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Abstract: A rim seal is often used to prevent the ingress of high-temperature gas into the turbine disk
cavity and protect the turbine disk from damage. Based on the overlapping rim seal (Seal-A), this
paper proposes two more composite sealing structures (Seal-B and Seal-C) to show the effects of a deep
cavity in the static disk and a modified platform in the rotating disk. Three-dimensional unsteady
Reynolds-averaged Navier–Stokes equations and the shear stress transfer (SST) k-ω turbulence model
were used to reveal the flow field characteristics and the sealing efficiency. The results show that
the rotor–stator interaction plays a dominant role in the sealing outlet pressure, and the sealing
efficiency in the outflow area obtained by the transient calculation is lower than that of the steady-
state calculation. The rise in the cooling air flow enhances the reverse vortex in the sealing cavity, and
the disk cavity’s sealing efficiency is also improved. When the cooling air flow ratio increases from
0.6% to 1.8%, the sealing efficiency at the high radius increases by 30%. The shape of the deep cavity
produces a new return vortex at the lower part of the sealing cavity, which improves the sealing
efficiency. The shark nose platform in Seal-C aggravates the gas ingress at the sealing outlet but
improves the sealing efficiency at the sealing cavity. In general, compared with Seal-A, the sealing
efficiency of Seal-B and Seal-C is increased by 13.5% and 10%, respectively, at a cooling air flow ratio
of 0.6%.

Keywords: turbine; overlapping rim seal; unsteady flow; gas ingress; sealing efficiency

1. Introduction

The clearance between the rotating and the static disks in an aero-engine high-pressure
turbine can easily cause gas ingress, resulting in ablation damage to the internal components
of the disk cavity [1–3]. A sealing structure is often used in the turbine disk cavity, and
cooling air is introduced from the compressor to increase the pressure in the disk cavity
to prevent gas ingress [4–6]. On the one hand, excessive cooling air can cause energy loss,
such as mainstream pressure and heat energy, reducing turbine efficiency. On the other
hand, too little cooling air cannot resist the ingress of high-temperature gas. Therefore, the
design of the sealing structure is crucial. Using an efficient sealing structure can ensure
better sealing in the disk cavity and significantly reduce the required cooling air, which is
of great significance to the turbine performance and overall engine design [7–10].

Numerous numerical and experimental studies have been carried out to investigate
the gas ingress characteristics of the rim seal. Phadke and Owen [11–14] conducted a series
of experimental studies to understand the variation of the sealing efficiency and minimum
sealing flow rate with rotational speed. Owen [15,16] continued to conduct theoretical and
numerical studies of the gas ingress mechanisms and classified the gas ingress as externally
induced or rotationally induced. According to the orifice plate model and experimental
data, the predicted minimum sealing flow rate for each ingress mechanism is also given,
laying the foundation for subsequent research on rim seals.
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Sangan [17–19] used the tracer gas measurement method to investigate the gas ingress
characteristics of different sealing structures in a single turbine stage test stand and also
studied the effect of mainstream flow rate, rotational speed, and cooling air flow on the gas
ingress characteristics of various sealing structures. The studied sealing structures included
axial rim seals, radial rim seals, and double rim seals. The research results show that the
gas ingress of the radial seal is less than the axial seal under the same working conditions,
and the double seal structure can better resist gas ingress into the inner cavity. Sangan [20]
continued to study and found a method of adding fins to the sealing structure based
on the above experimental studies. The results showed that the sealing cavity pressure
increases after adding fins, which helps reduce the ingress of mainstream high-pressure
gas to improve the sealing performance.

Jia et al. [21] conducted numerical simulations on the radial–axial rim seal using
actual working parameters and found that the sealing efficiency of a radial–axial rim seal
was higher than for a simple rim seal. Savov [22] studied the single-lip and double-lip
sealing structures and found that the sealing performance of the double-lip rim seal was
significantly better than the single-lip rim seal. When the same sealing effect was achieved,
the cooling airflow required for a double-lip rim seal was less than that for a single-lip
rim seal.

Popovic and Hoson [23] conducted a series of experimental and numerical investiga-
tions on the overlapping rim seal and its improved rim seal. The results showed that the
overlapping rim seal has a high sealing efficiency, and the outer cavity of the overlapping
rim seal can retain a large amount of high-temperature gas, increasing the inner cavity
sealing efficiency. Moon [24] conducted a detailed study on the position and geometric
parameters of the sealing teeth on the overlap based on the overlapping rim seal. It was
found that installing overlapping teeth can prevent the ingress of mainstream gas and im-
prove the overlapping rim seal’s performance. The height of the sealing teeth significantly
impacts the sealing characteristics, while their width has little influence, and there is an
optimal installation position. Soghe et al. [25] proposed a sealing structure with a deep
cavity in the static disk and compared the effect of cavity geometric parameters on the
sealing efficiency. Scobie et al. [26] proposed a complex “Angelwing” sealing structure
in which the disk cavity flow path is designed as a complex cavity that can prevent gas
ingress by increasing gas resistance. Experimental and numerical research showed that the
“Angelwing” sealing structure could achieve high sealing efficiency at low sealing flow
rates.

Popovic [24] and Schuler [27,28] not only studied the cavity structure of the overlap-
ping rim seal but also designed the platform’s structure. The results showed that using the
improved platform could reduce the temperature in the leaf root region of the blade and
the aerodynamic loss but did not improve the sealing performance of the overlapping rim
seal. Li et al. [29] conducted an unsteady numerical study on a radial sealing structure with
a honeycomb surface. The results showed that the honeycomb surface arranged on the
inner tooth surface of the radial rim seal could improve the sealing performance to a greater
extent than the traditional radial rim seal, and the sealing efficiency can be increased by
9–14%. In addition, the depth of the honeycomb hole has an important influence on the
sealing performance, with a deeper honeycomb hole corresponding to a higher sealing
efficiency.

Erickson [30] proposed two bionic (“dolphin nose” and “shark nose”) platform struc-
tures and focused on their gas ingress characteristics. The results showed that the gas
ingress of the dolphin nose sealing structure was lower than the shark nose sealing struc-
ture. Zhang et al. [31] conducted experimental and numerical studies on the rim seal with
the dolphin nose platform and rim seals with different cavities based on the shark nose
sealing structure. Their research showed that the structure of the dolphin nose platform
and its hook shape caused a cooling air rotary vortex in the sealing cavity, allowing the
dolphin nose platform rim seal to achieve high sealing efficiency.
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In summary, many researchers have studied rim seal gas ingress characteristics and
structural design. Among them, there is little research on the sealing characteristics of the
rim seals with a deep cavity in the static disk or a modified platform in the rotating disk,
and there is also a lack of relevant unsteady numerical investigations. Therefore, this paper
proposes two composite sealing structures (Seal-B and Seal-C) based on the overlapping
rim seal (Seal-A). Seal-B only has a deep cavity in the static disk, and Seal-C contains a
deep cavity in the static disk and the shark nose platform in the rotating disk. The flow at
the sealing clearance is highly unsteady, and the steady numerical method cannot obtain
the gas ingress characteristics under the influence of rotor–stator interaction [32–34]. For
this reason, it is necessary to carry out an unsteady numerical study of the rim seal. In
this paper, the unsteady flow characteristics at the sealing clearance are analyzed, and
the influence of cooling air flow rates and sealing structures on the flow field and sealing
characteristics is revealed, providing a reference for the design and optimization of sealing
structures.

2. Computational Model and Numerical Method
2.1. Computational Model

The model studied in this paper is obtained by simplifying the first high-pressure
turbine stage of a current aero-engine application. As shown in Figure 1, the turbine
stage has 30 vanes and 60 blades, which are periodic in the circumferential direction. One
vane passage, two blade passages, and a 12-degree disk cavity sector are chosen as the
computational domain. The sealing structure in the calculation model is Seal-A, used as the
baseline seal configuration in this paper. The fluid domain where the vane is located is the
stationary domain, and the fluid domain where the blade is located is the rotating domain.
The rotating–stationary domain interface is set upstream of the rim seal. The height of the
main flow channel is approximately 60 mm. The length of the inlet development section is
more than 1.5 times the axial chord length of the vane, and the distance between the outlet
and the blade trailing edge is more than 1.5 times the axial chord length of the blade. The
blade tip clearance influence on the turbine flow is not considered.
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Figure 1. Computational domain of turbine rim seal.

The subject of this research is the sealing structure between the stationary disk and
the rotating disk. Figure 2 shows the geometric configurations of three sealing structures.
Seal-A, the baseline seal structure used in this study, is based on the overlapping rim seal
with a hook on the lower surface of the sealing cavity. Seal-B uses a deep cavity in the static
disk to the sealing cavity based on Seal-A. Seal-C further modifies the upper surface of the
platform to a concave surface. The change in sealing structure only occurs in the sealing
cavity, and the inner cavity structure remains unchanged. For Seal-A, the outer radius of
the disk cavity is b = 287 mm, and the distance between the stationary disk and the rotating
disk is S = 0.06b. The axial clearance of the rim seal is Sax = 0.02b, and the radial clearance
is Srad = 0.003b. The radial clearance of the three sealing structures is consistent. The main
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purpose of Seal-B is to investigate the effect of the deep cavity structure on the flow field
and sealing performance. The main purpose of Seal-C is to further investigate the modified
platform’s effect on the flow field and sealing efficiency.
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Figure 2. Meridional structural configuration of the turbine rim seals. (a) Seal-A; (b) Seal-B; and
(c) Seal-C.

2.2. Data Reduction

The rotational Reynolds number is defined as

ReΩ =
ρωb2

µ
(1)

where ρ and µ are the density and dynamic viscosity of the airflow, respectively, and ω is
the rotational angular velocity.

The axial Reynolds number in the annulus is defined as follows [35]

Rew =
ρνb
µ

(2)

where v is annulus axial velocity.
The dimensionless angle is defined as

θ∗ =
θ − θ0

θ1 − θ0
(3)

where θ0 and θ1 are the minimum and maximum circumferential angles, respectively, of
the axial position where the measuring point is located, and θ is the circumferential angle
of the measuring point.

The pressure coefficient is defined as

Cp =
ps

pt,in
(4)

where Ps is the static pressure, and Pt,in is the total pressure at the mainstream annulus inlet.
The sealing efficiency is defined as

ε =
c− c∞

ccoolant − c∞
(5)

where c is the CO2 concentration at the measuring point, ccoolant is the CO2 concentration at
the cooling air inlet, and c∞ denotes the CO2 concentration at the annulus inlet.
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2.3. Calculation Method

Because of the rotational characteristics of this model, the unsteady gas ingress and
sealing efficiency of three kinds of rim seals are investigated by numerically solving the
three-dimensional unsteady Reynolds-averaged Navier–Stokes (URANS) equations and
SST k-ω turbulence model [36] using the ANSYS CFX 14.5 commercial software. The time
step is 1.7857 × 10−6 s, corresponding to 80 physical time steps for one blade passing. Ten
iterations are required in a single physical time step. The converged results of a stationary
calculation are selected as the initial conditions for the unsteady calculation. The standard
for computational convergence is for the residuals to be below 10−5, for the monitoring
point parameters to show periodic variations with time, and to be maintained for more
than two rotation periods. The convergence curves of the main flow pressure and sealing
efficiency in the disk cavity with time step at the flow ratio IF = 0.6% (where IF is the ratio of
the cooling airflow rate to the mainstream flow rate) are given in Figure 3. The calculation
converges after approximately 5000 time steps, and 800 time steps are required to obtain
the unsteady time-averaged results.
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The tracer variable method is used in the numerical calculations, the additional tracer
variable and the additional variable turbulent transport equation are adopted to predict
the transport and diffusion process of the tracer gas (CO2) in the mainstream passage and
the disk cavity [37–39]. The equation in scalar form is:

∂(ρϕ)

∂t
+∇·(ρUϕ) = ∇

((
ρDφ +

µt

Sct

)
∇ϕ

)
(6)

The above equation describes the diffusion and turbulent transport processes of the
computational domain units, where U is the fluid velocity, ρ is the mixture density, ϕ is the
conserved quantity per unit volume or concentration, ϕ = ϕ/ρ is the conserved quantity
per unit mass, Dϕ is the kinematic diffusivity for the scalar, Sct is the turbulent Schmidt
number, and µt is the turbulent viscosity.

The additional variable of the coolant inlet is set to 1, and that of the annulus inlet is set
to 0. When the mainstream gas and sealing cooling air are mixed, the value of the additional
tracer variable is between 0 and 1. According to Equation (5), the sealing efficiency is the
same as the additional variable value.

2.4. Grid Independence Study

The turbine stage model with the sealing structure studied in this paper is complex.
The profile curvature of the blade is large. Therefore, the model uses an unstructured
mesh generated using ICEM CFD. A boundary layer grid is used around the main flow
channel, vane, blade, and other wall surfaces. Figure 4 shows the mesh details near the
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blade and inside the cavity. The first layer of the grid is located 1 µm from the wall surface,
and the maximum y+ value is less than 1, which meets the requirements of the SST k-ω
turbulence model.
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To minimize the error at the stationary–rotating domain interface, the circumferential
and radial nodes of the interface are ensured to be consistent when creating the mesh. As
shown in Figure 5, when the control volumes exceed 12 million, both the difference among
circumferential pressure curves and the difference among circumferential temperature
curves at the sealing outlet are below 5%, meeting the grid independence verification
condition. A grid with approximately 14 million control volumes is selected for the final
numerical simulations.
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2.5. Boundary Conditions

The working conditions studied in this paper are close to actual engine operating con-
ditions. Table 1 details the boundary conditions used in the calculations. The mainstream
inlet condition and the coolant inlet condition are specified as mass flow rates, and the axial
Reynolds number in the annulus is 2.15 × 106. The total temperature of the mainstream
inlet is 1760 K, and the temperature at the coolant inlet is 800 K. The outlet condition of
the single turbine stage is a mean static pressure of 629,500 Pa. The rotational Reynolds
number is 1.27 × 107. Five ratios of the cooling air flow rate to mainstream flow rate (IF) of
0%, 0.6%, 1.2%, 1.8%, and 2.4% are used.

The working fluid is modeled as an ideal gas. The wall conditions for the blade, hub,
and rim seal are set as smooth, adiabatic, and no-slip walls. Rotationally periodic interfaces
are specified for the circumferential surfaces of the mainstream channel and the disk cavity.
The domain interface is set to a transient rotor–stator condition. High resolution is used for
the numerical calculation difference format.
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Table 1. Boundary conditions.

Boundary Condition Value

Axial Reynolds number in annulus, Rew 2.15 × 106

Rotational Reynolds number, Reϕ 1.27 × 107

Ratios of the cooling airflow rate to the
mainstream flow rate (IF)/% 0%, 0.6%, 1.2%, 1.8%, 2.4%

Inlet total temperature in annulus/K 1760
Inlet static temperature in cooling airflow/K 800

Outlet static pressure/Pa 629,500

2.6. Validation of Numerical Method

Figure 6 gives the schematic diagram of the experimental system. A turbine rim seal
experiment was carried out to verify the accuracy of the numerical simulation method.
From Figure 6a, it can be seen that the centrifugal fan provides the steady airflow required
by the mainstream of the test section. The airflow provided by the compressor passes
through the filter and enters the stabilizing box. After mixing and stabilizing with the
carbon dioxide gas, the required sealing air is formed. Figure 6b shows the cross-section of
the test section with Seal-A. The outer radius of the disk cavity (bEXP) is 220 mm, and the
mainstream channel height (H) is 0.045 bEXP. The remaining structural parameters of the
sealing cavity are consistent with those in numerical model.

Aerospace 2022, 9, x FOR PEER REVIEW 7 of 24 
 

 

cavity. The domain interface is set to a transient rotor–stator condition. High resolution is 
used for the numerical calculation difference format. 

Table 1. Boundary conditions. 

Boundary Condition Value 
Axial Reynolds number in annulus, Rew 2.15 × 106 

Rotational Reynolds number, Reφ 1.27 × 107 
Ratios of the cooling airflow rate to the 

mainstream flow rate (IF)/% 0%, 0.6%, 1.2%, 1.8%, 2.4% 

Inlet total temperature in annulus/K 1760 
Inlet static temperature in cooling airflow/K 800 

Outlet static pressure/Pa 629,500 

2.6. Validation of Numerical Method 
Figure 6 gives the schematic diagram of the experimental system. A turbine rim seal 

experiment was carried out to verify the accuracy of the numerical simulation method. 
From Figure 6a, it can be seen that the centrifugal fan provides the steady airflow required 
by the mainstream of the test section. The airflow provided by the compressor passes 
through the filter and enters the stabilizing box. After mixing and stabilizing with the 
carbon dioxide gas, the required sealing air is formed. Figure 6b shows the cross-section 
of the test section with Seal-A. The outer radius of the disk cavity (bEXP) is 220 mm, and the 
mainstream channel height (H) is 0.045 bEXP. The remaining structural parameters of the 
sealing cavity are consistent with those in numerical model. 

 
(a) 

 
(b) 

Aerospace 2022, 9, x FOR PEER REVIEW 8 of 24 
 

 

 
(c) 

Figure 6. Experimental system in the present study: (a) experimental system; (b) test section; (c) and 
experimental rig. 

The sealing cooling air flow (0.002 kg/s), the rotating Reynolds number (4.8 × 105), 
and three main flow ratios (IR = 0.4%, 0.6%, 1.2%) are selected to conduct experiments. 
Figure 7 gives the comparison between numerical simulation results and experimental 
results. Figure 7a shows the circumferential pressure distributions at the trailing edge of 
the vane. Figure 7b shows the sealing efficiency distributions along the disk cavity radial 
direction. It can be seen from the figure that the various laws of the pressure curve and 
the sealing efficiency curve obtained from the experiment are consistent with those ob-
tained from the numerical simulation. The maximum relative errors of the static pressure 
coefficient and the sealing efficiency are 1% and 4.62%, respectively. Therefore, from the 
comparison of results, it can be considered that the error is within the acceptable range. 
The numerical method used in this paper can accurately simulate the flow characteristics 
of turbine rim seals. 

  
(a) (b) 

Figure 7. Comparison of the results of numerical simulation and experimental results. (a) Circum-
ferential pressure distribution downstream of the vane. (b) Sealing efficiency distribution along the 
disk cavity radial direction. 

3. Results and Discussion 
In this paper, the unsteady numerical calculation method is used to study the sealing 

characteristics of the rim seal. First, the unsteady characteristics of the sealing clearance 
are analyzed, and the relevant dependencies are obtained. Then, the influence of the cool-
ing air flow rate on the flow characteristics and sealing performance is studied. Finally, 
the flow field and sealing characteristics of Seal-A, Seal-B, and Seal-C for typical working 
conditions are compared and analyzed. The effects of deep cavity in the stationary disk 
and the modified platform on the sealing performance are obtained. 

3.1. Analysis of Unsteady Characteristics 
A monitoring point was selected at the sealing outlet of Seal-A to reveal the flow 

characteristics under a high load operating environment, and the pressure was sampled 
at each time step during the unsteady numerical calculations. 

Figure 8 shows the frequency characteristics of the monitoring pressure at the sealing 
outlet obtained by a fast Fourier transform, where the horizontal coordinate is the dimen-
sionless frequency, and fblade is the frequency at which the blade rotates through the vane 

Figure 6. Experimental system in the present study: (a) experimental system; (b) test section; (c) and
experimental rig.



Aerospace 2022, 9, 780 8 of 23

The sealing cooling air flow (0.002 kg/s), the rotating Reynolds number (4.8 × 105),
and three main flow ratios (IR = 0.4%, 0.6%, 1.2%) are selected to conduct experiments.
Figure 7 gives the comparison between numerical simulation results and experimental
results. Figure 7a shows the circumferential pressure distributions at the trailing edge
of the vane. Figure 7b shows the sealing efficiency distributions along the disk cavity
radial direction. It can be seen from the figure that the various laws of the pressure curve
and the sealing efficiency curve obtained from the experiment are consistent with those
obtained from the numerical simulation. The maximum relative errors of the static pressure
coefficient and the sealing efficiency are 1% and 4.62%, respectively. Therefore, from the
comparison of results, it can be considered that the error is within the acceptable range.
The numerical method used in this paper can accurately simulate the flow characteristics
of turbine rim seals.
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3. Results and Discussion

In this paper, the unsteady numerical calculation method is used to study the sealing
characteristics of the rim seal. First, the unsteady characteristics of the sealing clearance are
analyzed, and the relevant dependencies are obtained. Then, the influence of the cooling
air flow rate on the flow characteristics and sealing performance is studied. Finally, the
flow field and sealing characteristics of Seal-A, Seal-B, and Seal-C for typical working
conditions are compared and analyzed. The effects of deep cavity in the stationary disk
and the modified platform on the sealing performance are obtained.

3.1. Analysis of Unsteady Characteristics

A monitoring point was selected at the sealing outlet of Seal-A to reveal the flow
characteristics under a high load operating environment, and the pressure was sampled at
each time step during the unsteady numerical calculations.

Figure 8 shows the frequency characteristics of the monitoring pressure at the sealing
outlet obtained by a fast Fourier transform, where the horizontal coordinate is the dimen-
sionless frequency, and f blade is the frequency at which the blade rotates through the vane
channel. It can be seen from Figure 8 that the sealing clearance exit pressure is affected by
many conditions, among which the interference between the blade and vane has a signifi-
cant effect, corresponding to f/f blade = 1 in the figure. A similar conclusion was obtained
by Wang [40] in an unsteady numerical study of the model with a 1:2 vane-to-blade ratio
under experimental operating conditions. The main influencing frequency is f blade. When
the leading edge of the blade meets the high-pressure area of the vane trailing edge, the
maximum pressure occurs at the sealing exit, and the ingress is the largest.

The relative positions of the vane and blade at different instants are shown in Figure 9.
The time for the blade to pass through a vane channel is T, and the time between two
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adjacent instants in Figure 9 is 1/4T. The circumferential pressure distribution at the sealing
outlet is shown in Figure 10. The pressure curve shows that at (74 + 1/2)T and (74 + 1)T, the
trailing edge of the vane meets the leading edge of one of the two blades. The high-pressure
area at the trailing edge of the vane and the high-pressure area at the blade’s leading edge
are coupled with each other. The pressure reaches its maximum value at the trailing edge
of the vane and is much higher than the time-averaged value. This is consistent with the
behavior in the pressure spectrum analysis in Figure 8.
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At times (74 + 1/4)T and (74 + 3/4)T, the blade’s leading edge is far from the trailing
edge of the vane. The trailing flow of the vane flows into the blade channel, the interaction
with the blade’s leading edge is weakened, the maximum pressure is reduced, and the
pressure fluctuation is reduced. The time-averaged pressure is calculated by averaging the
pressure at each moment, smoothing the pressure fluctuation characteristics. However,
the distribution characteristics of higher pressure at the blade leading edge (θ* ≈ 0.25 and
θ* ≈ 0.75) and lower pressure at the blade channel’s leading edge can still be found from
the curve distribution.
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In the steady-state calculation, the relative position of the vane and blade does not
change. The trailing edge of the vane is adjacent to the blade’s leading edge, and the
pressure distribution trend is similar to (74 + 1)T. By comparing the transient and steady-
state pressure circumferential distributions, it can be seen that the pressure peak is higher
for the transient calculation than for the steady-state calculation, and the pressure valley for
the transient calculation is lower than for the steady-state calculation. The circumferential
pressure difference obtained from the transient calculation is much larger than the steady-
state result. Therefore, the circumferential pressure fluctuation at the sealing outlet obtained
from the steady-state calculation is smaller than from the transient calculation result,
leading to more significant gas ingress in the transient calculation.
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The change in the relative positions of the vane and blades affects the pressure distri-
bution in the outlet area of the sealing clearance, which in turn affects the gas ingress and
egress flow at the clearance. Figure 11 shows the pressure contours at the hub surface and
the radial velocity contours at the sealing clearance exit at different times. The radial veloc-
ity directly reflects the gas ingress and egress flow at the sealing clearance. A radial velocity
above zero indicates egress flow, and a radial velocity below zero indicates gas ingress.
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As shown in the red dotted boxes in Figure 11 at (74 + 1/2)T and (74 + 1)T, the
high-pressure area between the trailing edge of the vane and the leading edge of the blade
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results in a large negative radial velocity area at the clearance exit. The negative radial
velocity area at the sealing clearance is relatively large, and more mainstream gas intrudes
into the disk cavity. At (74 + 1/4)T and (74 + 3/4)T, the radial velocity at the sealing
clearance is influenced by the vane trailing edge flow, and the negative radial velocity is
mainly distributed in the region affected by the vane trailing edge flow. Compared with
(74 + 1/2)T and (74 + 1)T, the negative radial velocity region area decreases, and the area of
the positive radial velocity region increases at (74 + 1/4)T and (74 + 3/4)T. In other words,
the gas ingress is relatively weaker, and the egress flow is relatively stronger.

The circumferential distribution of the sealing efficiency in the outflow area at the
sealing outlet is given in Figure 12. The transient calculation results are time-averaged
values. By comparing the sealing efficiency curves, it can be seen that the sealing efficiency
at the sealing outlet obtained by the steady-state calculation is higher than for the transient
calculation. This is because the vane–blade interaction, the unsteady flow characteristics
of the vane trailing flow, and other flow characteristics are considered in the transient
calculation. These causes increase the ingress of mainstream gas, thus reducing the sealing
efficiency. Therefore, the sealing efficiency at the disk cavity under steady-state calculation
is higher than that under the transient calculation.
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3.2. Influence Analysis of Cooling Air Flow Rate

According to the gas ingress mechanism, it is known that externally induced ingress
is the main ingress pathway. The mainstream gas flows into the disk cavity when the
local pressure in the mainstream channel is higher than in the disk cavity. Egress flow
occurs when the pressure in the mainstream channel is less than in the disk cavity. The
circumferential pressure distribution around the endwall is closely related to the ingress
and egress flows.

Figure 13 shows the time-averaged static pressure coefficient Cp distribution in the
circumferential direction at l1 (downstream of the vane trailing edge) and l2 (upstream
of the blade leading edge). It can be seen from Figure 13a that the static pressure just
downstream of the vane trailing edge at the five flow ratios shows the same fluctuation in
the circumferential direction. The pressure peak at θ* = 0.6 corresponds to high pressure at
the vane trailing flow, which causes gas ingress into the disk cavity. The pressure peak at
θ* = 0.3 is due to the shock wave on the suction surface of the vane, with a high-pressure
region appearing after the shock wave. Adding cooling air flow strengthens the egress flow,
influencing the pressure field at the clearance outlet and in turn affecting the circumferential
pressure distribution downstream of the vane trailing edge and upstream of the blade
leading edge. Increasing the cooling air flow significantly improves the pressure coefficients
at l1.

As seen in Figure 13b, the pressure peaks at θ* = 0.2 and θ* = 0.7 correspond to the
high pressure at the two blade leading edges. The higher pressure in this region is due to
the potential field at the leading edge of the blades. Adding cooling air flow increases the
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pressure coefficients at l2. The pressure peaks constantly approach the airflow stagnation
point at the blade’s leading edge, and the pressure valleys approach the middle region of
the blade cascade channel. As the cooling air flow ratio increases from 0% to 2.4%, the Cp
differences in the circumferential direction at l1 and l2 are reduced by 6.85% and 20.55%,
respectively.
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Figure 14 presents the time-averaged Cp contour distributions at the endwall and
the radial velocity contour distributions at the clearance outlet. From the radial velocity
contour at the sealing clearance, the negative radial velocity region is mainly close to the
high-pressure regions such as the vane trailing edge, the vane suction surface, and the
blade leading edge. These areas correspond to the peak pressure areas in Figure 13, and the
negative radial velocity areas are mainly located at the stationary disk side. The positive
radial velocity region is far from these high-pressure regions, and the egress flow is mainly
near the rotating disk side and in the front area of the rotor cascade passage, as shown in
the red-dashed box in the figure.

Comparing the time-averaged Cp and radial velocity contours of Seal-A at the three
flow ratios, the negative radial velocity region decreases continuously as the cooling air
flow increases. This region is consistently concentrated in high-pressure areas, such as the
vane trailing edge and blade leading edge, and the positive radial velocity region expands.
In addition, the cooling airflow increases Cp, both downstream of the vane trailing edge
and upstream of the blade leading edge, corresponding to the results in Figure 13.

To clarify the flow state in the sealing clearance, the time-averaged tangential and
radial velocity distributions along the axial direction in the middle section of the sealing
cavity (r/b = 0.98) are given in Figure 15. Here, x/Srad = 0 is defined as the axial position of
the stationary disk wall, and x/Srad = 1 is defined as the axial position of the rotating disk
wall. From Figure 15a, a consistent tangential velocity variation trend occurs in the middle
section of the sealing cavity for the three flow ratios, and the tangential velocity increases
as the axial position approaches the rotating disk. By comparing the tangential velocity
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curves for the three flow ratios in Figure 15a, it is found that an increasing flow ratio raises
the tangential velocity values at each position in the axial direction.
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In Figure 15b, it can be observed that the radial velocity distribution in the central
section of the sealing cavity is relatively complex. The speed near the rotating disk is greater
than zero, and the speed value near the stationary disk is less than zero, indicating that



Aerospace 2022, 9, 780 14 of 23

the cooling air flows radially out from the rotating disk side, and the gas intrudes near the
static disk side. Comparing the radial velocity curves in Figure 15b, increasing the cooling
air flow raises the maximum and minimum radial velocity magnitudes. The egress flow
velocity near the rotating disk and the ingress velocity near the static disk both increase.

The larger the cooling air flow, the higher the maximum radial velocity, but its axial
position is farther from the rotating disk. This is because a larger cooling air flow results
in a higher axial velocity through the lower surface of the platform, so the airflow along
the left side of the platform decreases, and more air flows radially outward, away from
the rotating disk wall. The change in the radial outflow position also caused a change in
the mainstream gas intruding along the outer surface of the platform, and a part of the
mainstream gas intrudes along the left side of the platform. It can be seen from the curve
that when x/Srad ≈ 1, the radial velocity drops rapidly and becomes negative, and this is
more obvious for a larger cooling air flow rate.

The curves of the time-averaged sealing efficiency with the axial position in the middle
plane of the sealing cavity are given in Figure 16. As the cooling air flow increases, the
sealing efficiency continuously increases in most areas of the cavity. The average values of
the sealing efficiency were 0.74, 0.88, and 0.93, from the highest to lowest cooling air flow
ratios. Increasing the cooling air flow improves the sealing efficiency in the disk cavity.
In the area near the rotating disk, the sealing efficiency decreases because the increased
cooling air flow causes the radial outflow core area to move to the middle of the disk cavity,
and the mainstream gas is forced to intrude at the platform surface.
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The time-averaged sealing efficiency contour distribution and the surface streamline at
the ingress and egress sections in Seal-A are given in Figure 17. The time-averaged ingress
sections are at the blade’s leading edge, and the time-averaged egress sections are at the
blade channel. The sealing structure in Figure 17 is Seal-A, and flow ratios of 0.6%, 1.2%,
and 1.8% are selected.

In the egress section, the pressure outside the sealing clearance is lower than the
pressure inside the disk cavity, and the cooling air flows into the main flow channel along
the surface of the rotating disk because of the rotating pump effect. The cold air flow
is relatively small when the flow ratio is 0.6%. The cooling air flows into the sealing
cavity along the lower surface of the rim platform and then directly flows radially into the
clearance outlet along the left side surface of the platform. The airflow forms two vortex
structures, on the left side of the sealing cavity and at the rim platform’s upper surface.
With an increased cooling air ratio, the amount of cooling air flowing through the lower
surface of the platform increases. The air no longer flows against the wall because of inertial
effects but flows into the middle area of the sealing cavity first and then radially into the
sealing outlet. On the one hand, an increase in cooling air flow strengthens the vortex
structure in the sealing cavity, which occupies the entire left and lower area of the sealing
cavity. On the other hand, the axial length of the return vortex at the sealing exit increases,
and the vortex structure affects the area near the side surface of the platform.
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As can be seen from the sealing efficiency contours, the sealing efficiency of the seal’s
inner cavity is close to 100%, and the sealing cavity prevents further downward ingress of
the mainstream gas. When the flow ratio is 0.6%, the cold air flows close to the left surface
of the platform, so the sealing efficiency is high there. When the cold air flow rises, the
vortex structure in the sealing cavity is enhanced, and a large amount of sealing cooling air
is sucked, causing the sealing efficiency in the left and lower areas of the sealing cavity to
increase. However, the reflux vortex at the sealing exit sucks in the mainstream gas and
penetrates deeper into the sealing cavity, which causes gas ingress at the side surface of the
platform, and the sealing efficiency decreases continuously there.

In the ingress section, the pressure outside the seal is higher than the pressure inside
the disk cavity. The main flow gas invades the disk cavity, causing a change in its flow. The
main flow gas intrudes along the upper surface of the platform and forms a return vortex
in the sealing exit, where the vortex structure sucks up a large amount of the main flow gas
and the mixed cooling air in the sealing cavity. The airflow in the lower area of the sealing
cavity forms a reverse vortex, and the airflow contains part of the mainstream gas from the
downward invasion and a large amount of the sealing cooling air. Two vortex structures
occupy the entire sealing cavity and sealing outlet area.

From the sealing efficiency contours, the sealing efficiency of the inner cavity is still
close to 100%. Gas ingress mainly occurs in the sealing cavity, and the two vortex structures
keep the mainstream gas out of the sealing cavity. In the sealing exit area, the sealing
efficiency is low in the area near the upper surface of the rim plate because the gas intrudes
along the platform’s upper surface. In the upper part of the sealing cavity, the cooling
air is sucked into the reflux vortex, which increases the sealing efficiency there. In the
sealing cavity, the reverse vortex sucks part of the downward-invading mainstream gas
along the wall of the static disk. The sealing efficiency near the static disk is low. The
sealing efficiency in the middle region of the sealing cavity is improved by the addition of a
large amount of sealing cooling air. As the flow ratio increases, the cooling air entering the
middle region of the sealing cavity along the lower surface of the platform increases. On
the one hand, the reverse vortex in the sealing cavity is affected and occupies the lower-left
area of the sealing cavity, and the sealing efficiency in this area improves rapidly. On the
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other hand, as the axial influence of the return vortex increases, the area near the platform
surface affected by this vortex structure expands. However, the increased cooling air is also
mixed into the return vortex at the sealing outlet, improving the overall sealing efficiency
in this area.

The area-averaged sealing efficiencies at different disk cavity radii are given in Fig-
ure 18. The sealing efficiency of both the sealing cavity and the sealing outlet increases
with the cooling air flow. Thus, increasing the sealing cold air volume is an effective way to
improve the sealing performance of the disk cavity. The area-averaged sealing efficiency
at the bottom of the sealing cavity (0.96 < r/b < 0.975) is less than that at the middle of
the sealing cavity (r/b ≈ 0.975). This is because the vortex structure in the sealing cavity
sucks part of the mainstream gas into the bottom area along the surface of the static disk,
decreasing the sealing efficiency there. The cooling air flows into the middle region of
the sealing cavity along the lower surface of the rim platform, resulting in high sealing
efficiency in this region. With an increase in the cooling air flow, the sealing efficiency in
the middle region of the sealing cavity increases while also rapidly increasing in the lower
region. The difference in the sealing efficiencies between the two regions decreases because
more cooling air is sucked into the vortex structure inside the sealing cavity, thus rapidly
increasing the local sealing efficiency. When the cooling air flow ratio increases from 0.6%
to 1.8%, the sealing efficiency at the high radius increases by 30% on average.
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3.3. Analysis of Sealing Structure Influence

It is necessary to have a more detailed understanding of the disk cavity flow and
pressure fields to characterize the influence of the deep cavity shape and the modified
platform on the sealing performance. Therefore, Seal-A, Seal-B, and Seal-C are analyzed
in this section. Figure 19 compares the circumferential Cp variations of the three sealing
structures at l1 and l2.

From Figure 19a, the circumferential pressure variation curves of Seal-A, Seal-B, and
Seal-C are the same at l1. The sealing structure changes do not significantly affect the
pressure downstream of the vane trailing edge. As shown in Figure 19b, the circumferential
pressure curves of the three sealing configurations at l2 are also consistent. Seal-B and
Seal-C only affect the pressure near one of the blades, and the newly designed sealing
structure may affect the egress flow, which in turn affects the circumferential pressure at
the blade leading edge.

Comparing the time-averaged Cp and radial velocity contours of the three sealing
structures at the same flow ratio in Figure 20, the distribution of the ingress and outflow
areas at the sealing outlet of Seal-B does not change significantly compared to Seal-A. The
deep sealing cavity has no significant impact on the ingress and outflow at the clearance
outlet. For Seal-C, the area of negative radial velocity region increases, and the area of
positive radial velocity region decreases slightly, indicating that the modified platform
is not conducive to expanding the sealing outlet area but leads to more mainstream gas
ingress into the disk cavity.
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The time-averaged tangential and radial velocity variations along the axial direction
at the middle section of the sealing cavity (r/b = 0.98) are given in Figure 21. The three
sealing structures have consistent tangential velocity variations in the middle section of
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the sealing cavity, and the tangential velocity increases as the axial position approaches the
rotating disk from the static disk. When the tangential velocity curves of Seal-A and Seal-B
in Figure 21a are compared, the deep cavity shape of the static disk causes a decrease in the
tangential velocity at each axial position. In particular, the tangential velocity decrease is
most obvious near the stationary disk surface of the deep cavity. The tangential velocities
at axial positions x/Sax > 0.5 are higher than for the other two sealing structures because of
the platform structure of Seal-C.
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Figure 21. Time-averaged tangential and radial velocity variations along the axial direction at the
middle section of the sealing cavity for IF = 0.6%: (a) position of the section in the middle of the
sealing cavity; (b) time-averaged tangential velocity; and (c) time-averaged radial velocity.

It can be observed in Figure 21b that the radial velocity near the rotating disk side is
positive, and the velocity value near the static disk side is negative in the central section of
the sealing cavity. In comparing the radial velocity curves of the three sealing structures,
Seal-B’s deep cavity shape decreases the cooling air flow’s absolute radial velocity values
near the rotating and static disks. This indicates that the radial outflow of the cooling
airflow near the rotating disk and the ingress near the static disk both decrease in Seal-B.
Because of the platform’s influence, Seal-C has higher radial velocities than the other two
seal structures at the same axial position. However, the radial velocity near the rotating
disk and the middle of the sealing cavity is slightly lower than Seal-A, using the rotating
disk surface as the reference point. The radial outflow in this region is weakened, the radial
velocity near the static disk increases, and the ingress decreases.

The curves of the time-averaged sealing efficiency with the axial position in the middle
plane of the sealing cavity are given in Figure 22. Seal-B and Seal-C have higher sealing
efficiencies than Seal-A at different axial positions. The average face sealing efficiencies
of Seal-A, Seal-B, and Seal-C in this cross-section are 0.74, 0.8, and 0.77, respectively.
Compared with Seal-A, Seal-B increases the sealing efficiency by 8% because of its deep
cavity shape in the static disk, and Seal-C increases the sealing efficiency by 4% after adding
the platform shape.



Aerospace 2022, 9, 780 19 of 23

Aerospace 2022, 9, x FOR PEER REVIEW 19 of 24 
 

 

 
(a) 

  
(b) (c) 

Figure 21. Time-averaged tangential and radial velocity variations along the axial direction at the 
middle section of the sealing cavity for IF = 0.6%: (a) position of the section in the middle of the 
sealing cavity; (b) time-averaged tangential velocity; and (c) time-averaged radial velocity. 

The curves of the time-averaged sealing efficiency with the axial position in the mid-
dle plane of the sealing cavity are given in Figure 22. Seal-B and Seal-C have higher sealing 
efficiencies than Seal-A at different axial positions. The average face sealing efficiencies of 
Seal-A, Seal-B, and Seal-C in this cross-section are 0.74, 0.8, and 0.77, respectively. Com-
pared with Seal-A, Seal-B increases the sealing efficiency by 8% because of its deep cavity 
shape in the static disk, and Seal-C increases the sealing efficiency by 4% after adding the 
platform shape. 

 
Figure 22. Time-averaged sealing efficiency variations along the axial direction at the middle section 
of the sealing cavity for IF = 0.6%. 

Figures 23 and 24 detail the disk cavity’s flow field for three sealing configurations 
at the flow ratios of 0.6% and 1.8%. Compared with Seal-A, the deep cavity shape in Seal-
B only changes the flow field in the sealing cavity and has no significant effect on the 
return vortex at the sealing outlet. A new vortex structure is created in the lower concave 
cavity, both in the egress section and the ingress section, in addition to the reverse vortex 
in the left-side region of the sealing cavity. This is because part of the cooling air forms a 
return vortex in the lower concave cavity when it enters the sealing cavity along the lower 

Figure 22. Time-averaged sealing efficiency variations along the axial direction at the middle section
of the sealing cavity for IF = 0.6%.

Figures 23 and 24 detail the disk cavity’s flow field for three sealing configurations at
the flow ratios of 0.6% and 1.8%. Compared with Seal-A, the deep cavity shape in Seal-B
only changes the flow field in the sealing cavity and has no significant effect on the return
vortex at the sealing outlet. A new vortex structure is created in the lower concave cavity,
both in the egress section and the ingress section, in addition to the reverse vortex in the
left-side region of the sealing cavity. This is because part of the cooling air forms a return
vortex in the lower concave cavity when it enters the sealing cavity along the lower surface
of the platform, which consumes the cooling air. Therefore, the sealing efficiency in the
concave cavity is close to 100%, as shown in the sealing efficiency contours. The deep cavity
shape in the static disk and the cooling air significantly improve the sealing efficiency in
the lower area of the sealing cavity compared to Seal-A.
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Based on Seal-B, Seal-C has a modified shape on the upper surface of the platform, and
this new structure enlarges the area of the sealing exit. We know that the modified platform
structure expands the influence of the return vortex in both the egress area and ingress
areas at the sealed exit from the flow field structure. Combined with the sealing efficiency
contours, this is not conducive to improving the sealing efficiency at the sealing exit. In
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addition, the platform structure transports the cooling air deeper into the sealing cavity.
The return vortex in the lower recess of the sealing cavity still consumes the cooling air and
keeps the sealing efficiency in this area high. However, it also reduces the reverse vortex on
the left side of the sealing cavity and the expanding return vortex at the sealing outlet.
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Figure 25 shows the sealing efficiency of the three sealing structures at different disk
cavity radii. In the inner cavity (r/b < 0.96), the sealing efficiency of the three sealing
structures is 100%. In the sealing cavity (0.96 < r/b < 0.975), Seal-C has the best sealing
performance, and Seal-A has the worst performance. Therefore, the deep cavity shape in
the static disk effectively improves the sealing cavity efficiency. In the sealing exit region
(r/b ≥ 0.985), Seal-C has the lowest seal efficiency, and Seal-B has the highest. Thus, using
the modified platform structure is not conducive to improving the sealing efficiency at the
sealing exit but enhances the sealing efficiency in the sealing cavity. In general, compared
with Seal-A, the sealing efficiency of Seal-B and Seal-C is increased by 13.5% and 10%,
respectively, at IF = 0.6%.
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4. Conclusions

This paper studies the sealing characteristics of different sealing structures in a high-
pressure turbine under actual conditions by solving the three-dimensional URANS equa-
tions and SST k-ω turbulence model. The unsteady flow characteristics at the sealing
clearance, the influence of different sealing structures, and cooling air flow rates on the seal-
ing efficiency, and the flow field in the disk cavity are obtained, which provides a reference
for further optimization of the sealing structure. The main conclusions are as follows.

(1) The interference of the vane and blade dominates the effect on the sealing outlet
pressure, which has a significant impact on the sealing performance. The gas ingress
and egress flow in the transient calculation are more dramatic than in the steady-state
calculation. The turbine studied in this paper is a transonic turbine. The sealing clearance
is not only affected by the high-pressure area at the trailing edge of the vane and the blade
leading edge but also by the local high-pressure area caused by the shock wave at the vane
suction surface, which intensifies the gas ingress in the sealing clearance area.

(2) Increased cooling air flow increases the tangential velocity in the sealing cavity
and the radial velocity near the rotating/static disk sides. The reverse vortex in the sealing
cavity is enhanced, and the sealing efficiency of the disk cavity is continuously improved.
When the cooling air flow ratio increases from 0.6% to 1.8%, the sealing efficiency at the
high radius increases by 30%. Increasing the cooling air flow also enhances the egress
flow, and the static pressure values downstream of the vane trailing edge and upstream
of the blade leading edge are thus increased, and the circumferential pressure difference
is reduced.

(3) Seal-A has inherently better sealing performance. Even in the gas ingress area, the
reverse vortex in the sealing cavity and the return vortex in the sealing exit retain the gas
outside the sealing cavity, ensuring a high sealing efficiency of the inner cavity. Seal-B and
Seal-C do not influence the pressure distribution downstream of the vane trailing edge but
only affect the pressure distribution upstream of the blade leading edge. The deep cavity
shape in Seal-B only changes the flow field in the sealing cavity. A return vortex is created
when the cooling air flows through the lower part of the sealing cavity, which intensifies
the gas ingress. The platform structure in Seal-C increases the ingress area at the sealing
exit and intensifies the gas ingress in this area, but the modified platform’s structure helps
improve the sealing efficiency at the low radius of the sealing cavity. In general, compared
with Seal-A, the sealing efficiency of Seal-B and Seal-C is increased by 13.5% and 10%,
respectively, at IF = 0.6%.
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Nomenclature

b rim seal radius (mm)
c tracer gas concentration
Sax sealing axial clearance (mm)
Srad sealing radial clearance (mm)
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Rew axial Reynolds number (ρvb/µ)
Ps static pressure (Pa)
v annulus axial velocity (m/s)
T time for the blade to pass through a vane channel (s)
Pt,in total pressure at the mainstream annulus inlet (Pa)
f blade frequency at which the blade rotates through a vane channel (Hz)
IF ratio of the cooling airflow rate to the mainstream flow rate
ReΩ rotational Reynolds number (ρωb2/µ)
S axial clearance between rotor and stator (mm)
Cp pressure coefficient (Ps/Pt,in)
Greek symbols
ρ density (kg/m3)
µ dynamic viscosity (kg/(m·s))
θ circumferential angle (◦)
ω rotational angular velocity (rad/s)
θ* dimensionless circumferential angle
ε sealing efficiency
Subscripts
ax axial direction
rad radial direction
0 initial position
1 final position
∞ annulus inlet
coolant cooling air inlet
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