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Abstract: Data-driven condition-based maintenance (CBM) and predictive maintenance (PdM) strate-
gies have emerged over recent years and aim at minimizing the aviation maintenance costs and
environmental impact by the diagnosis and prognosis of aircraft systems. As the use of data and
relevant algorithms is essential to AI-based gas turbine diagnostics, there are different technical,
operational, and regulatory challenges that need to be tackled in order for the aeronautical industry
to be able to exploit their full potential. In this work, the machine learning (ML) method of the
generalised additive model (GAM) is used in order to predict the evolution of an aero engine’s ex-
haust gas temperature (EGT). Three different continuous synthetic data sets developed by NASA are
employed, known as New Commercial Modular Aero-Propulsion System Simulation (N-CMAPSS),
with increasing complexity in engine deterioration. The results show that the GAM can be predict the
evolution of the EGT with high accuracy when using several input features that resemble the types
of physical sensors installed in aero gas turbines currently in operation. As the GAM offers good
interpretability, this case study is used to discuss the different data attributes a data set needs to have
in order to build trust and move towards certifiable models in the future.

Keywords: gas turbine; exhaust gas temperature; condition-based maintenance; artificial intelligence;
machine learning; generalised additive model; trustworthiness; certifiability

1. Introduction

Prognostics in aviation maintenance, repair, and overhaul (MRO) operations has been
of high interest in recent years for both the knowledge institutions and the industrial
community, as a total of USD 82 billion has been spent on MRO activities in 2019, of
which approximately 41% corresponds to engine maintenance costs. Within this context,
the accurate assessment of the condition of an aircraft turbofan engine is of paramount
importance [1].

Currently, most maintenance strategies employ preventive maintenance as an in-
dustrial standard, which is based on fixed and predetermined schedules. Preventive
maintenance is a long-time preferred strategy due to increased flight safety and its rela-
tively simple implementation. However, its main drawback stems from the fact that the
actual time of failure and the replacement interval of a component are hard to predict,
resulting in the inevitable suboptimal utilisation of material and labour. This has two
repercussions. First, there is the reduced availability of assets, the reduced capacity of
maintenance facilities, and the increased costs for both the MRO provider and the operator.
Second, there is increased waste from an environmental standpoint, as the suboptimal use
of assets is also associated with the wasted remaining lifetime for aircraft parts which are
replaced when it is not yet necessary [2].

Data-driven condition-based maintenance [3] and predictive maintenance [4] strategies
aim to reduce maintenance costs, maximise availability, and contribute to sustainable
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maintenance operations. Various methods have recently been proposed in the literature
(e.g., [5–7]) for offering tailored programs that can potentially result in optimally planned
just-in-time maintenance, meaning a reduction in material waste and unneeded inspections.
Despite the recent conceptual advancements in data-driven CBM, operational deployment
is still limited. This situation can be mainly attributed to the technical, operational, and
regulatory challenges in capturing and sharing operational data. Furthermore, there is
the fact that the categories and topology of sensors in aircraft components are mainly
developed for hardware control and not for algorithmic exploitation [8].

Most authors agree on five required components to deploy a CBM approach, as
illustrated in Figure 1 [9]:

1 Hardware. Sensors installed or retrofitted in physical assets or systems or components.
2 Data acquisition. Data capturing, recording, and transfer between the monitored asset

and the data storage and data transformation so data can be stored in a useful form.
3 Data storage and management. A platform on the premises or in the cloud to ensure

data storage, availability, and efficient transfer processes.
4 Data analytics. Data preprocessing so algorithms are fed with the right input and

the development of prognostic algorithms and models (e.g., machine learning and
AI) to identify patterns or other useful information (e.g., remaining useful life (RUL)
and deterioration).

5 Decision support. Tools used (e.g., digital twins) to determine actions based on the
provided information.
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In recent years, with the growing generation of large amounts of data in modern
aircraft (e.g., an Airbus A350 generates 50 times more data than the A320), many im-
proved applications have been developed as we pass from snapshot to continuous data
collection [9]. Continuous Engine Operating Data (CEOD) are collected and recorded at
high frequencies in modern aircraft types, a development that can improve the predictive
capabilities for engine operators. With the purpose of improving the availability and oper-
ability of assets, CBM monitors the states of individual engines or engine fleets by making
use of historical operational data or data generated during past events. From an operational
context, the use of an AI-based CBM prognostic model can assist with understanding in
depth the evolution of the deterioration of an engine and anticipating its physical state
before the actual induction in the engine shop. Furthermore, engine manufacturers can use
this information to understand in detail the performance of their global fleet. This way,
they can identify the influence of the different operating environments (e.g., the presence
of sand particles, salty water, and air pollution) in the evolution of an engine’s health and
incorporate their findings into the design of either newer versions of the same engines or
even in future engine generations [10].
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In the context of GT diagnostics, several methods have been introduced so far, from the
traditional model-based (MB) methods (e.g., Kalman filtering (KF) and gas path analysis
(GPA)) to the most advanced artificial intelligence (AI)-based ones (e.g., fuzzy logic (FL), the
Bayesian belief network (BBN), deep learning (DL) and artificial neural networks (ANNs),
and genetic algorithms (GAs)). A recent comprehensive review of GT diagnostic state-of-
the-art methods can be found in [11]. A significant distinction can be made between the
methods belonging to the general machine learning family and the ones that are considered
deep learning, a subset of machine learning. As DL structures algorithms in layers to
create artificial neural networks, the complexity of such methods makes them suitable for
more human-like applications but unfitting for applications where transparency in the
decision process is essential. As a result, safety-critical predictive methods usually exclude
DL-based algorithms to ensure trustworthiness in the process and results. In addition, in
recent years, attention has been also paid to hybrid methods [12]. In this work, the terms
artificial intelligence and machine learning will be used interchangeably, despite the fact
that ML is a subset of AI. Examples of non-ML artificial intelligence (e.g., symbolic logic,
expert systems, and knowledge graphs) are out of the scope for the prediction of the EGT.

The temperature of the exhaust gases of an engine, known as the exhaust gas temper-
ature (EGT), has evolved to become the standard industrial indicator of the health of an
aircraft engine. This is because it can capture the cumulative effect of deterioration in the
isentropic efficiency of gas path components [13]. This paper deals with this central role of
the EGT in engine maintenance actions. Given the significant operational value of the EGT
as an engine health metric, the capability of predicting the EGT is considered an important
step towards improvements in decision support for engine operators. In general, the EGT
should always be kept under predetermined limits to ensure optimal and safe operation of
an engine. With increasing deterioration of the physical condition of an engine, the mean
EGT also increases with time up to a point where these limits can be exceeded. Operational
procedures state that after certain exceedance instances, corrective actions must take place,
with removal from the aircraft and overhaul being the most significant and impactful ones.
However, trust in the measurement of the EGT and predictability in the evolution of the
EGT are two important areas of research. They can anticipate possible corrective actions
while minimising operational disruptions that result in major financial and customer experi-
ence repercussions. Schematically, Figure 2 shows the process that is investigated. Starting
from the engine performance and the thermocouples installed annularly downstream of
the low-pressure turbine (LPT), an indicated EGT is provided. Assuming an accurate EGT
measurement (or prediction, as suggested here), possible exceedances can be identified or
predicted. Based on the appearance of exceedances, the remaining time on-wing can be
identified, and possible corrective actions, such as engine removal, can be decided.

The present study is the first, to the best of the authors’ knowledge, that deals with the
prediction of the EGT using the machine learning method of the generalised additive model.
The research results prove that the EGT measurement can be replaced by a data-driven
model with a highly accurate outcome when using several input features that resemble the
types of physical sensors installed in the aero gas turbines currently in operation. This study
can also be considered a step towards predictability not only in real time but also for the
future evolution of the EGT and other engine parameters, such as in cases of sensor faults,
loss of calibration, or non-identifiable EGT exceedances due to sampling or averaging
errors. Another significant area of interest is the trustworthiness of data-driven models for
safety-critical applications. In CBM and PdM, data play an integral role in the quality of the
results, so different data concepts can influence an engine EGT prediction. More specifically,
the notions of completeness, curation, representativeness, sufficiency, and traceability, as
well as sensor and synthetic data, must always be considered for a complete coverage of
the operational design domain (ODD) while avoiding undesirable or unexpected bias [14].
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2. N-CMAPSS Database and Generalised Additive Model
2.1. N-CMAPSS
2.1.1. Dataset Composition

The N-CMAPSS database, developed with the use of the MATLAB’s Simulink
environment [15] at NASA’s Glenn Research Center, is a public domain tool for the simula-
tion of realistic large commercial turbofan engine data [16]. It consists of eight different
datasets, each one containing run-to-failure flight data for 9–54 different engine units
(Figure 3). The simulated flights include seven operational flight phases that transition
linearly between each other in order to allow the engine to experience a transient phase
towards each subsequent flight condition. Schematically, there is a typical ascent from sea
level to a flight level of 35,000 ft and a descent back to sea level. The simulated faults are
introduced at a given time and remain present throughout the remaining flights, adding to
the pre-existing deterioration of the engine.
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The data use a sampling rate of 1 Hz, which is a typical value for modern aero engine
data recording systems [17]. The data contain 30 engine and flight parameters, not all
of which are used in this present work, as explained in Section 2.1.2. Every flight in the
data set contains 7 unique flight phases for a total flight time of approximately 90 min.
Table 1 provides an overview of the composition of the datasets used, where the present
characteristics are marked. The size of the different datasets is a function of the number of
units monitored and of the total flight time recorded for each one of them.
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Table 1. N-CMAPSS database specifics and deterioration modes.

Name #
Units

Failure
Modes

Fan Low Pressure
Compressor (LPC)

High Pressure
Compressor (HPC)

High Pressure
Turbine (HPT)

Low Pressure
Turbine (LPT)

Size
Efficiency Mass

Flow Efficiency Mass
Flow Efficiency Mass

Flow Efficiency Mass
Flow Efficiency Mass

Flow

DS01 10 1
√

7.6 M
DS02 9 2

√ √ √
6.5 M

DS03 15 1
√ √ √

9.8 M
DS04 10 1

√ √
10.0 M

DS05 10 1
√ √

6.9 M
DS06 10 1

√ √ √ √
6.8 M

DS07 10 1
√ √

7.2 M
DS08a 54 1

√ √ √ √ √ √ √ √ √ √
35.6 M

The data points are available for every second of a complete flight cycle for several
cycles until the end of an engine’s life. This implies that there are significant variations
in the parameters measured during a cycle that are not related to deterioration but to the
respective operating conditions (e.g., throttle resolver angle (TRA), Mach number, and
flight altitude (FA)). In addition, compared with previously published NASA datasets, the
degradation is modelled with greater fidelity; it is no longer considered linear [16]. The
available features are classified into four categories:

• Flight operational parameters;
• Engine performance parameters, similar to physical engines;
• Virtual measurements, which include engine station characteristics that are not nor-

mally available or require special sensors or models to be measured and determined;
• Health parameters.

This study focuses on the engine performance parameters available in this database
and summarised in Table 2. The prediction model will be employed on the N-CMAPSS
sub-datasets DS01, DS03, and DS08a. These three sub-datasets were chosen in order to
explore the accuracy of the model under different deterioration scenarios. The DS01 dataset
is the simplest with a single component deterioration mode (HPT efficiency), the DS03
dataset has three component deterioration modes (HPT efficiency, LPT efficiency, and mass
flow capacity) and DS08a, where the last dataset simulates deterioration in all gas path
components in terms of both efficiency and mass flow capacity, as illustrated in Table 1.

Table 2. N-CMAPSS engine performance parameters.

Symbol Description Units

Wf Fuel Flow pps
Nf Physical fan speed rpm
Nc Physical core speed rpm
T24 Total Temperature at LPC outlet ◦R
T30 Total Temperature at HPC outlet ◦R
T48 Total Temperature at HPT outlet ◦R
T50 Total Temperature at LPT outlet ◦R
P15 Total pressure in bypass duct psia
P20 Total pressure at fan outlet psia
P21 Total pressure at LPC inlet psia
P24 Total pressure at LPC outlet psia
Ps30 Static pressure at HPC outlet psia
P40 Total pressure at combustor outlet psia
P50 Total pressure at LPT outlet psia

2.1.2. Feature Selection

The main objective of this study is to predict the continuous value of the EGT with
the use of the GAM, a machine learning method, using a set of features that represent
as realistically as possible the parameters recorded in physical aero units. As a first step,
a correlation matrix is put together that reveals the correlation between all the different
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available engine performance parameters based on the Pearson correlation method [18].
This coefficient varies between −1 and +1, with +1 indicating a perfect positive relationship
between X and Y and −1 indicating a perfect negative relationship.

Out of the 14 parameters available, a selection of 6 is made for the prediction of
the EGT. These six parameters represent in a realistic way the sensors installed in many
popular aero engines, which are the following: T24, T30, P24, Ps30, Nc, and Wf. Based on
the correlation matrix in Figure 4, we see a high degree of correlation between the above
six parameters and the target parameter of T50, which represents the EGT, as station 50 is
the exit of the last turbine in a turbofan engine.
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2.2. Generalised Additive Model (GAM)
2.2.1. Applications of the GAM and the State of the Art

The main objective of this study is to have a prediction model of the EGT that will allow
us to discuss its trustworthiness. The importance of using explainable artificial intelligence
(XAI) models in predictive maintenance is explained in [19]. Furthermore, in [20], the
GAM was mentioned as a complexity-related machine learning method. Concretely, the
interpretability of a model is often (but not always) related to its complexity. Thus, one
way of having an interpretable model is to develop it to be interpretable by construction,
which is a valid statement for GAM models. The main question that needs to be answered
in relation with the model is the following: How does the model arrive at a specific
prediction? Lou et al. [21] called this intelligibility and stated that the GAM fulfils it,
rendering the method suitable for understanding the influence of every feature in the
final prediction result. Further information about the interpretability of machine learning
models is available in [22] as well as in [23].

To the authors’ knowledge, there are no works using the GAM in predictive mainte-
nance and few in aviation in general. Below are three different aviation-related works using
the GAM. First, the authors of [24] compared a GAM with linear regression in order to
predict aviation weather parameters. In [25], GAMs were explored because of their ability
to provide information on the significance of each individual feature. The data employed
in this study are flight test data, with the objective of having a physical interpretation of an
aerodynamic model. Lastly, a comparative study [26] explored several machine learning
models, including the GAM, in order to identify the normal behaviour of operational
parameters including the power generated and blade path temperature spread.
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2.2.2. Implementation of the GAM in EGT Prediction

The GAM is a machine learning method that employs linear models. Unlike other
linear models, it does not simply sum up the weighted features, but it sums up the arbitrary
functions for each feature. These functions allow nonlinear relationships and are called
splines. This type of model therefore allows a great deal of flexibility and a greater possi-
bility of explanation than other methods. With the GAM (and other similar ML methods)
the influence of each feature on the prediction can be isolated, providing the maintenance
engineers with valuable information so they can support their technical decisions and build
trust in the model. The general GAM expression can be defined as follows:

g(E(Y|X) = s0 + ∑p
j=1 sj(Xj) (1)

where g is a link function, Y is the variable to be predicted, and E(Y|X) is the expected
value of the predictor variables Xj. The sj functions are non-parametric smooth functions in
the sense that they are totally determined by the values of the predictor’s Xj variables. The
problem at hand is a linear GAM employing a predetermined predictor, eventually being
expressed as follows:

E(T50|predictor) = s0 + s1(T24) + s2(T30) + s3(P24) + s4(Ps30) + s5(Nc) + s6(Wf) (2)

The most significant hyperparameters of the GAM are denoted as λi and are associated
with each smooth function si. The λi values are smoothing parameters that control how
much of a penalty one wants to impose on the model. A higher value of λi results in a
smoother curve. A study will be carried out to see the influence of λi on the quality of
the prediction.

The GAM is further explained in [27], which discusses the theoretical foundations of
the model. In addition, [28] also provides a more detailed overview of the implementation
of GAMs and provides more information on the adaptability of the method.

3. Model Development
3.1. Data Preparation

The data used include the features selected in Section 2.1.2 for every engine unit during
their total lifetimes with a sampling rate of 1 Hz. The data were divided into a training set
and a test set at proportions of 70% and 30%, respectively. Standardisation was tested, but
the results were not improved significantly, and thus no standardisation was chosen for the
final model.

3.2. Hyperparameter Selection

This task aims to find the best lambda parameters for each spline associated to a feature
of the predictor. To accomplish this, 100 λi values between 10−3 and 103 were randomly
generated, and then cross-validation was performed to determine which combinations
gave the best model result. As the choice of λi to be tested was made randomly, the test was
carried out several times to see if the results remained the same. A strucured grid search
was rejected, as there was no indicative range of known hyperparameter values expected
to perform well, making the process time-consuming. Instead, random selection was faster
for this parameter space.

The choices for the hyperparameters are summarised in Table 3. The parameter
n_splines represents the number of basis functions used for each smooth function si. It
should be noted that the higher the number of basis functions, the more flexible the model
was, and it was the smooth parameters λi that aimed to regularise this. However, the more
basis functions there were, the more complex the fitting of the model was. It was therefore
necessary to find a balance between the two directions. The present model was developed
in Python with the use of the PyGAM library [29]. In the library used, the number of basis
functions was initially set to 20, but during the study, it was observed that a value of 10
was sufficient.
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Table 3. Hyperparameter values.

Hyperparameter Value

n_splines 10
λi 0.6

Percentage training set 70%
Percentage test set 30%

3.3. Model Summary

This section summarises the method used for data preparation and model training
and evaluation. Figure 5 summarises the data preparation, the features selected, and the
split of the data, while Figure 6 illustrates the unique trained model for each training set,
which means that each unit would have an associated GAM for prediction. Lastly, Figure 7
describes the performance evaluation of each model. More specifically, the trained GAM
was given the values of the test or training predictors, depending on whether the model
was evaluated on the test or training data. The model thus predicted the values of the
EGT, and with these predicted data and the real values, some relevant metrics were used to
assess the performance of the model.
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3.4. Performance Metrics

In order to assess the performance of the model, the root mean square error (RMSE) is
calculated and presented in Equation (3):

RMSE =

√
1
N ∑N

j=1

(
T50j− T̂50j

)
2 (3)
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where N is the size of the dataset, T50j are the real values of the EGT, and T̂50j represents
the predicted values of the EGT. In addition, the R2 score is summarised in Equation (4):

R2 = 1−
∑N

j=1

(
T50j− T̂50j

)
2

∑N
j=1
(
T50j− T50j

)2 (4)

The same variables are used as those above with the addition of T50, which represents
the arithmetic mean of the real EGT values.

4. EGT Prediction Results

For each dataset, we will summarise the results obtained for the prediction of the EGT
with the two previously chosen metrics.

4.1. DS01

This dataset is the simplest one, as it introduces only deterioration in the efficiency of
the HPT. Table 4 shows the RMSE and R2 values for the training and test set for each unit.

Table 4. RMSE and R2 per unit for DS01.

Unit RMSE Training RMSE Test R2 Training R2 Test

1 0.5769 1.714 0.9999 0.9991
2 1.005 2.636 0.9997 0.9981
3 0.8482 1.463 0.9998 0.9994
4 0.6068 1.89 0.9998 0.9989
5 0.7985 2.067 0.9998 0.9987
6 0.8289 1.992 0.9998 0.9989
7 0.6169 2.214 0.9998 0.9985
8 0.8397 1.728 0.9998 0.9992
9 0.5793 2.675 0.9998 0.998
10 0.9154 2.149 0.9997 0.9988

Based on the provided results, it can be concluded that the model worked well for the
test set, with R2 consistently being over 0.998 and the RMSE being between 3 ◦R and 1 ◦R,
and an EGT equalling from 1.7 ◦C to 0.6 ◦C, a small range of EGT values. Figure 8 illustrates
the evolution of T50 (EGT) for unit 9 as a function of time in seconds, highlighting the
high result quality implied by the RMSE and R2 values. The predicted and actual values of
T50 were superimposed. The purple colour represents the predicted value, and the blue
colour represents the real values of the EGT, with both corresponding to the training set.
Similarly, the green colour represents the predicted EGT values, and red represents the real
values for the test set. The overlap between the predicted and real values is indicative of
the accuracy of the prediction, which followed the evolution of the EGT for every second,
while taking into account the deterioration in the efficiency of the HPT. As this dataset
does not represent an engine in commercial operation, a redline EGT is not applicable, and
any possible exceedances cannot be quantified before such a criterion has been set. The
variation in the EGT is indicative of the operating conditions for the seven different flight
phases for every flight cycle.
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4.2. DS03

This dataset is slightly more complex, with the introduction of efficiency deterioration
for the HPT and both efficiency and mass flow capacity deterioration for the LPT. Given
the more complex degradation pattern, the results were expected to be less accurate than
the previous ones. The results are summarised in the same way as before in Table 5.

Table 5. RMSE and R2 per unit for DS03.

Unit RMSE Training RMSE Test R2 Training R2 Test

1 0.567 0.9842 0.9999 0.9997
2 0.8572 1.676 0.9998 0.9993
3 0.9011 1.935 0.9997 0.999
4 0.7339 1.446 0.9998 0.9994
5 0.6137 1.143 0.9998 0.9996
6 0.9642 1.988 0.9997 0.9988
7 0.8084 2.057 0.9998 0.9989
8 1.076 2.873 0.9996 0.9977
9 0.6292 2.088 0.9998 0.9987
10 1.115 4.532 0.9996 0.9937
11 1.053 1.848 0.9996 0.999
12 0.614 1.298 0.9998 0.9995
13 1.145 3.893 0.9996 0.9961
14 0.6284 1.551 0.9998 0.9992
15 0.9011 1.565 0.9997 0.9982

As expected, the results were marginally worse but still very accurate. For the test set,
the maximum value for the RMSE was 4.5 ◦R with an EGT equal to 2.5 ◦C, which in terms
of EGT error is satisfactory. As for R2, the lowest value was 0.993, which is still an accurate
outcome. Figure 9 shows again the evolution of T50 (EGT) versus the time in seconds for
unit 10 of this dataset. The colour schemes are used the same way as explained previously.
Similarly, as this dataset does not represent an engine in commercial operation, a redline
EGT is not applicable, and any possible exceedances cannot be quantified before such a
criterion has been set. The variation in the EGT is indicative of the operating conditions for
the seven different flight phases for every flight cycle.
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4.3. DS08a

This last dataset is the most complex, as every gas path component deteriorates in
both efficiency and mass flow capacity. The expectation was that the prediction would be
the least accurate among the three datasets presented. Table 6 summarises the results in
the same format as DS01 and DS03 and with the same considerations regarding the EGT
redline and range of values.

Table 6. RMSE and R2 per unit for DS08a.

Unit RMSE Training RMSE Test R2 Training R2 Test

1 0.6618 4.372 0.9998 0.9944
2 0.9962 1.545 0.9997 0.9993
3 0.5946 3.079 0.9998 0.9969
4 0.9608 7.239 0.9997 0.9865
5 0.9292 3.906 0.9997 0.9959
6 0.9435 1.973 0.9997 0.9989
7 0.7984 4.632 0.9998 0.9951
8 0.8011 1.472 0.9998 0.9994
9 0.667 1.751 0.9998 0.9992
10 0.6965 5.281 0.9998 0.993
11 0.878 1.098 0.9998 0.9996
12 0.9649 5.705 0.9997 0.9915
13 1.529 12.78 0.9993 0.9536
14 1.045 1.246 0.9997 0.9995
15 0.5901 2.227 0.9999 0.9986

The test results were very close to those of dataset DS03. There were some units
that were less accurate (e.g., unit 13), with an RMSE of 12.78 ◦R, which translated into
approximately 7 ◦C, an acceptable value for marginal cases. The corresponding R2 in this
case was 0.95. However, the majority of the predictions were accurate, with an RMSE
varying between 5 and 1 and R2 varying between 0.998 and 0.999. Figure 10 illustrates
again the evolution of T50 (EGT) as a function of time in seconds for unit 13, which was the
worst performing unit.
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5. Trustworthiness Considerations: Data Concepts

A fundamental need for every ML-based system such as the GAM is the collection of
data to be used for training, testing, and sometimes validation purposes. In this context,
several main data concepts were identified to describe aspects that needed to be considered
for the development of a data management process for safety-critical applications in
aviation. The prediction of the EGT, as examined in this work, is a safety-critical process
indeed, since possible EGT exceedances might indicate poor engine health. The N-CMAPSS
data used in this work were from a synthetic dataset, which is a special case in terms of data
characteristics. However, the concepts described in this section apply to every database
dealing with the problematics of data-driven CBM, and in this context, their applicability
to engine-related problems will be discussed.

In general, the data concepts in this section feed the data management processes of
source identification, collection, preparation, and allocation of data, essentially facilitating
a common understanding of the notions of data among different parties. Moreover, some
data concepts aim at the identification of potential concerns and suggest related mitigation
actions, such as how to ensure that the data provide complete coverage of the operational
design domain while avoiding undesirable bias. Lastly, the data concept descriptions
provide some concrete guidelines.

The data concepts that were identified to be explored included bias, completeness,
curation, representativeness, sensors, sufficiency, synthetic data, and traceability:

Bias. The common definition of data bias is that the available data are not represen-
tative of the population being studied. Bias in machine learning, such as GAMs, is an
anomaly in the output of the algorithm [30]. These could be due to prejudices in the training
data. In the context of the problem of EGT prediction, bias is introduced by collecting data
from a limited set of sources, preventing representativeness of the data. This can be a major
issue indeed, since there are practically unlimited combinations of ambient and operating
conditions for aircraft which need to be represented in a generic dataset. The same applies
to possible wrong implementation of data sampling, cleaning, or generalisation. Eventually,
a successful EGT prediction under any conditions requires the premise of bias elimination
from the training dataset.

Completeness. Data completeness refers to the coverage of every possible operating
condition within the training dataset (i.e., how an engine operates in different kinds of
environments, ambient conditions, types of air contamination, etc.) [31]. If the data are
complete, then the model will work well for the functions that it is designed to perform and
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will interpolate well (generalisation capability) in the intended ODD. However, if the data
are not complete, then the model will only work in operating regions represented by the
data and may not work in other operating regimes. In the present case of EGT prediction,
incomplete data mean that any predictions might be inaccurate in the case of operating
regions that were not included in the original training data.

Curation. Data curation is the organisation and integration of data collected from
various sources. It involves annotation, publication, and presentation of the data such that
the values of the data are maintained over time, and the data remain available for reuse and
preservation [32]. Properly curated data imply robust models and reproduceable results.
In the context of the prediction of the EGT, data originating from different sources should
be curated with standardised processes. Version control, source tagging, standardised
preprocessing and strong data governance policies in general lead to proper curation and
mitigate possible unwanted effects, such as inaccurate models, the inability to replicate
results, and the inability to explain poor performance in EGT prediction, which might
compromise safety in extreme cases.

Representativeness. Data representativeness should not be confused with data com-
pleteness. Completeness refers to coverage, whereas representativeness refers to the correct
distribution of data points. For example, an on-wing engine dataset can be complete but not
representative when the distribution of data points is uneven in relation with the frequency
of encountering specific operating conditions, such the number of take-offs from long vs.
short runways could be mentioned and the degree of derating that each runway implies,
which also affects the EGT value. An uneven distribution in data might introduce bias
towards the assessment of nominal operations from a specific airfield.

Sensors. Sensors are used in all systems and subsystems of aircraft to measure the
different physical parameters of their operation and generate data out of them. Applica-
tions include system control, conventional diagnostics, and data-driven diagnostics that
contribute to CBM. Sensors, as physical devices, can fail and generate erroneous or no data
at all. Sensor noise is also a consideration, so appropriate mitigation actions must be in
place. These include redundancies by design and the development of fault identification
systems. Moreover, it is important to develop methods able to detect noise, boundary
exceedances, and in-range anomalies. In the case of EGT prediction by using other on-wing
types of data, the assurance of proper sensor functioning is paramount.

Sufficiency. Data sufficiency refers to whether the size of the data is adequate to
achieve and then verify the level of performance expected for the intended function over
the operational design domain. In general, a lack of data is a well-known issue in machine
learning applications, especially in cases where faults and failures need to be predicted.
Aviation is a very safe industry, so failures are scarce, making data sufficiency a challenging
task. There is no universal definition for the amount of data needed for specific applications,
but this depends on the number of characteristics for the intended prediction, the type of
algorithm, and the operational domain itself. Regarding the EGT prediction, sufficiency is
ensured when there are enough data points to cover all the intended operating points the
operator expects to be able to predict.

Synthetic Data. The term synthetic data refers to any production data applicable to
a given situation that are not obtained by direct measurement. Synthetic data are useful
for new systems that are still in the design phase for which no sensor data are available.
They are also useful in cases where accessibility to real data is limited but a method or
process needs to be tested. This is the case in the present work, where a synthetic public
domain database, N-CMAPSS, was used in combination with a GAM in order to explore the
prediction of the EGT in the case of sensor fault. An interesting point is that this database
was used to simulate faults and generate data corresponding to those faults, since fault
data are usually hard to come by in the field.

Traceability. Data traceability refers to the identification of data sources and their
trustworthiness. The concept of traceability can apply to data and other items (e.g., re-
quirements). The significance of data traceability stems from the fact that operational data
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should be traceable to their origin for appropriate interpretation and investigation purposes.
It should also provide an audit trail for post-decision accountability. Traceability can be
ensured with appropriate data tagging both in technical and operational terms. In the case
of engine EGT prediction, tagging is important for identifying the parameter names and
types (e.g., physical, synthetic, or normalised), timestamps, serial numbers, etc. In addition,
tagging is important for the identification of operational parameters, such as the aircraft
operator or route.

6. Discussion

This study is the first, to our knowledge, that deals with the prediction of the EGT
using the machine learning method of the generalised additive model. The decision to
develop an EGT prediction framework stems from the fact that the exhaust gas temperature
has always been the main gas turbine health-monitoring metric, and most of the crucial
operational decisions are being made on the basis of the measured EGT. The reason for
this preference is the fact that the EGT provides a very good indication of the accumulated
thermal inefficiencies of the gas path components, being essentially a metric for a wide
range of deterioration modes in safety-critical parts. Being able to predict the EGT has been
considered a step towards improvement in decision support for engine operators, given its
significant operational weight. Despite the fact that the EGT is measured by thermocouples
installed in an annular configuration right downstream of the LPT (also known as T50),
the present study has proven that this measurement can be replaced by a data-driven
model with a highly accurate outcome. This study can also be considered as a first step
towards predictability not only in real time but also for the future evolution of the EGT.
Some reasons for replacing the measurement of the EGT in the future is that ML models
such as GAMs can learn from large numbers of operating data points, essentially providing
results of high fidelity even in cases of sensor faults, loss of calibration, or EGT exceedances
that are not properly identified due to sampling shortcomings.

An equally important point is that all the features used for the EGT prediction were
selected to emulate the physical sensors that can be found in the majority of currently
operational designs by the most popular aero engine manufacturers. Given the correlations
identified in the presented correlation matrix, an interesting next step is to repeat the same
exercise for some of these features and assess the predictive capabilities of GAMs for them.
The expansion of this study could also result in a more generalised framework for the
prediction of missing engine parameters, which can then be used for health monitoring or
even control in the extreme case of an engine losing its capability to measure some critical
parameters entirely. In other words, this study can be considered a step towards safer flight
operations with the assistance of data-driven parameter prediction.

Another area that is important to discuss is the selection of data that enabled these
predictions. The authors considered the use of real operational data, but they selected
the well-established N-CMAPSS database for a number of reasons. First, the globally
acknowledged quality of this database ensures that the results are not compromised by
data quality issues, so the conclusions can be interpreted only from the perspective of the
predictive capabilities of the method. Second, the deterioration modes introduced by the
different employed datasets (DS01, DS03, and DS08a) mean that the predictive capabilities
of the method can also be tested in controlled conditions that take into consideration the
physical evolution of engine degradation. Moreover, the increasing complexity of the
datasets allows for a comparison of the accuracy of the predictions based on the complexity
of the simulated operating points.

A final objective of such methods is the building of trust in predictions made by
ML algorithms. The transparency of the GAM as an algorithm, in combination with the
accuracy of the obtained results, gives a first indication that trustworthiness can be ensured
only if trusted data and a suitable algorithm are combined. This is a first step towards
certifiable artificial intelligence for aeronautical applications. A very important element of
this roadmap is data quality considerations, as presented in this work as well. A main point
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here is that data quality is not static; it depends on the desired application and outcome.
For example, a dataset might be biased by definition, but if the objective of the application
is to be used for the training of an algorithm that focuses only on a specific range within the
operational design domain, then this might not be a problem. However, the development
of such methods requires an excellent understanding of the problem and its applications so
lack of bias, completeness, representativeness and traceability can be ensured to the degree
that they satisfy the problem requirements.

To summarise, despite the highly encouraging results, future research could focus on
the expansion of the prediction horizon. It can also include input from other databases,
either synthetic or real ones. Moreover, different combinations of features can be examined
in order to emulate different faults in engine parameter measurement in real conditions.
Lastly, the trustworthiness considerations of the method can be expanded by detailed
research of the employed real datasets, so any shortcomings are always revealed, discussed,
and addressed from the perspective of AI certifiability.
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