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Abstract: The contribution of this paper is the proposal of a new receding horizon trajectory genera-
tion method for stratospheric airships’ return phase. Since the energy consumption, wind field and
path constraints are restrictions during the return phase of airships at low altitude, it is crucial to
develop novel trajectory optimization methods to ensure that the airship returns to the landing site. In
this article, optimization objects and conditions of the return trajectory were constructed, considering
the energy consumption and wind field. Then, a modified interior point method (MIP) was used
to transform the inequality constraint, which is a simple and adaptable method used to improve
the solving efficiency on the basis of a modified multiple shooting method (MMS). In addition, an
adaptive gradient descent regulator was improved to reduce the influence on the optimization result
due to different selections of the initial search point, and the convergence was made faster and more
stable. Finally, considering the performance and path constraints of the airship, the effectiveness of
the scheme was verified by numerical experiments under wind effects and a comparison of different
methods.

Keywords: stratospheric airships return phase; trajectory generation; optimal numerical solution;
path constraints; environmental constraints

1. Introduction

Stratospheric airships can extend the duration of the flight time (over a month) at
near-space altitude (18–22 km) based on buoyancy and propulsion systems. Based on the
advantages of a long endurance, large carrying capacity and wide work coverage, airships
as a stratospheric real-time monitor or space transmission platform have attracted wide
attention [1–6], having important applications in the fields of earth observation, emergency
rescue and civil communication, etc. [7–11].

Stratospheric airships rely on the lift generated by lighter-than-air gases such as helium
to maintain being stationary in the air, and altitude changes can be realized through ballonet
valves opening and closing. The near-space region is approximately a quasi-zero wind
area, having a small wind force. However the wind is very strong at low altitude. Thus,
the applicable propulsion system is required to be different in the two regions. Based on
this, the wind field, prescribed flight range, low-altitude propulsion system and forbidden
region become constraints for the process of airships landing. A main challenge in the
airship landing process is the planning and optimization of the airship’s descent trajectory.

The airship descent process is mainly divided into two steps: early-stage descent and
low-altitude return, respectively, shown in Figure 1. The first step is to release the lighter-
than-air gas in ballonets, reducing the buoyancy of the airship, and to drop rapidly through
the troposphere. The second step is to abandon the ballast, decreasing the descent speed of
the airship at an altitude of 3 km. Then, the low-altitude propulsion system is activated to
bypass the forbidden region and reach the landing site within the designated flight range.
In this process, the goal of trajectory optimization is the low-altitude propulsion system
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energy consumption and flight time, and the limiting factors are path constraints and the
wind field. However, very little research has been conducted in this area so far [12–15].

Stratospheric 
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Releasing the 
lighter-than-air gas 

in ballonets

Early stage descent: stratosphere to 3km altitude

Low altitude return: 3km altitude to landing site

Landing Site

Reducing the 
buoyancy of the 

airship

Dropping rapidly 
through the 
troposphere

Abandoning the 
ballast

Decreasing the 
descent speed 

Activating the low-
altitude propulsion 

system

Figure 1. Flow chart of the airship descent process.

Zhang and Li [16] studied an energy optimization problem based on the position
potential method to improve the duration time of airships, and conducted a case study to
validate this strategy. A three-dimensional optimal trajectory design was addressed for
a stratospheric airship platform, considering a real jet stream and flight constraints [17].
However, path constraints such as forbidden zones were not addressed. Zhu and Li [18]
aimed to improve the solar energy system of a near-space airship by optimizing the airship
yaw angle. The recovery trajectory optimization of the stratospheric airship was discussed
to find the economical recovery flight trajectory to the station-keeping site [19]. Lanteigne
and Blouin [20] transformed the optimal trajectory problem into an optimal control problem
and solved it using a pseudo-spectral method, providing a reference for the numerical
optimization of trajectory. Although these methods [21–25] can also obtain airships flight
trajectories, there seem to be some limitations.

• As described above, the influence of the wind field is mainly considered in the strato-
sphere, and trajectory generation in the low-altitude region is not covered.

• In previous studies, the limiting factor is mainly considered as the wind field, while
the path constraint is not mentioned.

• The airship is an aircraft with large inertia, and its state cannot be changed rapidly.
The trajectory generated by many studies is not smooth; for example, the speed
and attitude change rapidly in a short time, which will challenge the propeller and
structure of the airship.

This paper takes the low-altitude return phase as the research background, expresses
the limiting factors, and proposes a modified simple-structure and efficient numerical
optimization method. The main contribution of this paper can be summarized as follows.

• The vertical wind shear model and constant wind model at different altitudes were
established according to the wind field data results. The landing site, wind field,
forbidden region and flight range were transformed into a terminal constraint, penalty
function and path constraint, respectively.

• The trajectory generation of a stratospheric airship was solved by converting the
boundary value problem into parameter optimization according to the modified
multiple shooting method, and transforming the inequality constraint into a penalty
function by using the modified interior point method.

• An adaptive gradient descent regulator was used to reduce the influence on the
optimization result due to different selections of the initial search point, and the
convergence was made faster and more stable.

The section structure of this paper is as follows. The dynamic model and kinematic
model of stratosphere airships are established in Section 2. The wind field model is also
denoted. Then, numerical solution methods are proposed in Section 3. In Section 4, two
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numerical optimization results are carried out, which are the influence of wind effects on
trajectory generation and the comparison between different methods.

2. Dynamic Model and Problem Formulation

The six-degrees-of-freedom (6-DOF) dynamics and kinematics equations of a strato-
spheric airship are introduced in this section [26]. The reference frames of an airship,
including the earth reference frame (ERF), the body reference frame (BRF) and the path
parallel frame (PPF), are defined in Figure 2, based on Zhou’s work [27]. P, Ω denote the
relative position and the attitude of airships, respectively, and V, W v, w are the velocity
and the angular velocity in the body reference frame of airships, respectively.

Figure 2. Reference frames of a stratospheric airship.

Define

ζ =

[
P
Ω

]
, η =

[
V
W

]
(1)


P
Ω

V
W


T

=

xg φ u p
yg θ v q
zg ψ w r

 (2)

2.1. Kinematics and Dynamics Equations of the Stratospheric Airship

Consider the kinematics of airships in the following form:

Ṗ = RB
I V (3)

Ω̇ = ΦW (4)

where RB
I , Φ are the direction cosine transformation matrix and the angular transformation

matrix from BRF to ERF, respectively. The velocity and the angular velocity can be converted
from BRF to ERF. Both of them can be considered in the following Equations (5) and (6).
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RB
I =

 cos ψ cos θ cos ψ sin θ sin φ− sin ψ cos φ cos ψ sin θ cos φ + sin ψ sin φ
sin ψ cos θ sin ψ sin θ sin φ + cos ψ cos φ sin ψ sin θ cos φ− cos ψ sin φ
− sin θ cos θ sin φ cos θ cos φ

 (5)

Φ =

 1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ sec θ cos φ sec θ

 (6)

The dynamic model can be denoted as

M ·
[

V
W

]
= FGB + FI + FA + FT (7)

where M represents the inertia matrix, denoted by Equation (8), where m is the total mass
of the airship, mii, i = 1 . . . 6 represents the additional mass, Ix, Iy, Iz, Ixy, Ixz and Iyz stand
for the inertia and [xG, yG, zG] represents the center of airship gravity.

M =



m + m11 0 0 0 mzG −myG
0 m + m22 0 −mzG 0 m26 + mxG
0 0 m + m33 myG m35 −mxG 0
0 −mzG myG Ix + m44 −Ixy −Ixz

mzG 0 m53 −mxG −Ixy Iy + m55 −Iyz
−myG m62 + mxG 0 −Ixz −Iyz Iz + m66

 (8)

where FGB is the resultant force of gravity and buoyancy, FA, FI and FT are the aerodynamic
force, inertial force, Coriolis force and the propeller force, respectively. The detailed
expressions of these matrics mentioned above are given in [28].

Remark 1. From the system input as the propeller force FT, it is clear that the stratospheric airship
is under-actuated and lateral motion cannot be controlled directly .

Assumption 1. It is known from [29] that the rolling angle φ of the airship is uncontrollable,
which is set to zero in three-dimensional trajectory optimization.

2.2. Wind Field Models

Based on Azinheira’s work [30] and Sarma’s work [31], it is known that the horizontal
wind movement is considered to be the steady wind with the disturbance of gust, which
can affect the accuracy of the trajectory during the airship return phase. The amplitude of
the wind varying with altitude is called the vertical wind shear, affecting the flight safety.

The wind profile generated by HWM14 [32] was used in the position of 85◦ E, 42◦ N,
which is the outdoor experiment site. Horizontal wind velocities in different seasons are
shown in Figure 3. The horizontal wind in summer and autumn is obviously weaker than
that in winter and spring, which is also the reason why it is better to select the outdoor
experiment in the summer. At an altitude of approximately 19.5 km, there will be an
area with nearly zero wind velocity, which is called the quasi-zero wind layer, and is the
frequently selected stationary point.
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Figure 3. (left) North wind velocity. (right) East wind velocity.

The summer wind field was selected as the numerical experiment environment as
shown in Figure 4. Equation (9) denotes the fitting relationship between wind velocity and
altitude.

0

10,000

20,000

30,000

−10 0 10 20

Wind Velocity (m/s)

H
e
ig

h
t 
(m

)

East Wind

North Wind

Figure 4. North and east component of the wind velocity in summer.

wE(h̄) =
7

∑
i=0

p(8−i)eh̄i,

wN(h̄) =
7

∑
i=0

p(8−i)eh̄i

(9)

where wE and wN are the east wind speed and north wind speed, respectively. In order to
keep the data at the 0 mean value, h̄ = (h− µd)/σd is used as the independent variable
for fitting, and µd = 15,000 m and σd = 8660.4 m. pie and pin (i = 1 ∼ 8) are the fitting
coefficients, respectively, and the values are summarized as follows:

pe = [0.971, 9.714, 35.940, 53.170, 4.215, −56.070, −20.270, 19.610]T,

pn = [0.193, −2.959, −9.812, −4.780, 6.499, 2.615, −1.835, −0.470]T
(10)
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The acceleration of wind is derived in Equation (11).

ẇ = Ṙswi + Rsẇi

= Rsẇi −Ω · Rswi

= Rsẇi −Ω ·w
(11)

where wi is the wind speed in ERF, Rs is the transform matrix from ERF to BRF and Ω is
the angular velocity of the airship in BRF. The force generated by the wind is expressed by
Equation (12).

Fw = MBwẇ + Ω ·MBww (12)

where MBw =

[
mBw 03×3
03×3 JBw

]
=

[
mBI3 + Mv 03×3

03×3 JB + Jv

]
, mB is the mass of the airship

and JB is the moment of buoyancy generated by the airship. Mv and Jv are the added
mass and added moment of the airship, respectively. The effect of vertical wind shear is
represented by Equation (13) with altitude changing.

Fw(h) = MBwRsẇi(h)−MBwΩ ·w(h) + Ω ·MBww(h)

= MBwRsẇi(h)−MBwΩ · R−1
s wi(h) + Ω ·MBwR−1

s wi(h)
(13)

Assumption 2. Based on the steady horizontal wind, the angular and vertical velocity of the wind
are not considered.

3. Optimal Numerical Solution

Under the description of the above models, the receding horizon trajectory optimiza-
tion model was established, and an objective function was designed by using the terminal
cost and process cost to characterize the time and energy consumption of the trajectory.
In the case of that, the path constraint, differential constraint and boundary constraints
are aimed at expressing the forbidden region and the dynamics of the airship, as well
as the environment model and target point, respectively. In this section, the trajectory
optimization problem is transformed into a nonlinear programming problem (NLP) by
using a parametric method to generate a smooth and effective trajectory. A flowchart of
this process is shown in Figure 5.

Stratospheric 

airship

Predict cycle

Airship 

dynamic 

and wind 

model
Action cycle

Forbbiden 

region

Terminal 

condition

Restrictions

Numerical optimization solver

Parametric method(MMS)

Control vector 

parameterization

State vector 

multiple shooting

Transforms to 

parameter 

optimization 

problem

Cubic spline 

approximation

Match 

conditions 

add

NLP solver(MIP)

Constraint 

processing

Unconstrained 

processing

Adaptively 

update 

parameter µ

Second order

correction, 

select search 

direction and 

step size

Judge the 

sufficient 

descent 

condition and 

select the 

maximum stride 

length

Feasibility 

recovery

control 

parameters 

and 

objective 

function

values

Receding horizon optimization

Laning 

target site

Tracking 

controller

Figure 5. Flow chart of receding horizon trajectory generation during the airship return phase.
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3.1. Conversion of Bolza Problem

The airship receding horizon trajectory optimization problem is solved by converting
it to an initial value problem on each optimization period, which has the Bolza form as
Equation (14).

min
ζ(·),η(·)

J =
∫ tf

t0

P(t, ζ(t), η(t), ut; s)dt + R(tf, ζ(tf), η(tf))

s.t.


[
ζ(t0) η(t0)

]T − x̂0 = 0
l
(

t, ζ̇(t), η̇(t), ζ(t), η(t), ut; s
)
= 0, ∀t ∈ [t0, tf]

g(ζ(t), η(t); s) ≤ 0, ∀t ∈ [t0, tf]
h(ζ(tf), η(tf); s) = 0

(14)

where
[
ζ η

]T and x̂0 denote the state variables and the initial state value, respectively,
and s is the combined parameter variable. P and R are the process energy and terminal
time consuming object, respectively. l, g and h represent the Lipschitz continuous function,
path constraint and terminal boundary constraint of the airship, respectively.

uk
i (t) = Di

[
Fk

Ti(t)sinµk
i (t)

Fk
Ti(t)cosµk

i (t)

]
(15)

The action horizon is divided into Ik := [tk−1, tk], (k = 1, 2, . . . , N). uk
i (t), Fk

Ti(t) and
µk

i (t) are each control component, each thrust force and the force vector angles. Di is the
input transformation in Equation (15), approximated as

uk
i (t) ≈

M+1

∑
ord=1

[
γk

i,ord(t)
]ord

λk
i,ord (16)

where
[
γk

i,ord(t)
]ord

, λk
i,ord, ord are the basis function, linear combination coefficient and the

order number of the basis function. Cubic spline approximation is selected as Equation (17).

uk
i (t) = u̇i

k(tk−1)
(tk − t)3

6τ
+ u̇i

k(tk)
(t− tk−1)

3

6τ

+
(tk − t)

τ
(uk

i (tk−1)−
u̇i

k(tk−1)τ
2

6
) +

(t− tk−1)

τ
(uk

i (tk)−
u̇i

k(tk)τ
2

6
),

k = 1, 2, . . . , N

(17)

where τ = tk − tk−1 is the interval time. Thus, the control component is parameterized as
σk

i =
[
u̇i

k(tk−1) u̇i
k(tk) ui

k(tk−1) ui
k(tk)

]T .

Remark 2. Due to the the airship complex dynamic characteristics and non-directivity of the
objective function, it is unrealistic to solve the problem by using the analytic method [33,34],
namely, the method of finding extremum by a functional. Refs. [35–37] used piecewise constants
or polynomials to discretize control variables and was not suitable for the smoothing input on the
optimized object. In this paper, the start and end states of each time interval are substituted into a
cubic spline approximation formula. Robust and gentle trajectories can be generated more quickly
using this method.

The MMS method approximately transforms the boundary value problem (BVP) into
an NLP problem by means of discretization as Equation (18).

ẋk(t) = l[σk, xk(t), t], t ∈ [tk, tk+1],

xk(tk) = χk
(18)
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where x(t) =
[

˙ζ(t) ˙η(t) ζ(t) η(t)
]

is the state variables, and χk = xk(t0), (k =

1, 2, . . . , N) is the initial value of the state vector in each sub-interval. In this way, the airship
receding horizon trajectory optimization problem is transformed into a finite dimensional
NLP problem to determine the control parameters σk and auxiliary parameters χk as
Equation (19).

min
χk,σk

J =
N

∑
k=1

∫ tk

tk−1

P[t, xk(t), σk]dt + R[x(tf)]

s.t.



ẋ(t) = ∑N
k=1 l[t, xk(t), σk]

xk(tk) = χk
xk(tk+1)− χk+1 = 0
g(t, xk(t), σk) ≤ 0
h(t, xk(t), σk) = 0
uL ≤ σk ≤ uU
tk−1 ≤ t ≤ tk, k = 1, 2, . . . , N

(19)

where uU and uL are the upper and lower boundary values of control parameters, respec-
tively.

In order to ensure the continuity of the state curve, the MMS method adds the matching
condition as the equality constraint.

Remark 3. The main direct methods are the orthogonal collocation method (OC) and multiple
shooting method (MS). Because conjugate variables are difficult to express explicitly, it is difficult
to deal with the complex structure and repeatable deployment of airships. The key toward parame-
terization is that the new cubic spline is used to replace the Runge–Kutta segment approximating
method to generate a smooth and efficient trajectory.

3.2. Parameter Nonlinear Optimization

The MIP method was adopted to deal with the large-scale nonlinear optimization
problem transformed by the MMS method. The general form of the optimization problem
is as follows.

min
x∈Rn

J = f (x)

//s.t.
{

gi(x) ≤ 0, i = 1, · · · , n
hj(x) = 0, j = 1, · · · , m

(20)

Inequality constraints are transformed into a penalty object as Equation (21).

J = f (x) +
n

∑
i=1

B−(gi(x)) s.t. hj(x) = 0 (21)

with gi(x) ≤ 0, B−(gi(x)) = 0; gi(x) > 0, B−(gi(x)) = ∞. B−(gi(x)) can be approximately
replaced by a continuous function 1

µ ln(gi(x)).

J = f (x) +
1
µ

n

∑
i=1

ln(gi(x)) s.t. hj(x) = 0 (22)

as µ tends to infinity, 1
µ ln(gi(x)) tends to B−(gi(x)). The corresponding Lagrangian func-

tion is Equation (23).

L(x, u, ν) = f (x) +
n

∑
i=1

uigi(x) +
m

∑
j=1

νjhj(x). (23)



Aerospace 2022, 9, 670 9 of 18

Theorem 1. Let the optimal value of the original problem be Y∗, and the optimal value of the dual
problem be R∗. If Y∗ = R∗, then there exists strong duality between the original problem and dual
problem [38].

According to the strong duality of the primal problem and equivalent problem,

∇L(x, u, ν) = ∇ f (x) +
n

∑
i=1

ui∇gi(x) +
m

∑
j=1

νj∇hj(x)

= ∇ f (x) +
n

∑
i=1

1
µgi(x)

∇gi(x) +
m

∑
j=1

ςj

µ
∇hj(x) = 0.

(24)

Theorem 2. If f (x), gi(x), hj(x) are differentiable, let x∗ be the optimal solution to the original
optimization problem, and (u∗i , ν∗j ) be the optimal solution of the dual problem. The strong duality
is satisfied. Then, ∇ f (x∗) + ∑n

i=1 u∗i∇gi(x∗) + ∑m
i=1 ν∗j ∇hj(x∗) = 0, where

gi(x∗) ≤ 0, i = 1, · · · , n

hj(x∗) = 0, j = 1, · · · , m

u∗i ≥ 0, i = 1, · · · , n

u∗i gi(x∗) = 0, i = 1, · · · , n.

(25)

The optimal solution of the original optimization problem is p∗; then,

p∗ ≤ L(x∗(t), u∗(t), ν∗(t))

= f (x∗(t)) +
n

∑
i=1

u∗i (t)gi(x∗(t)) +
m

∑
j=1

ν∗j (t)hj(x∗(t))

= f (x∗(t)) +
n

∑
i=1

(
1

µgi(x∗(t))
gi(x∗(t))

)
+

m

∑
j=1

ν∗j (t)hj(x∗(t))

= f (x∗(t))− n
µ

.

(26)

The new µ parameter is obtained from

µi+1 = min
{

n
εtol

, max
{

κµµi, µ
θµ

i

}}
(27)

Thus, when µ→ ∞, f (x∗(t))→ p∗ is the optimal solution of the original problem.
The MIP method transforms the inequality constraint problem into an unconstrained

optimization problem. Finally, the descending direction of the iteration point is obtained
by the Newton iteration method, etc.

Remark 4. The basic idea of the MIP method is to construct an interior penalty function so that the
iteration point is always able to move in the feasible region constituted by various constraints [39,40].
However, it is a key point to choose the appropriate interior point as the initial point in the feasible
region. In this paper, the iteration value of the barrier parameters µ can be adaptive-obtained.
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4. Optimal Flight Trajectory Result

In this section, the summer wind field is considered as the environmental factor,
because the horizontal wind speed in summer is relatively lower. The main parameters of
airships [41] are able to be seen in Table 1. There are two numerical optimization solution
analyses, which are, respectively, the analysis of the influence of the wind field on the
optimization and the comparison of results between different methods.

Table 1. Airship model parameters.

Airship Parameters Value

Length, m 25.0
Maximum diameter, m 7.576

Fineness ratio of the hull 3.3
Volume of the hull, m3 750.0

Surface area, m2 480.388
Location of maximum diameter, m 9.840

Moment center, m2 12.001
Reference area, m2 82.544

Reference length, m 25.0
Volume Reynolds number 1.8–9.3 ×106

Receding horizon optimization was used to divide the whole planning horizon into
several moments at equal intervals, and the information of the future period and real-time
detection was used to carry out online planning. Cost function optimization was carried
out within each prediction cycle, and optimization results were input within the input cycle.
Relevant parameters of the optimal numerical experiment are listed in the Table 2.

Table 2. Receding horizon parameters.

Receding Horizon Parameters Value

Sampling interval, s 0.5
Predict cycle 600

Input interval, s 0.2
Action cycle 500

4.1. Optimization Effect under Wind Field

After ballonet valves are opened and the lighter-than-air gas is released, the low-
altitude return starts to be executed. The flight path is set to return to the predetermined
landing site from the stationary position, and the airship cannot pass through the forbidden
regions with areas 15.90 km2, 7.07 km2 and 12.57 km2 during the flight (cylindrical areas
shown in Figure 6) . In the process of trajectory optimization, the upper limit of the linear
velocity of the airship |u| is specified as 15 m/s and the upper limit of the descent speed
|w| is specified as 3 m/s. The initial position is (0.48,0.6,3) km and the terminal position is
(22,22,0) km.
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Figure 6. Three-dimensional schematic diagram of optimized trajectory.

Two cases were compared to reflect the influence of wind on the optimized trajectory.
In the first case, wind effects were considered. In the second case, wind effects were not
added. The three-dimensional optimization schematic comparison of two cases is expressed
as Figures 6 and 7.

Initial Position

Forbidden Region

Forbidden Region

Forbidden Region

Landing Position

E

N

Figure 7. Top view of optimized trajectory.
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The position and attitude changes during the airship’s return phase in the two cases
are shown in Figure 8. Because the east wind direction is y axis forward, the north wind
direction is x axis negative. Therefore, at position y, due to the influence of wind, the
speed will be increased to reach the target landing site in advance, whereas, at position
x, the speed will be reduced to delay the arrival of the target landing site. If there is no
wind, the optimized trajectory is through the first and second forbidden region to reach the
landing site to reduce mileage. However, with wind effects, such a trajectory is not feasible
for airship dynamics. Thus, the airship will initially start at a yaw angle ψ of 62 deg to
gradually reduce the yaw angle ψ to circumnavigate the forbidden region and eventually
arrive at the landing site.
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Figure 8. Position, attitude and change rate of the airship.

The comparison of horizontal velocity and the yaw angle velocity |r| during the
airship’s return phase is shown in Figure 9 and 10. The capacity of the airship angular
velocity is of great significance for airship structural stability and stable operation, and
represents the attitude change rate. The upper limit of the yaw angle velocity of the airship
|ψ| is specified as 0.05 deg/s. With wind effects, the yaw angle velocity r will decrease and
then increase reversely. When t = 2500 s, r will decrease again. Without the influence of the
wind field, r will decrease the entire time until t = 3000 s, and r will increase in reverse.
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Figure 9. Horizontal speed and yaw angle velocity of the airship.
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Figure 10. Control forces and torques of the airship.

The comparison of energy and propulsion system power is shown in Figure 11. As
can be seen from the variation in kinetic energy and potential energy during the airship’s
return phase, wind will increase the amplitude of the kinetic energy change, but the power
accumulation of the propulsion system does not increase significantly because the airship is
in a downwind state. In general, wind will affect the attitude change and planning strategy
of airships, and the optimized trajectory needs to avoid the drastic fluctuation in attitude
to ensure the flight safety of the airship.
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Figure 11. Energy and power changes during the airship’s return phase.

4.2. Comparison Between Results of Different Methods

The stratospheric airship is a large inertia aircraft with a complex structure, so its state
cannot be changed quickly. Therefore, it is very important to select a numerical solution
method that can deal with a complex dynamics system and generate an efficient and
smooth trajectory. The trajectory optimization of complex systems was firstly transformed
into an NLP problem by a parameterized method, in which, the direct methods of the MS
method and OC method were mainly used.

The OC method does not need numerical integration and has a high solving efficiency.
A small number of collocation points can achieve a high conversion efficiency. It is an
extremely effective method with sequential quadratic programming (SQP) for aircraft
trajectory optimization. However, its conjugate variable cannot be approximated explicitly,
and a poor estimation of it has a great impact on mesh refinement and the sensitivity of
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optimization performance indexes. In Figures 12 and 13, a comparison of optimization
results of the MMS method with the MIP method, the MS method with the interior-point
method (IP) and the OC method with the SQP method is shown.

Start Position

Landing Position

Forbidden Region

Forbidden Region

Forbidden Region

N
E

20km
Release Lighter-than-air Gas

Figure 12. Three-dimensional schematic diagram of different methods.
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Forbidden Region

Landing Position
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N

Figure 13. Top view of optimized trajectories between different methods.

Under the same receding horizon parameters, airship parameters, terminal conditions
and path conditions, certain differences between the optimized trajectories appear. In the t
= 2000 s, the yaw angle ψ under the OC method changed greatly, which brought a great
challenge to the steering moment actuator of the airship. The reason for this is that it is
difficult to estimate the conjugate variables reasonably.

The improvements to the modified method can be seen more clearly in Figures 14 and 15.
The modified method generates the best trajectory and reduces the mileage at the location.
The speed of the airship can also be controlled to be smaller, with a reduction of 2 m/s for
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u and v. In addition, the yaw angle velocity r decreases by 0.02 deg/s. Figure 16 shows the
variation curves of the airship’s energy and propulsion system power for different methods.
The smoothness and stability of the energy change of the MMS+MIP method can be seen
from the changing trend of potential energy and kinetic energy. The power integral of the
airship’s propulsion system represents the main energy consumption during the return
phase, and large power variations are unacceptable for the airship’s propulsion system.
The power integration area of the MMS+MIP method is also significantly smaller than that
of other methods. The advantages and disadvantages of the MS method and OC method
are shown in Table 3.

Table 3. Advantages and disadvantages of MS method and OC method.

Method Advantage Disadvantage

MS method The structure is simple and easy to implement, and the
result is smooth and stable

The convergence domain is narrow and the time grid is
evenly divided

OC method High solving efficiency and high conversion efficiency
Conjugate variable cannot be approximated explicitly;

high sensitivity of mesh refinement and
optimization index
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Figure 14. Position, attitude and change rate of the airship between different methods.
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Figure 16. Energy and power changes between different methods.

In general, by modifying the connection link of the MS method and improving the
convergence speed of the interior point adaptively, this method is beneficial to the smooth
trajectory generation of an airship with large inertia.

5. Conclusions

This paper is concerned with the receding horizon trajectory optimization method of
a stratospheric airship in a low-altitude return phase. The limit range of state variables
and control variables was set according to the wind field, path constraints and energy
consumption. The boundary value problem was transformed into a multi initial value
problem using the MMS method, and inequality constraints were transformed into penalty
functions using the MIP method. Essentially, the idea is to ensure that the airship is
able to reach a prescribed geometric terminal target state with minimum dynamic model
inputs smoothly. In addition, an adaptive gradient descent regulator was used to make the
optimization solution fast and robust.

In the future, the energy acquisition of solar energy will be added as an optimization
condition, and a trajectory tracker will be designed for the generated trajectory. The real-
time sensing model of the wind field is also expected to make the trajectory generation
more accurate.
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