analyze more complex aerodynamic interactions between a wake
vortex and aircraft.
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