
Citation: Yang, Y.; Huang, T.; Wang,

X.; Wen, C.-Y.; Huang, X. High-Speed

Three-Dimensional Aerial Vehicle

Evasion Based on a Multi-Stage

Dueling Deep Q-Network. Aerospace

2022, 9, 673. https://doi.org/

10.3390/aerospace9110673

Academic Editor: Domenico Accardo

Received: 23 September 2022

Accepted: 28 October 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

High-Speed Three-Dimensional Aerial Vehicle Evasion Based
on a Multi-Stage Dueling Deep Q-Network
Yefeng Yang 1,2,*,† , Tao Huang 1,2,† , Xinxin Wang 1,†, Chih-Yung Wen 2,† and Xianlin Huang 1,†

1 Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Harbin 150001, China
2 Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University,

Hong Kong, China
* Correspondence: yefeng.yang@connect.polyu.hk
† These authors contributed equally to this work.

Abstract: This paper proposes a multi-stage dueling deep Q-network (MS-DDQN) algorithm to
address the high-speed aerial vehicle evasion problem. High-speed aerial vehicle pursuit and evasion
are an ongoing game attracting significant research attention in the field of autonomous aerial
vehicle decision making. However, traditional maneuvering methods are usually not applicable in
high-speed scenarios. Independent of the aerial vehicle model, the implemented MS-DDQN-based
method searches for an approximate optimal maneuvering policy by iteratively interacting with
the environment. Furthermore, the multi-stage learning mechanism was introduced to improve the
training data quality. Simulation experiments were conducted to compare the proposed method with
several typical evasion maneuvering policies and to reveal the effectiveness and robustness of the
proposed MS-DDQN algorithm.

Keywords: aerial vehicle evasion; deep reinforcement learning; dueling deep Q-network; multi-stage
training

1. Introduction

The pursuit–evasion game is a challenging problem involving non-cooperative con-
frontation, which is currently an active research topic in aerial vehicle guidance, navigation,
and control. In a pursuit–evasion problem, non-partners aerial vehicles have conflicts of
interest while the trackers in the game are committed to adjusting their strategy to address
a smaller miss. On the contrary, an evasion problem aims to find an optimal strategy for
the tracked aerial vehicle to maximize the miss between the two. Most traditional aerial
vehicle evasion strategies adopt typical evasion strategies to avoid the attack of the pursuit
aerial vehicle [1], including sinusoidal [2], step [3], square [4], and spiral [5] maneuvers.
Conventional maneuvering policies have proven effective at aircraft evasion when pursuers
motorize with a low velocity and weak maneuverability [6]. Nevertheless, it is challenging
to achieve a successful evasion when pursuers have strong maneuverability.

Differential game theory is particularly effective for solving problems with conflicting
interests. Considering the one-pursuer one-evader (P1N1) scenario, transforming it into a
two-player zero-sum game problem [6], the differential game attains the optimal evasion
strategy for the evading aerial vehicle through iteratively solving the Hamilton function
based on the confrontation model. Several optimal evasion strategies have been designed
to employ differential game theory. In [7], the authors investigated the evasion differential
game problem of an infinite-evader infinite-pursuer in the Hilbert Space l2 and provided
conditions for a successful escape. Liang et al. [8] discussed the game problem between an
attacker and the target with an active defense function and utilized differential game theory
to produce the evader’s winning regions. A sufficient condition of an M-pursuer N-evader
differential game problem was given by Ibragimov et al. [9]. Rilwan et al. [10] improved
the dynamic function of the differential game problem and solved the evasion problem of

Aerospace 2022, 9, 673. https://doi.org/10.3390/aerospace9110673 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace9110673
https://doi.org/10.3390/aerospace9110673
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://orcid.org/0000-0002-6396-3010
https://orcid.org/0000-0002-0857-0716
https://orcid.org/0000-0002-1181-8786
https://doi.org/10.3390/aerospace9110673
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace9110673?type=check_update&version=1

Aerospace 2022, 9, 673 2 of 17

the one-pursuer-one-evader in the Hilbert space. Based on nonlinear control and game
theories, [11] proposed a state-dependent Riccati equation method in a two-player zero-sum
differential game scenario. Asadi et al. [12] developed an analytical closed-form solution
to deal with the vehicle-target assignment in a pursuit–evasion problem. Nevertheless, a
differential game-based evading strategy has not been implemented in realistic scenarios
due to low stability, model dependence, weak robustness, and poor adaptability.

With the fast development of computing science and deep learning (DL) theory, artifi-
cial intelligence (AI) technology has drawn increasing attention. As an essential branch
of AI, deep reinforcement learning (DRL) pushes the field of AI to a higher level of au-
tonomous systems understanding. Combining DL and reinforcement learning (RL), DRL
establishes a direct connection between the perception and decision making of autonomous
systems employing deep neural networks (DNNs). Unlike supervised learning, DRL itera-
tively learns the optimal policy by interacting with the environment instead of developing a
regression model utilizing predefined labeled data [13]. The application of DRL technology
is growing exponentially since the Alpha Go agent trained by Google DeepMind won
the Go competition in 2016 [14]. DRL has several unique characteristics. First, DRL can
generate an optimal policy for agents without recognizing the accurate mathematical model
of both the environment and the agents. In particular, DRL shows significant performance
when dealing with high model uncertainty and parameter fluctuation scenarios. Second,
DRL shows adaptability in different environments since it actively interacts with the envi-
ronment when generating a policy and affords a small exploration probability to guarantee
sufficient environmental exploration even when the current policy is good enough.

Research on introducing DRL technology into pursuit–evasion problems has increased
dramatically during the last five years. Sun et al. [15] introduced an adaptive dynamic
programming (ADP) framework as an equation solver for differential games that success-
fully approximates the guidance law’s optimal solution. Gaudet et al. [16] developed an
RL-based method for the interception problem that only depends on the measurement of
line-of-sight angles and angular rates. Zhu et al. [17] proposed an aerial vehicle evasion
strategy based on DQN, while Li et al. [18] introduced a deep deterministic policy gradient
(DDPG) framework that considers small vehicle evasion strategies. Shalumov et al. [19]
presented an optimal launch time and a guidance law via DRL in a target–missile–defender
scenario. The work of Souza et al. [20] proposed a DRL method for decentralized multi-
agent pursuit problems. In [21], Tipaldi et al. provided a detailed literature review of
RL-based methods for aircraft pursuit and evasion.

Nevertheless, only a few methods for solving aircraft pursuit–evasion problems have
been specifically designed for aircraft evasion, leading to aircraft evasion technology not
meeting the current practical application requirements. Therefore, this paper proposes
a multi-stage dueling DQN (MS-DDQN) algorithm to address the evasion problem of a
vehicle equipped with ignition pulse engines. Furthermore, the integration of multi-stage
learning technology significantly speeds up the training process. The simulation results
indicate that the evasion strategy generated by the proposed MS-DDQN can maximize the
miss and escape from the pursuer successfully.

The main contributions of this paper are the following:

• An MS-DDQN algorithm is proposed to improve the typical DQN algorithm to
accelerate the convergence process and modify the quality of training data;

• An adaptive iterative learning framework is implemented for high-speed aerial vehicle
evasion problems;

• Adequate comparative simulation experiments are implemented to verify the effec-
tiveness and robustness of the proposed MS-DDQN algorithm.

The remainder of this paper is organized as follows: Section 2 presents the fundamental
and problem formation. Section 3 introduces the MS-DDQN model and proposes the
learning process to obtain the optimal evasion strategy. Section 4 presents the simulation
experiments, and finally, Section 5 concludes this work.

Aerospace 2022, 9, 673 3 of 17

2. Fundamental and Problem Formulation
2.1. Aerial Vehicle Pursuit–Evasion Model

This section proposes the pursuit–evasion model of two vehicles to provide an interac-
tive simulation environment for the problem.

It is a one-pursuer one-evader scenario where two agents are moving toward one
another, whose projection distance in the X-axis of the velocity–turn–climb coordinate
system is r0 = 150 km. The pursuer uses a proportional navigation guidance (PNG) law to
attack the evader with a maneuver period of TP = 15 ms and the maximum acceleration
is amaxP = 4.5 g, where g = 9.8 m/s2. The evader has four typical ignition pulse engines
with a maneuver period of TE = 50 ms to avoid the pursuer’s attack with a maximum
acceleration of amaxE = 7.5 g. The orientation of the acceleration generated by the engines is
perpendicular to the direction of the body. To make our testing scenario more challenging,
we chose a larger velocity. The pursuer’s velocity was VP = 1.875 km/s, and the evader’s
velocity was VE = 4.5 km/s. In this scenario, the evader is the agent that needs to be
trained, while the pursuer is part of the simulation environment for the DRL problem
described in this scenario. The agent learns the optimal evasion strategy by interacting
with the pursuer to maximize the minimal miss, thoroughly discussed in Section 3.

The inertial reference frame, velocity–turn–climb coordinate frame, and line-of-sight
(LOS) coordinate frame are denoted as OXYZ(S0), O2X2Y2Z2(S2), and O4X4Y4Z4(S4),
respectively. For simplicity, the pursuer is denoted as P and the evader as E. Let θi |i=P,E
be the flight path angle and ψvi |i=P,E the heading angle. qε and qβ are the horizontal and
vertical LOS angles, and the horizontal and vertical LOS rotational rates are represented
by q̇ε and q̇β, respectively. As presented in Equations (1) and (2), C2−0 and C4−0 are the
transformation matrices from S2 to S0 and from S4 to S0, respectively.

C2−0 =

 cos θi cos ψvi − sin θi sin ψvi sin ψvi
sin θi cos θi 0

− cos θi sin ψvi sin θi sin ψvi cos ψvi

∣∣∣∣∣∣
i=P,E

, (1)

C4−0 =

 cos qε cos qβ − sin qε sin qβ sin qβ

sin qε cos qε 0
− cos qε sin qβ sin qε sin qβ cos qβ

. (2)

Figure 1 Left illustrates the conversion relationship between S0 and S2, where θ is
the flight path angle and ψv is the heading angle. Figure 1 Right depicts the relationship
between S0 and S4 defined by the LOS angles qε and qβ.

()2O O X

Y

Z

v

2Y 2X

2Z

V

X

Y

Z

()4O O
q

q

V

4X
4Y

4Z

Figure 1. Conversion relationship between S0, S2, and S4 (Left: S0 and S2. Right: S0 and S4). V is
the velocity vector of the aircraft, θ is the flight path angle, ψv is the heading angle, and qε and qβ are
the LOS angles.

Aerospace 2022, 9, 673 4 of 17

Let Xi =
[
xi yi zi

]
|i=P,E be the agent’s location in S0 and let V2i =

[
Vi 0 0

]
|i=P,E

be the vehicle’s velocity in S2. Then, we have:

V0i = C2−0V2i =
[
v0xi v0yi v0zi

]
|i=P,E, (3)

where V0i, i = P, E is the vehicle’s velocity in S0. The location’s derivative can be de-
picted as:

ẋi = Vi cos θi cos ψvi |i=P,E

ẏi = Vi cos θi |i=P,E

żi = −Vi cos θi sin ψvi |i=P,E

. (4)

Let a4i =
[
0 aiy aiz

]
|i=P,E be the aerial vehicle’s acceleration in S4; then, we have:

a0i = C4−0a4i |i=P,E, (5)

where a0i |i=P,E is the vehicle’s acceleration in S0. V̇0i is also reformulated as:
v̇0xi = Vi cos qε cos qβ |i=P,E

v̇0yi = Vi cos qε |i=P,E

v̇0zi = −Vi cos qε sin qβ |i=P,E

. (6)

Equations (7)–(10) are the formulas of qε, qβ, q̇ε, and q̇β in S4, respectively.

qε = arctan
ry√

r2
x + r2

z
, (7)

qβ = − arctan
rz

rx
, (8)

q̇ε =

(
r2

x + r2
z
)
ṙy − ry(rx ṙx + rz ṙz)(

r2
x + r2

y + r2
z

)√
r2

x + r2
z

, (9)

q̇β =
rz ṙx − rx ṙz

r2
x + r2

z
, (10)

where rx = xE − xP, ry = yE − yP, rz = zE − zP, ṙx = ẋE − ẋP, ṙy = ẏE − ẏP, and
ṙz = żE − żP.

According to the basic principle of PNG, the pursuer’s acceleration of a4P in S4 is
given by:

a4P =
[
0 N4yvq̇ε N4zvq̇β

]
r =

√
r2

x + r2
y + r2

z

vs. =
rx ṙx + ry ṙy + rz ṙz

r

, (11)

where N4y = 4 and N4z = 5 are the PNG’s navigation ratios. Then, the aerial vehicle
pursuit-evasion model can be defined by combining Equations (3)–(11)

Aerospace 2022, 9, 673 5 of 17

Xi =
[
xi yi zi

]
|i=P,E

ẋi = Vi cos θi cos ψvi |i=P,E

ẏi = Vi cos θi |i=P,E

żi = −Vi cos θi sin ψvi |i=P,E

V0i =
[
v0xi v0yi v0zi

]
|i=P,E

a0i = C4−0a4i |i=P,E

a4P =
[
0 N4yvq̇ε N4zvq̇β

]
a4E =

[
0 a4Ey a4Ez

]

, (12)

where a4ey and a4ez are the evader’s accelerations in S4.

2.2. Value-Based Reinforcement Learning

An RL problem can be uniquely defined by a Markov decision process (MDP) [22]
tuple 〈S , P,R, γ,A〉, where S is the state space of the agent, P is the state transition
probability matrix, R is the reward function, γ is the discount factor of the cumulative
reward, and A is the action space. MDP is the fundamental framework of RL, where each
episode starts with the initial condition and ends with the termination condition. When
the agent takes action, it gets an immediate reward Rt and transfers to another state st+1.
An RL problem intends to search for an optimal policy for a given MDP to maximize
the cumulative reward Gt, introduced in Equation (13), and the optimal policy π∗ is a
distribution of an action space A for a fixed state s, introduced in Equation (14).

Gt =
T

∑
k=0

γkrt+k+1 = rt+1 + γGt+1, (13)

π∗(a|s) = P[At = a|St = s]. (14)

In this aerial vehicle evasion problem, the state is the line-of-sight angles (qε and qβ)
and the distance (r) of the two aerial vehicles, while the action is the operational status of
the four pulse engines on or off. The designs of γ andR are implemented in Section 3.3,
and the termination conditions of this problem are as follows:

• The evader is successfully intercepted by the pursuer, which is called failure evasion;
• The evader escapes from the attack of the pursuer successfully, which is called a

successful evasion.

The RL algorithms comprise value-based [23], policy-based [24], and actor-critic [25]. For
a value-based discrete time MDP (DT-MDP), to maximize the cumulative reward Gt, the
agent chooses an action according to the state-value function (Q-Function; Equation (15))
to iteratively update the policy until π converges to the optimal solution π∗.

Qπ(s, a) = Eπ [Gt|St = st, At = a]

= Eπ

[
T

∑
k=0

γkrt+k+1|St = st, At = a

]
.

(15)

More specifically, a neural network is chosen as a value function approximator of
Equation (15). In the optimal scenario, the agent chooses a greedy policy according to π∗:

π∗(s) = arg max
a∈A

Qπ∗(s, a, ω), (16)

where ω is the parameter of the neural network.

Aerospace 2022, 9, 673 6 of 17

3. MS-DDQN Algorithm Design

This section introduces the basic structure of the dueling DQN framework, proposes
the MS-DDQN algorithm, and provides details on the learning process.

3.1. Dueling DQN Framework

The MS-DDQN framework is a multi-stage value-based DRL method, which improves
the traditional DQN. The DQN establishes a direct connection between perception and the
decision-making level of an autonomous system [26], as illustrated in Figure 2, where the
replay memory collects data generated from the interaction between the agent (Evaluation
Net) and the environment.

'a

Environment
(), , , 's a r s

Evaluation Net Target Net

(),s a

Replay buffer

's

(), ;Q s a ()
'

', ';max
a

Q s a −

Update

r

() ()max , ; , ;TD
a

r Q s a Q s a

 = + −

Loss Function

Figure 2. Schematic diagram of DQN.

The sign of the convergence of the algorithm TD error converges to 0, and the
TD error is calculated in the loss function module employing the formula ∆TD = r +
max
a′∈A

Q(s′, a′; θ)−Q(s, a; θ). The θ parameters in the evaluation net are updated by the loss

function utilizing a suitable gradient descent algorithm. Moreover, the θ− parameters in
the target net are copied from θ every C step, where C is a constant. The learning process
ends when ∆TD → 0.

However, DQN overfits the neural network approximator, overestimating the state’s
value function. To overcome this drawback, Wang et al. [27] proposed a dueling network
architecture that weakens the Q-network’s overestimation. Specifically, the dueling Q-
network defines an advantage function to decouple the state-value function and the state-
action-value function, as shown in Equation (17):

Q(S ,A, ω, α, β) = V(S , ω, α) + A(S ,A, ω, β), (17)

where ω, α, and β are the parameters that need to be optimized. Specifically, α is the
parameter of the value function V(S , ω, α), β is the parameter of the advantage function
A(S ,A, ω, β), and ω is the parameter that two functions have in common. Equation (17)

Aerospace 2022, 9, 673 7 of 17

is often written in the form of Equation (18) to reflect the identifiability of simulated
physical experiments.

Q(S ,A, ω, α, β) = V(S , ω, α)

+

[
A(S ,A, ω, β)− 1

A ∑
a′∈A

A
(
S , a′, ω, β

)]
.

(18)

Figure 3 illustrates the difference between DQN and dueling DQN. Both networks
involve m hidden layers and the same input–output dimension. The last hidden layer in
the bottom figure of Figure 3 is divided into two parts: V(S , ω, α) and A(S ,A, ω, β), while
the dueling DQN output is the sum of V(·) and A(·).

Input Output

1l ml1ml −

Input Output

1l ml1ml −

Input Output

1l ml

1ml −

Input Output

1l ml

1ml −

DQN Dueling-DQN

Figure 3. Difference between the networks in DQN (left) and dueling DQN (right).

Figure 4 illustrates the complete learning process. In Figure 4, ODE is the model
state-solving module for state update, CF is the coordinate transformation module, and
PG is the proportional guide law module that generates the acceleration command for the
pursuer. The “policy learning” module in Figure 4 is the RL learning process shown in
Figure 2. The “RL maneuver” is the training result of “policy learning”, which is used
to generate acceleration commands for the evader. The entire framework is a recurrent
process and terminates when the evader can get rid of the pursuer’s attack.

CFODE

PG

replay memory

(), , , 's a r s(), , , 's a r s

sampling batch

data set

policy learning

RL

maneuver

CFODE

Ea

Pa

E E Ep v

P P Pp v

Eq.7

Eq.11

~

pursuer

evader

r q q

r q q

environment

Figure 4. Complete learning framework.

Aerospace 2022, 9, 673 8 of 17

3.2. Multi-Stage Learning

DRL methods iteratively learn the optimal policy through interacting with the envi-
ronment. Nonetheless, it is almost impossible for an agent to collect adequate high-quality
sampling data with an initial stochastic policy when the state space is vast. Therefore,
a multi-stage learning scheme is proposed to speed up the agent’s learning process by
inserting several sub-mission nodes during the entire learning process to guide the agent
step-by-step in reasonably learning the optimal policy. This idea is inspired by humans’
solutions to complex problems, as we typically decompose a considerable problem into
several smaller ones that are serially connected. The solution of a sub-task is the initial
condition of the next one.

The entire task is divided into two sub-tasks for the evasion problem examined in this
paper. In the first training phase, the agent learns an applicable policy πtemp with a certain
stochastic exploration probability. πtemp is a relatively ideal initial condition for second-
stage training, although not the optimal policy with a high probability. The objective of
second-stage training is to find an optimal policy π? that maximizes the miss based on
πtemp by using the adequate high-quality data generated by the initial acceptable policy
in the first stage of learning. Algorithm 1 presents the pseudo-code of this multi-stage
training framework.

Algorithm 1 A multi-stage training framework with N sub-missions.

Input: N, Reward function for each phase fi, i = 1, 2, · · · , N, an initial policy π0.
1: Output: The optimal policy π?

2: Environment initialization: i = 0, empty the replay memory.
3: while i < N do
4: Initialize the neural network.
5: Fill the replay memory with sampling data generated by policy πi, εi. (εi is a certain

initial exploration probability for the ith phase.)
6: while πi is not converged do
7: Network training in Dueling-DQN framework with reward function fi.
8: Update πi and replay memory.
9: Save πi, i+ = 1.

10: return π?

3.3. Complete Learning Framework

The MS-DDQN method has four key elements: State space, action space, reward
functions for each training phase, and the neural network structure. The choice of state
space predominantly affects the quality of the final policy. In the vehicle evasion scenario,
the distance, and LOS angles (qε and qβ) are the three crucial factors, and Equation (19)
denotes the agent’s state:

s =
[
r, qε, qβ

]
, (19)

where r is the distance between the two vehicles and qε and qβ are the LOS angles. The
evader in this scenario maneuvers with four ignition pulse engines, hence the evader has
nine maneuvering types (Table 1); the action’s dimension is one, with the agent selecting
one of the nine actions according to the policy each time.

Table 1. Action space of the evader.

Action Acceleration Action Acceleration Action Acceleration

0
[
0 0 0

]
3

[
0 0 +max

]
6

[
0 +max −max

]
1

[
0 +max 0

]
4

[
0 0 −max

]
7

[
0 −max +max

]
2

[
0 −max 0

]
5

[
0 +max +max

]
8

[
0 −max −max

]

Aerospace 2022, 9, 673 9 of 17

The three elements in each action in Table 1 are the evader’s acceleration in X, Y, and Z.
‘+max’ means the acceleration reaches the maximum value, and ‘−max’ is the minimum
value (reverse maximum).

The choice of the reward function is another decisive factor in the training process.
It should be a continuous function of the state, with the reward function of the first and
second training phases given in Equations (20) and (21), respectively.

r1 = k1 max
(
|qε|,

∣∣qβ

∣∣)2

r2 =

{
10000 i f evasion succeeded

0 i f evasion f ailed

r = r1 + r2

k1 =

{
200 tan 0.1047t− 1.5184 i f action = 0, 1, 2, 3, 4

50 tan 0.1047t− 1.5184 i f action = 5, 6, 7, 8

, (20)

r1 = k1 max
(
|qε|,

∣∣qβ

∣∣)2

r2 =

{
1000r2 i f evasion succeeded

0 i f evasion f ailed

r = r1 + r2

k1 =

{
200 tan 0.1047t− 1.5184 i f action = 0, 1, 2, 3, 4

50 tan 0.1047t− 1.5184 i f action = 5, 6, 7, 8
.

(21)

In Equations (20) and (21), the reward function is divided into two parts: The reward
for the approaching process r1 and the reward for the episode termination r2. k1 is the
coefficient of r1, which is originally designed to affect the sensitivity of r1 to the LOS
angles and increases with time. The design of k1 formation guides the agent to consume
the remaining fuel at the end of the escape to increase its line of sight with the pursuer.
The introduction of the tangent function ensures that the reward is more sensitive to the
agent’s action as time increases. The purpose of r1 is to maximize one of the LOS angles,
considering that the Y-direction is symmetrical to the Z-direction and r2 is different in the
two training phases. Therefore, the aim is to find, for the aerial vehicle, an acceptable policy
in the first training phase and to maximize the miss in the second training phase.

Additionally, r1 still exists in the second learning stage to avoid sparse rewards in
RL. A sparse reward problem, i.e., the agent can get a nonzero reward if, and only if, it
completes an episode of exploration, means that the agent does not have adequate data to
modify its action [28]. It is hard for RL algorithms to converge when dealing with sparse
reward problems. Therefore, both r1 and r2 are added to the reward function to ensure the
adequacy of the training data.

The MS-DDQN estimates the policy’s value function through a Q-network. Table 2
presents the neural network structure, where 3V and 3A are the value and advantage parts
of the Q function, respectively, and ReLu() is the activation function of the neural network.

Table 2. Structure of the neural network.

Layer Input Output Activation Function

1 3 20

ReLu()2 20 20
3V 20 9
3A 20 9

Figure 5 illustrates the flow diagram of the training process. First, the flow chart
presents the left channel to start first-phase training. Then, it continues to perform the

Aerospace 2022, 9, 673 10 of 17

second training phase after an acceptable policy is obtained, which is the initial policy of
the second phase. The capacities of the two-training phase are hyper-parameters that need
to be tuned manually. Finally, the algorithm stops when the target network converges.
Furthermore, this paper adopted the network-retraining technique proposed in [29–31] to
strengthen the network training quality.

Scenario Initialization

Q-Network Initialization

Start

1

converged?

Phase1

training

N

Y

Update replay

memory

Phase2

training

End

phase1

phase2

replay memory1

2

replay memory2Y

Figure 5. Flow diagram of the MS-DDQN training process.

The network training consists of procedures, initialization, and training. The data
input into the replay memories during the initialization part are generated by the current
temporary optimal policy with certain exploration probabilities ε1 = 0.2 and ε2 = 0.2. For
the first stage of the training part, the optimal temporary policy is stochastic. In contrast,
the second stage of the training part takes the policy generated by the first stage as the
initial temporary optimal policy. Figure 6 depicts the relationship between the episode and
exploration probability during the training process. The functional relationship between
the exploration probability and episode is designed as an exponential function to make the
agent’s exploration more adequate. The mathematical function of each segment in Figure 6
is presented at the right top of the figure. Episodes 0–1499 belong to the first training of
the first phase, while episodes 1500–2099 are the second training of the first phase, and
episodes 2100–2999 belong to the training in the second phase.

0 500 1000 1500 2000 2500 3000
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n=1200

A. =2.5 10
-6

n
2
-1.75 10

-3
n+0.9

B. =2.5 10
-6

n
2
-3.25 10

-3
n+1.5

C. =2.5 10
-6

n
2
-4.75 10

-3
n+2.55

D. =2.5 10
-6

n
2
-6.25 10

-3
n+4.05

A

B

C

D

n=300

n=600

n=900

n=1800

n=1500

n=2100

=0.15

Figure 6. Relationship between episode n and exploration probability ε.

Table 3 lists the hyper-parameters of MS-DDQN, where γ denotes the discount factor
of RL, ε0 is the initial exploration probability, α is the learning rate of the Q-network, M is

Aerospace 2022, 9, 673 11 of 17

the capacity of the replay memory, and Batch Size is the number of samples extracted each
time during the Q-network learning.

Table 3. Some hyper-parameters of MS-DDQN.

Parameter
Phase Phase1-a Phase1-b Phase2

γ 0.9 0.9 0.9
ε0 0.9 0.9 0.9
α 0.01 0.01 0.01
M 5000 5000 2000

Batch Size 64 64 64

4. Simulation Experiments

This section evaluates the evasion performance employing the strategy generated by
MS-DDQN. For clarity, we rearranged the parameters presented in Section 2.1 into Table 4.

Table 4. Parameters of the simulation scenario.

Parameter Value Parameter Value

r0 150 km g 9.8 m/s2

TP 15 ms TE 50 ms
amaxP 4.5 g amaxE 7.5 g

VP 1.875 km/s VE 4.5 km/s

Here, r0 is the initial relative distance in the LOS coordinate frame (S4) of the two vehi-
cles, Ti |i=P,E is the maneuver cycle of the vehicle, amaxi |i=P,E is the maximum acceleration
of the vehicle in the LOS coordinate frame (S4), and Vi |i=P,E is the velocity of the vehicle in
LOS coordinate frame (S4).

Figure 7 represents the relationship between the cumulative reward and episode in
both multi- and single-phase training. Simultaneously, the curves verify the effectiveness of
the multi-phase training. Figure 7 highlights that the average reward increased significantly
as the episode increased in phase1 training. However, the average reward decreased
slightly in episodes 1500–2100 due to the increase in ε (see Figure 6), which means the
agent explored the environment stochastically with a higher probability. Based on phase1,
the average reward of phase2 was substantially higher than that of phase1, indicating a
successful evasion and the effectiveness of the two-stage training technique implemented
in the training process. Finally, the evader achieved a high-quality policy after 2700
training episodes. However, without multi-phase training, the single-phase training process
maintained a low-level cumulative reward throughout the entire training process.

episode episode

cumulative reward
average cumulative reward
cumulative reward
average cumulative reward

episode

Figure 7. Comparative cumulative rewards of single- and multi-phase training.

Aerospace 2022, 9, 673 12 of 17

Comparative simulation experiments were designed on the miss distances of the
evader using various maneuvers. Figures 8 and 9 illustrate the simulation results when
the evader implemented a random maneuvering policy and a square wave maneuver
policy, respectively.

Figure 8. Evader employing a random maneuver.

Figure 9. Evader employing a square maneuver.

The misses were 0.20 m and 0.26 m, respectively, and the simulation time is 24.057 s.
The results indicate that the evader could not use traditional maneuvers to avoid the
pursuer’s attack. Figures 10–12 present the simulation results when the evader applied a
neural network maneuver strategy generated by MS-DDQN. The scenarios involved nine
relative locations with an initial flight path angle θ and a heading angle of 0◦. We conclude
that the miss is much more significant than the traditional maneuver.

Figure 10. Evader utilizing MS-DDQN maneuvers with the three different initial relative positions
(−20 km,−20 km), (−20 km, 0 km), and (−20 km, 20 km) in the initial inertial coordinate system.

Aerospace 2022, 9, 673 13 of 17

Figure 10 presents the evasion process when the evader implemented the policy gen-
erated by MS-DDQN with the initial relative positions (−20 km,−20 km), (−20 km, 0 km),
and (−20 km, 20 km) in the initial inertial coordinate system. The results indicate that the
slightest miss of the three scenarios was 18.4174 m, satisfying the problem requirement.
Additionally, the figures for time− ay and time− az illustrate that the evader tended to
consume all of the remaining fuel at the end of the interception to increase its line of sight
with the pursuer, which can be found in the figure for time− ay. Allocating all fuel in the
Y-direction, the output of the Z-direction remained zero throughout the process due to the
limited fuel. Figures 11 and 12 indicate the results from the same law as Figure 10.

Figure 11. Evader utilizing MS-DDQN maneuvers with the three different initial relative positions
(0 km,−20 km), (0 km, 0 km), and (20 km, 20 km) in the initial inertial coordinate system.

Figure 12. Evader utilizing MS-DDQN maneuvers with the three different initial relative positions
(20 km,−20 km), (20 km, 0 km), and (20 km, 20 km) in the initial inertial coordinate system.

To further demonstrate the feasibility of the MS-DDQN maneuver, more simulation
experiments with different relative initial positions, flight path angles θ, and heading angles
Ψv are presented. Tables 5–9 present the simulation results with an initial θ of 10◦, 5◦, 0◦,
−5◦, and −10◦, respectively.

Table 5. Miss distance (m) with initial flight path angle θ = 10◦.

Initial Relative
Distance (km)

Heading Angle Ψv(◦)

10 5 0 −5 −10

(20, 20) 19.81 23.25 25.17 25.36 25.45
(20, 0) 23.87 25.41 25.61 25.43 24.21

(20,−20) 25.69 25.53 24.90 23.12 18.80
(0, 20) 24.11 28.97 29.90 30.50 30.69
(0, 0) 30.29 30.71 30.75 30.48 29.71

(0,−20) 30.93 30.49 29.76 28.32 23.92
(−20, 20) 13.71 9.79 13.15 13.79 14.19
(−20, 0) 13.08 13.82 13.82 13.5 12.50

(−20,−20) 14.38 13.71 12.56 9.79 6.67

Aerospace 2022, 9, 673 14 of 17

Table 6. Miss distance (m) with initial flight path angle (θ = 5◦).

Initial Relative
Distance (km)

Heading Angle Ψv(◦)

10 5 0 −5 −10

(20, 20) 20.17 23.30 25.63 26.21 26.13
(20, 0) 24.64 26.02 26.25 25.56 24.02

(20,−20) 25.83 25.98 25.26 23.60 19.21
(0, 20) 28.93 31.25 31.93 32.21 32.42
(0, 0) 32.44 32.56 32.44 32.22 31.72

(0,−20) 32.67 32.22 31.64 30.49 28.12
(−20, 20) 14.14 17.39 16.93 17.36 17.90
(−20, 0) 17.97 17.34 17.18 17.20 16.87

(−20,−20) 17.99 17.21 16.69 15.18 13.66

Table 7. Miss distance (m) with initial flight path angle θ = 0◦.

Initial Relative
Distance (km)

Heading Angle Ψ◦
v

10 5 0 −5 −10

(20, 20) 16.61 22.12 25.19 25.47 25.37
(20, 0) 23.82 25.14 25.63 25.36 23.65

(20,−20) 25.59 25.72 24.68 22.12 17.41
(0, 20) 30.45 32.10 32.80 33.01 33.24
(0, 0) 33.33 33.39 33.23 33.07 32.54

(0,−20) 33.48 33.02 32.53 31.22 29.00
(−20, 20) 16.69 19.12 18.57 19.06 19.64
(−20, 0) 19.22 19.18 18.81 18.83 19.49

(−20,−20) 19.68 18.96 18.42 18.07 18.27

Table 8. Miss distance (m) with initial flight path angle θ = −5◦.

Initial Relative
Distance (km)

Heading Angle Ψ◦
v

10 5 0 −5 −10

(20, 20) 11.14 19.92 23.16 24.21 24.17
(20, 0) 21.31 23.43 23.98 23.69 21.08

(20,−20) 23.91 24.24 22.84 19.07 10.31
(0, 20) 29.11 32.27 32.85 33.12 33.36
(0, 0) 33.25 33.49 33.35 33.15 32.52

(0,−20) 33.55 33.12 32.59 31.56 29.19
(−20, 20) 18.55 19.65 19.73 19.85 20.47
(−20, 0) 20.68 19.68 19.52 19.70 19.96

(−20,−20) 20.45 19.77 19.47 18.48 18.74

Table 9. Miss distance (m) with initial flight path angle θ = −10◦.

Initial Relative
Distance (km)

Heading Angle Ψ◦
v

10 5 0 −5 −10

(20, 20) 8.70 15.98 20.88 22.21 22.31
(20, 0) 20.50 21.60 22.12 21.51 18.47

(20,−20) 22.51 22.22 20.22 15.94 6.58
(0, 20) 26.72 30.83 31.92 32.34 32.54
(0, 0) 32.15 32.53 32.59 32.34 31.37

(0,−20) 32.79 32.32 31.61 29.97 25.76
(−20, 20) 19.89 19.79 19.68 20.15 20.72
(−20, 0) 20.69 20.15 19.81 19.90 20.54

(−20,−20) 20.72 20.10 19.54 19.46 17.85

Aerospace 2022, 9, 673 15 of 17

Tables 5–9 illustrate that the slightest miss of these 225 scenarios was 6.58 m, satisfying
the evasion problem requirement.

The simulation experiments indicate that the evading policy generated by MS-DDQN
can avoid the pursuer’s attack in a large domain. For clarity, we also conducted a generic
simulation experiment by uniformly sampling 10,000 points in a range of 20× 20 km with
initial θ = 5◦ and Ψv = 5◦ (Figure 13).

Figure 13. The curved surface of the miss distance and 10,000 different initial positions.

This figure illustrates a successful evasion of the evader where the missing range is
[26.12 m, 33.34 m].

5. Conclusions

This paper proposed an MS-DDQN algorithm to address the problem of high-speed
aircraft evading. The evader was treated as the agent for DRL, and the optimal policy
was generated through iteratively interacting with the simulation environment by the
MS-DDQN framework. Moreover, the proposed two-stage learning method significantly
improved the data quality and sped up the training process. As a model-free RL algorithm,
MS-DDQN is an adaptive value-based DRL framework that does not require the vehicle’s
mathematical model.

The effectiveness and robustness of this method were verified through various simula-
tion experiments, illustrating a successful evasion in a large domain when utilizing the policy
generated by MS-DDQN. Future research on autonomous decisions for evasion will combine
policy-based DRL methods and multi-vehicle autonomous decision-making systems.

Author Contributions: Conceptualization, Y.Y.; methodology, Y.Y. and T.H.; software, Y.Y.; validation,
Y.Y. and T.H.; formal analysis, Y.Y. and X.W.; investigation, Y.Y. and X.H.; resources, Y.Y. and T.H.;
data curation, Y.Y. and T.H.; writing—original draft preparation, Y.Y.; writing—review and editing,
Y.Y., T.H., X.W. and C.-y.W.; visualization, Y.Y.; supervision, C.-y.W. and X.H.; project administration,
Y.Y. and X.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflict of interest or personal relation-
ships that could have appeared to influence the work reported in this paper.

Aerospace 2022, 9, 673 16 of 17

References
1. Zeng, X.; Yang, L.; Zhu, Y.; Yang, F. Comparison of Two Optimal Guidance Methods for the Long-Distance Orbital Pursuit-Evasion

Game. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 521–539. [CrossRef]
2. Lee, J.; Ryoo, C. Impact Angle Control Law with Sinusoidal Evasive Maneuver for Survivability Enhancement. Int. J. Aeronaut.

Space Sci. 2018, 19, 433–442. [CrossRef]
3. Si, Y.; Song, S. Three-dimensional adaptive finite-time guidance law for intercepting maneuvering targets. Chin. J. Aeronaut. 2017,

30, 1985–2003. [CrossRef]
4. Song, J.; Song, S. Three-dimensional guidance law based on adaptive integral sliding mode control. Chin. J. Aeronaut. 2016, 29,

202–214. [CrossRef]
5. He, L.; Yan, X. Adaptive terminal guidance law for spiral-diving maneuver based on virtual sliding targets. J. Guid. Control

Dynam. 2018, 41, 1591–1601. [CrossRef]
6. Xu, X.; Cai, Y. Design and numerical simulation of a differential game guidance law. In Proceedings of the 2016 IEEE International

Conference on Information and Automation (ICIA), Ningbo, China, 31 July–4 August 2016; pp. 314–318.
7. Alias, I.; Ibragimov, G.; Rakhmanov, A. Evasion differential game of infinitely many evaders from infinitely many pursuers in

Hilbert space. Dyn. Games Appl. 2017, 7, 347–359. [CrossRef]
8. Liang, L.; Deng, F.; Peng, Z.; Li, X.; Zha, W. A differential game for cooperative target defense. Automatica. 2019, 102, 58–71.

[CrossRef]
9. Ibragimov, G.; Ferrara, M.; Kuchkarov, A.; Pansera, B.A. Simple motion evasion differential game of many pursuers and evaders

with integral constraints. Dyn. Games Appl. 2018, 8, 352-378. [CrossRef]
10. Rilwan, J.; Kumam, P.; Badakaya, A.J.; Ahmed, I. A Modified Dynamic Equation of Evasion Differential Game Problem in a

Hilbert space. Thai. J. Math. 2020, 18, 199–211.
11. Jagat, A.; Sinclair, A.J. Nonlinear Control for Spacecraft Pursuit-Evasion Game Using the State-Dependent Riccati Equation

Method. IEEE Trans. on Aerosp. and Electron. Syst. 2017, 53, 3032–3042. [CrossRef]
12. Asadi, M.M.; Gianoli, L.G.; Saussie, D. Optimal Vehicle-Target Assignment: A Swarm of Pursuers to Intercept Maneuvering

Evaders based on Ideal Proportional Navigation. IEEE Trans. Aerosp. Electron. Syst. 2021, 58, 1316–1332. [CrossRef]
13. Waxenegger-Wilfing, G.; Dresia, K.; Deeken, J.; Oschwald, M. A Reinforcement Learning Approach for Transient Control of

Liquid Rocket Engines. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2938–2952. [CrossRef]
14. Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, L.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
15. Sun, J.; Liu, C.; Ye„ Q. Robust differential game guidance laws design for uncertain interceptor-target engagement via adaptive

dynamic programming. Int. J. Control 2016, 90, 990–1004. [CrossRef]
16. Gaudet, B.; Furfaro, R.; Linares, R. Reinforcement learning for angle-only intercept guidance of maneuvering targets. Aerosp. Sci.

Technol. 2020, 99, 105746. [CrossRef]
17. Zhu, J.; Zou, W.; Zhu, Z. Learning Evasion Strategy in Pursuit-Evasion by Deep Q-network. In Proceedings of the 2018 24th

International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 67–72.
18. Li, C.; Deng, B.; Zhang, T. Terminal guidance law of small anti-ship missile based on DDPG. In Proceedings of the International

Conference on Image, Video Processing and Artificial Intelligence, Shanghai, China, 21 August 2020; Volume 11584.
19. Shalumov, V. Cooperative online Guide-Launch-Guide policy in a target-missile-defender engagement using deep reinforcement

learning. Aerosp. Sci. Technol. 2020, 104, 105996. [CrossRef]
20. Souza, C.; Nwebury, R.; Cosgun, A.; Castillo, P.; Vidolov, B.; Kulić, D. Decentralized Multi-Agent Pursuit Using Deep Reinforce-

ment Learning. IEEE Robot. Autom. Let. 2021, 6, 4552–4559. [CrossRef]
21. Tipaldi, M.; Iervoline, R.; Massenio, P.R.; Reinforcement learning in spacecraft control applications: Advances, prospects, and

challenges. Annu. Rev. Control 2022, in press. [CrossRef]
22. Selvi, E.; Buehrer, R.M.; Martone, A.; Sherbondy, K. Reinforcement Learning for Adaptable Bandwidth Tracking Radars. IEEE

Trans. Aerosp. Electron. Syst. 2020, 56, 3904–3921. [CrossRef]
23. Ahmed, A.M.; Ahmad, A.A.; Fortunati, S.; Sezgin, A.; Greco, M.S.; Gini, F. A Reinforcement Learning Based Approach for

Multitarget Detection in Massive MIMO Radar. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2622–2636. [CrossRef]
24. Hu, Q.; Yang, H.; Dong, H.; Zhao, X. Learning-Based 6-DOF Control for Autonomous Proximity Operations Under Motion

Constraints. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 4097–4109. [CrossRef]
25. Elhaki, O.; Shojaei, K. A novel model-free robust saturated reinforcement learning-based controller for quadrotors guaranteeing

prescribed transient and steady state performance. Aerosp. Sci. Technol. 2021, 119, 107128. [CrossRef]
26. Volodymyr, M.; Koray, K.; David, S.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski,

G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533.
27. Wang, Z.; Schaul, T.; Hessel, M.; Hasselt, H.; Lanctot, M.; Freitas, N. Dueling network architectures for deep reinforcement

learning. In Proceedings of the International Conference on Machine Learning, San Francisco, CA, USA, 14 August 2016;
Volume 48; pp. 1995–2003.

28. Wang, C.; Wang, J.; Wang, J.; Zhang, X. Deep-Reinforcement-Learning-Based Autonomous UAV Navigation with Sparse Rewards.
IEEE Internet Things J. 2020, 7, 6180–6190. [CrossRef]

http://doi.org/10.1109/TAES.2020.3024423
http://dx.doi.org/10.1007/s42405-018-0042-2
http://dx.doi.org/10.1016/j.cja.2017.04.009
http://dx.doi.org/10.1016/j.cja.2015.12.012
http://dx.doi.org/10.2514/1.G003424
http://dx.doi.org/10.1007/s13235-016-0196-0
http://dx.doi.org/10.1016/j.automatica.2018.12.034
http://dx.doi.org/10.1007/s13235-017-0226-6
http://dx.doi.org/10.1109/TAES.2017.2725498
http://dx.doi.org/10.1109/TAES.2021.3124849
http://dx.doi.org/10.1109/TAES.2021.3074134
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1080/00207179.2016.1192687
http://dx.doi.org/10.1016/j.ast.2020.105746
http://dx.doi.org/10.1016/j.ast.2020.105996
http://dx.doi.org/10.1109/LRA.2021.3068952
http://dx.doi.org/10.1016/j.arcontrol.2022.07.004
http://dx.doi.org/10.1109/TAES.2020.2987443
http://dx.doi.org/10.1109/TAES.2021.3061809
http://dx.doi.org/10.1109/TAES.2021.3094628
http://dx.doi.org/10.1016/j.ast.2021.107128
http://dx.doi.org/10.1109/JIOT.2020.2973193

Aerospace 2022, 9, 673 17 of 17

29. Huang, T.; Liang, Y.; Ban, X.; Zhang, J.; Huang, X. The Control of Magnetic Levitation System Based on Improved Q-network. In
Proceedings of the Symposium Series on Computational Intelligence, Xiamen, China, 6–9 December 2019; pp. 191–197.

30. Fan, J.; Wang, Z.; Xie, Y.; Yang, Z. A Theoretical Analysis of Deep Q-Learning. In Proceedings of the Learning for Dynamics and
Control, PMLR , Online, 11–12 June 2020; pp. 486–489.

31. Razzaghi, P.; Khatib, E.A.; Bakhtiari, S.; Hurmuzlu, Y. Real time control of tethered satellite systems to de-orbit space debris.
Aerosp. Sci. Technol. 2021, 109, 106379. [CrossRef]

http://dx.doi.org/10.1016/j.ast.2020.106379

	Introduction
	Fundamental and Problem Formulation
	Aerial Vehicle Pursuit–Evasion Model
	Value-Based Reinforcement Learning

	MS-DDQN Algorithm Design
	Dueling DQN Framework
	Multi-Stage Learning
	Complete Learning Framework

	Simulation Experiments
	Conclusions
	References

